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An unstable uniform slab model of the mixed layer as a source
of downward propagating near-inertial motion

Part 2: Unsteady mean flow
by John Kroll'

ABSTRACT
The model of the uniform slab model of the mixed layer which was previously analyzed for

stability (Kroll, 1982) is modified to include inertial oscillations in the mean flow. The results
reflect the nature of the parallel flow instability produced by the steady component of the mean
flow combined with the nature of a parametric instability produced by the oscillating component
of the mean flow. This model is much more likely to produce unstable perturbations with a
near-inertial frequency than the steady mean model which reinforces the contention that the
instability can be a source of vertically propagating inertial oscillations. Also certain frequencies
that are integral multiples of the inertial frequency above a near-inertial frequency can be
significant in the perturbation. The energy flux associated with these frequencies predominates
as the inertial oscillations in the mean flow become significant. This could produce a significant
energy flux from the mean flow.

1. Introduction
In Kroll (1982) we looked at the stability of the uniform slab model of the mixed

layer, neglecting the inertial oscillations in the mean flow. From here on we will
designate that work as (I). In this paper we include these previously neglected inertial
oscillations in the mean flow. The resulting model is certainly more realistic than that
in (I) since in a real mixed layer the amount of energy in the oscillations is as likely as
not to be as great or greater than that in the steady mean.

The solution, as expected, reflects the nature of the parallel flow instability of (I) in
combination with a parametric instability of a type similar to those described by Kelly
(1965) and Mied (1976) for example. The model is mathematically complicated and
its numerical solution is costly. Hence we were not able to explore the nature of the
solution as extensively throughout the parameter space as we would have liked.

In (I) we compared two flow scenarios: one where the flowrate increased to a critical
value with the depth of the mixed layer essentially fixed and a second where the
flowrate was fixed and the depth increased to a critical value. The calculations were
done correctly, however, an unrealistically small value of the ratio of the Brunt- Viiisiilii
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to the inertial frequency (No/ fo) was used. A value of 40 was mistakenly used rather
than 400. Results, using either value, seem qualitatively the same. However, for the
more realistic value, the frequency at the critical point tends not to be near-inertial.
Hence it seems not as likely as first presumed that the frequency in (I) will be
near-inertial. However, we will show that it is much more likely for realistic conditions
for this present model. We will not compare the two flow scenarios here because of the
large computing cost.

2. The mathematical model
As in (I), we are considering uniform mixed layer slab flow over a continously

stratified, infinite depth interior with a stable density jump across the interface. The
basic perturbation equations, variables, and parameters are the same as those used in
(I) unless otherwise noted. However, inertial oscillations are included in the steady-
state flow. Assuming the system is initially at rest, this can be shown to be

(u, v) = /0 h {sin (J + sin (Jot - (J), - cos (J + cos U;'t - (J)l (Ia)
JoPI

where To is the magnitude of the wind stress, h and PI the depth and density of the
mixed layer respectively, the angle (J is measured from the x-axis. If we assume that our
perturbation wave in the stability analysis is in the x-direction, then (J is the angle
between the direction of wind and the perturbation wave. It can be shown that in this
case v in (1a) enters no further in our analysis. In reality, due to wind shifts and decay,
the ratio of the magnitude of steady and oscillating parts of u can vary. Thus for the
steady-state velocity we will use

u = UoU(t) = Uo [(1 - f) sin (J + f sin (ft - (J)] (1 b)

where 0 :s f :s I. Thus for f ~ 0, we have pure transport and for f = I we have pure
oscillations. The f = 0 case corresponds to the model of (I).

As in the simpler model, there exists an infinite set of stable solutions of the
perturbation equations which are independent of the lower layer and which we will
neglect. The solutions we are looking for then have velocity independent of z in the
mixed layer. Using the perturbation equations and interface conditions at z = -I, we
obtain the folIowing dimensionless equations after eliminating alI variables except
eastward velocity, u, pressure, p, and interface displacement, 1/.

For the mixed layer

Ull + 2(ikRU + uk2)u[ + (f2 + ikRU, + (ikRU + uk2)2)U

= -ikPot - ik(ikRU + ue)Po (2a)
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-i
u = k Fit + ikRU1i].
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(2b)

For the stratified ocean beneath

and

(3a)

(3b)

where ( ) = C)eih, P = aij + p, Po is the pressure at the interface z = -1(~ = 0), and
I' = Bd B is assumed constant as in (I). The nondimensionalization and the dimension-
less parameters are the same as for(l). These are summarized in Table 1. It should be
noted thatf = 1 whilefo is the dimensional inertial frequency, and we will assume that
the horizontal scale, L, is such that (J = 1; i.e., L = ";VH /10, as in (I).

Kelly (1965) analyzed the stability of an oscillating Kelvin-Helmholtz flow. His
system resulted in a Mathieu equation to be solved. This type of instability is called a
parametric instability. In its most elementary form it is the behavior of the pendulum
with oscillating length, the trapeze instability described by Orlanski (1973). Our
system is much more complicated. If we simplify our system letting (J = I' = 0, we
obtain the following system of equations for N(t) and P(~, t):

1 '"N = - -2 e P,(O, t), and
Bo

(4a)

(4b)

(4c)

1'/ = e-"'N and 1> = exp (ikRl'u(t')dt'). Thus even in its simplest form, this system
cannot be reduced to an independent Mathieu equation, and hence we cannot assume
that the well-known results of the solution of the Mathieu equation apply here.
However, the Floquet form of solution to the Mathieu equation should work for our
system. Mied (1976) used Floquet theory to analyze a similarly complicated system.

Hence we assume a solution of the form

2
J.l.n

oc

P = e'Y~/2 L Cnei~,Jei(nf-w)r

n=-oo

in (3a), where w is an eigenvalue. This determines that

B02e 1'2
(w - nf? - f2 - 4 .

(5)

(6)
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Table 1. Summary of dimensionless parameters.

o = aspect ratio ~ hi L where h is the mixed layer depth and L is the horizontal scale.
(f ~ horizontal Ekman number - PH I foL 2 where PHis the horizontal eddy viscosity andfo the

Coriolis parameter.
R ~ Rossby number - Vol foL where Vo is velocity scale of the mean flow.
Ci = og'l Lf02 where g' = g!J.pl PI is the reduced gravity with !J.p the density jump across the

interface and PI the density of the mixed layer.
B(z) = oN(z)1 fo where N(z) is the Brunt-Vaisala frequency in the interior. B2 is a Burger

number.
Bo ~ oNol fo - value at interface, B( -1).

~ ~ 1IBo f ~B(z' )dz' is the transformed vertical coordinate.
'Y - Bd B, assumed constant.
w = complex frequency = w, + iWj' nondimensionalized byfo~l.
k = horizontal wavenumber, nondimensionalized by L -I.

f ~ parameter partitioning energy between steady and oscillating components of mean
flow.

R' - modified Rossby number = R ..)(1 - f)2 + f2.

3. The energy flux
A radiation condition is necessary to determine the proper roots of J.ln' We need to

calculate the vertical energy flux below the mixed layer. The dimensionless vertical
energy flux density, averaged over one horizontal wavelength and one inertial period, is
given by:

F kf j17/f+' fh/k+X R ( )R ( ) d 'd'=-2 ew ep+a1J x t
41f t x

-fe-2~ni~ (e41fWi/f- 1) ~ [ ( "I )]

--2- ---- e2wjt L I Cn 1
2Re (W - nf) J.ln - i-

81fBo Wi n~-x 2

fi 2w·t
__ e_' (e41fw;/f_ 1)

41fB/

~ R [ CnCm * (w - nf) ( . "I) i(n-m)ft i(~.-~m')~]L- e -------- J.l -1- e e
m.n~x (2wi+i(n-m)f) n 2

(7)

where Wi is the imaginary part of w, J.ln,the imaginary part of J.ln'and (*) represents the
complex conjugate. The last term on the right in the above vanishes for W real. If we
assume I Wi I <: .1 and that the number of the coefficients, Cn, which have significant
magnitude is not too great, (which turns out to be true), then this second term will be
negligible for W complex also. Thus, to a good approximation, the energy flux is the sum
of fluxes associated with each individual wave. The energy density will behave in a
similar fashion.

If we assume that there is no perturbation sources below the mixed layer, then the
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energy flux for each wave (each value of n in the remaining term of (7» must be
downward or zero (F <.' 0). We can show that this is equivalent to the condition that
unstable waves (Wi> 0) decay with depth. The proper roots for lIn to fulfill this
radiation condition are found, using (7), to be:

(

W· < 0I lIn I ± i I lIn I I (Wr - nf) :> 0
r I Wi:> 0

lIn ~ - 0 '
W·>

-[Illn I ± illInl] I (Wr - nf) < 0
r I Wi < 0

(8)

where I lIn I, I lIn I are the absolute values of the real and imaginary parts of lIn and W =
r I

Wr + iw;.

4. The infinite matrix
Using (5) in (3 b), we find ii in terms of Cn so tha t Po can then be found in terms of Cn

from (5) for ~ = O. Then u can be eliminated in (2a) in favor of ii using (2b), and finally
ii and Po can be eliminated in (2a) in terms of the series yielding:

t Cneinf'{(lIn - i !)[kRU - W + nf)(F - Q/ + ikRU,)
n--x 2

+ 2ikRU,Qn + aeQn + kRU,,] - ik2B/Qn} ~ 0, (9)

where Qn = kRU - W + nf - iue.
If we now express U in (9) in terms of exponentials from (1b) and then equate

coefficients of einf
' to zero, we obtain the doubly infinite, banded matrix system to

solve:

0 C_2 0
3A-4 2A_3 IA_2 oA_1 _lAo _2AJ -3A2

3A-3 2A_2 lA_I oAo _IAI -2A2 _3A3
C_I 0

3A_2 2A_1 lAo oAI -IA2 -2A3 -3A4
Co 0

0 CI 0

C2 0

(10)
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oAn = (~n - i;)[An( f2 - Q/ - ~ (j2) - {j2Qn + aeQn] - ik2B}Qn,

{
i{j (i"l)[ - (- 2 3 2)±,An ~ "2 ~n -"2 An(f ± 2Qn) ± Qn +"4 {j

+ ak2 + 2fQn] + ~ k2B}} e+iO

±2An = ~2 (~n _ i;)[An ± 3f + 2Qn] e+2iO

A _ - i{j3 ( _ i"l) +3iO
t3 n - + 8 ~n 2 e

[42, I

(11)

with Qn = An - i(Je, An ~ kR(I - d sin fJ - w + nfand {j = kRE.
An analytical analysis of (10) is difficult. For E = 0 we have the model of (I) when

the determinant of (10) is set equal to zero to yield oAo = O. We would like to know if
there is also a parametric instability in the neighborhood of E = O. For E = 0, the
determinant consists only of the major diagonal, the oAn terms. For given parameters
there can be a possible neutral solution for a parametric instability if oAn vanishes for
more than one value of n. For E small but greater than zero the terms of the first super-
and subdiagonals of (10) would have to be included to determine if a neutral solution
becomes an unstable solution.

We can show analytically that there is such a neutral solution for E = 0 which can be
shown numerically to become unstable for E > O. This solution exists only for a = (J = 0
and has w ~ fand Rk ~ 2ffor n = -1 and O.This is a harmonic parametric instability
sincefis the forcing frequency. It also corresponds to a nonlinear resonant interaction
of a wave triad in the mixed layer. The frequencies of the perturbation waves, given by
w - nf, are w, ~ 2f and W2 ~ f and their wavenumbers are k, = k2 = k. If the "wave"
associated with the mean flow has frequency W3 ~ fand a wavenumber k3 = 0, then the
three waves satisfy the resonance conditions k] - k2 = k3 and WI - W2 = W3described
by Phillips (1969). It is a second order interaction with the basic state.

It was found analytically to be impossible to have a subharmonic instability (w =
f/2) for these conditions. Such an instability was never encountered for a, (J > 0 either.
Thus behavior analogous to the parametric subharmonic instability described by
McComas and Bretherton (1977) for internal wave interactions does not seem to
occur.

5. Numerical approach
Normally one would calculate values for w, given the rest of the parameters (k, R, a,

Bo, "I, E, fJ) such that the determinant of the matrix of (10) vanishes. However, a more
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convenient solution results by fixing Wi and calculating the unknowns Rand w" given k
and the rest of the parameters from the two equations which are the real and imaginary
parts of the vanishing determinant. We can then obtain stability curves k ~ k(R)
where Wi = 0 is a neutral curve. Values of k, Rand Wr at the point on the curve where R
is a minimum are defined as critical values kC' Re and We'

Solutions for E > 0 were found by using the known solution for E ~ 0 and gradually
increasing E. Details of the numerical process are given in the Appendix.

6. Numerical results and discussion
It was found much too costly to make sufficient calculations to be able to determine

the general behavior of the solution throughout parameter space. So we examine the
solution in what is considered a realistic region in parameter space. The extremes we
considered for the parameters were: E: 0 -+ I, 1': 0 -+ 2, Eo: 0 -+ 50, a: 0 -+ 50 and
k: 0 -+ 10. Even this region was too costly to examine thoroughly.

It is expected that the most unstable wave for E =I=- I will be in the direction of the
steady mean flow as in the E = 0 case. Limited calculations with varied () were
consistent with this expectation. So we set () = 7r/2 for all subsequent calculations.

For the values of the parameters initially assumed, we luckily found a solution for
the neutral curve for every E beginning at E = 0 and gradually increased to I. This was
lucky because we found later that neutral solutions do not exist for all E for all values of
the rest of the parameters.

To compensate for the fact that the average kinetic energy over one period of the
mean flow will change with E for Vo fixed, we define a modified value of R:

(12)

where u from (I b) with 8 = 7r /2 and v = E sinft, consistent with this u, have been used.
The average kinetic energy of the mean flow will then not change with E with the use of
this normalized Rossby number, R', and calculations with differing E can be better
compared.

Figure 1 shows the stable and unstable regions in (E, k) space for a = .28, Eo = 3.33
and l' = I. For any value of E the unstable region lies within the range of k for the
neutral stability curve in (R', k) space. We see that for this case there exists a neutral
stability solution for all realizable E. The curve shown is the value of the critical value of
k (ke) as a function of E. The numbers above and below the curve are respectively the
values of R' and Wr at the critical point (R~, wJ. The curve is not continuous because
there can exist multiple values of k on the neutral curve where R' is a relative minimum
for E > 0 in (R', k) space. As E changes, differing relative minima at differing values of
k become the absolute minimum for R'(R~) causing the jump in kc- Multiple relative
minima in (R', k) space can be seen in Figure 3.

Figure 2 has the same conditions as for Figure I except l' is increased to 2. Here we
see that neither a neutral solution nor an instability exist for all E.
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Figure I. Stable (outside dashed lines) and unstable (inside dashed lines) regions in (E, k) space
for a = .28, Bo = 3.33 and 'Y ~ I. Solid curve is kc vs. E with the numbers above being the values
of R~ and those below the values of We'

We know that for E ~ 0 we have only the parallel flow type of instability. For the
conditions of Figures I and 2 the critical point seems to be dominated by this instability
for E < .33. If we assume that the parametric instability is dominant wherever We is
exactly f, then it seems to dominate for .33 < ~< .78. For ~ < .33 there exists a local
minimum of R with w, = f, and for ~> .33 there exists a local minimum for w, =f=. f But
neither are an absolute minimum. For ~ > .78 the parallel flow instability seems to
re-emerge and then merge continuously into the parametric as ~-+ 1.

••
2. 1.39

1.30)

o .2

(1.37)

.4
E

.6 .8 1.0

Figure 2. Same as Figure I except 'Y~ 2.
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3

2

k

o 2

(1.0)

4 R'

y=.25

6 8

Figure 3. Neutral stability curves in (R', k) space for various values of ")'. The number in
parentheses is the frequency at the corresponding relative minimum in R'. ex ~ .5, Bo = 1.0 and
t = .4.

Of importance in (I) was the result that there can be no instability unless B~ > 2'Yfu.
This means that as the stability of density stratification beneath the mixed layer
increases the perturbations become more unstable.

Figure 3 illustrates that this can occur also for l > 0 though we cannot analytically
derive definite bounds as we could for l = O. On this figure are plotted neutral stability
curves on the (R', k) plane for various increasing values of 'Y from 'Y = 0 for l = .4,
a = .5 and Bo = 1.0. We see that the unstable region disappears for 'Y > .3, a value
considerably less than .5 predicted for l = O.

Figure 3 shows some typical shapes for the unstable region for l > O. The critical
point will be the point of the absolute minimum value of R' on any curve. We see that
there can be more than one relative minimum of R' for a given curve, as noted in the
discussion of Figure 1. As 'Yapproaches .3 we see that the unstable region actually
separates in two parts. Each part then disappears as 'Yincreases past .3.

The small numbers along the curves are the relative values for Wr• The solutions for W

are not unique for l > 0 since any integral multiple of f can be added to it. The
frequency Wr - nf is associated with the coefficient en. The figure shows that at least
for this value of l, the critical point is likely to be exactly at the inertial frequency and
be very sharply defined. Figures 1 and 2 seem to indicate that the critical frequency is
likely to be exactly inertial when l is such that .3 <' l <' .8 and l -- 1.

The set of coefficients Ie} for P of (5) must be calculated. However, the
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[42, 1

Figure 4. Values of the coefficients 1Nn I, .•. , the energy density,., and the energy flux density, x,
versus n for Bo = 1., ll' = .5, 'Y = 0, t = .5, k = 1.8, R' = 3.23 and w = 1.0013 + i.005. The
frequency corresponding to each n is w, - nf

normalization of the elements of the matrix (11) made it easier to calculate the set {N.!
where Nn = ('Y/2 + i1Ln)Cn for the interface displacement,

oc

1;= I/B}LNne-;(w-nJl'

from (3b). The energy flux density at ~ = a for each wave can be calculated from the
non-negligible first term of (7). A similar calculation for the energy density just below
the interface, averaged over one wavelength and one inertial period, can also be made.
These quantities are plotted for the first few terms of the sum on Figures 4, 5, 6 and 8.
1 Nn I and the energy density are measured relative to arbitrary values for n = 0, 1.0 and
100., respectively.

Figures 4 and 5 are typical. The parameters for each are the same except ~ = .5 for
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-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

n
Figure 5. Same as Figure 4 but for t = I., k ~ 2.06, R' ~ 3.54 and w ~ 1.0 + W05.

the former and 1.0 for the latter. Each is calculated just on the unstable side of the
critical point on the neutral curve where in these cases We is essentially inertial. The
frequency for the nth wave is w, - nfso that the n = 0 wave has frequency w, """I The
energy flux for the Oth wave is relatively negligible but the energy density is relatively
the largest as expected for a wave at almost exactly the inertial frequency. Because of
division by a factor (w, - nf)2 - f2, the n = 0 and n = 2 terms would be the only ones
to have a nonzero relative energy density for w, =1 The absolute values of Nn,

however, are significant for I n I <: 8 for Figure 4 and I n I <: 10 for Figure 5. Figure 4
shows the dominance of n <: 0 corresponding to waves traveling in the direction of the
steady mean. Figure 5 shows the expected symmetry about n = 1 for t = 1 where there
is no steady mean flow and hence no preferred direction. It also illustrates how fast the
coefficients decrease with In Ieven for t = I.

Figure 6 shows the coefficients at the critical point for the 'Y= .29 curve of Figure 3.
Here Wr *- fbut is a near-inertial value of 1.095 and the energy flux for the wave at this
frequency is not negligible. This illustrates the typical character of the radiation when
w is near-inertial and f is sufficiently large. There can be many values of n where Nn is
significant but few where the energy density is significant. The largest value of the
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Figure 6. Same as Figure 4 but for 'Y~ .29, f ~ .4, k ~ 1.2, R' = 5.00 and w = 1.095.

energy density is at the frequency w, (n = 0), but the largest energy flux will be at a
higher frequency w, - nfwith n < 0 for f < 1. For the conditions of Figure 6 the largest
flux occurs at n = - 3, which is a frequency 4.095, with a flux about 30 times greater
than for n = O.The fluxes at n ~ -4 and -1 are also quite significant. These fluxes are
larger than for n = 0 because the group velocity increases with frequency and so with
I n I· But ultimately the energy density decreases sufficiently with I n I to force the flux to
also decrease with I n I.

We conclude that for a sufficient value of f, if there is an instability with w,
near-inertial, the energy observed immediately beneath the mixed layer will be
predominantly at w, but the energy flux will be at higher frequencies, w, + In If Titov
(1973) claims to have seen spectral peaks not only near the inertial frequency but also
at approximately integral multiples of inertial in the Mediterranean and Black Seas
and the Atlantic and Indian Oceans. This has not seemed to be a general observation.
However, recently Pinkel (1983) has interpreted data from FLIP as showing signifi-
cant energy near integral multiples of the inertial frequency.
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(3.54) (4.18)

95

o
4 5 6

R'
7 8

Figure 7. Typical curves in (R', k) space for various constant unstable values of Wi' The
numbers in parentheses are frequencies w" a = .5, Bo - 1.0, "y = .25 and f - .4.

Clearly the above is dependent on ~.As ~-- 0 all the coefficients except for n = 0 go
to zero. The limited calculations made indicate the number of significant coefficients
increases as ~ increases as expected. However, not enough calculations were made to
determine how variations of the other parameters affect this. Figure 5, for ~ = I,
indicates this number of significant coefficients is limited.

For ~ > 0 it seems typical to have a critical point on a neutral curve where W = f
Waves at a frequency exactly f will not propagate vertically. However, typically the
critical frequency increases as the critical value of R is exceeded and one moves into the
unstable region. This is illustrated in Figure 7 where curves of constant values of the
imaginary part of w, Wi' are drawn for the 'Y = .25 case of Figure 3. If R' is increased
from the critical value of 3.87 to 4.24, the most unstable solution has Wi = .02, k = 1.31
and w, = 1.11. Figure 8 shows the normalized values for INn I at this point. The results
are similar to Figure 6 with again the energy concentrated at n = 0 and the flux
concentrated about n = - 3.

For the conditions of Figure 7, the most unstable solution has Wi "" .095, k "" 1.2 and
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Figure 8. Same as Figure 4 but for 'Y~ .25, t ~ .4, k ~ 1.31, R' ~ 4.24 and w = 1.109 + i.02.

w, "" 1.2 at R' "" 6.3. At mid latitudes this would imply a growth by a factor e in about 2
days. As R' is increased to 6.3, the value of w, at the most unstable point for a given R'
will go through values which will not be near-inertial. So near-neutral unstable
solutions are likely to be dominated by a near-inertial frequency while the more
unstable solutions may not be near-inertial.

The values of the parameters used so far should be nominally realistic. Realistic
parameters can be estimated from actual data. From Site D data (Pollard, 1980), we
estimate that No/fo "" 400, h "" 25 m, 'Y "" 1 and g "" .1 cm/sec2

• What we know least is
PH' SO we plot for various values of € the critical values for R', w, and k versus L =

.JvH/fo. These are shown on Figures 9, 10, and II. (Figures 1 and 2 correspond to these
same values of No/fo, g' and h with L ~ 3 km.)

For € = 0, the maximum value for L for which there can be an instability can be
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Figure 9. R~(x), ke(')' Wc(A) vs. L - ..JvH!fo(km) for € - 0, "y - I, g' = .1 cm!sec2, h ~ 25 m,
No!!. = 400 and Wi = O.

calculated from the inequality derived in (I). This is shown in Figure 9 where the
maximum L is about 7.1 km. In the interval of L from.2 to 7.1 km. the minimum value
of We is 1.3 which is about out of the near-inertial range.

In contrast, for € = .5 shown on Figure 10, We is exactly 1 for the whole interval of L
shown. The maximum value of L is about 5 km which cannot be derived analytically.
The maximum value of L is less than that for E = 0 and the value of R~ is greater for
most values of L.

Figure 11 for € = 1 has discontinuities like Figures 1 and 2 for the same reason.
Differing relative critical points become absolute critical points as L is increasing.
Figure 12 illustrates an unusual example of this. As L increases from .2 to .7 km an
"island" of instability is gradually pinched off the "mainland" of the unstable region.
The absolute critical point is on the left side of the "island." As L is increased to .75 km
the "island" disappears and the absolute critical point becomes the relative critical
point at about k = 4.3 of Figure 12. As L is increased more, the relative critical point at
about k = 1.6 on Figure 12 gradually draws even with the one at the larger value of k
for L about 1.5 km. Thereafter this critical point remains the absolute critical point.

The value of We is 1 for all L and is not shown on Figure 11. The maximum possible
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Figure 10. R~ (x), ke (.) and We (.~) vs. L(km) for the same conditions as Figure 9 except f =
.5.

value for L is about 6.2 km. and is greater than that for £ = .5 and R~is generally
comparable to that for £ = .5 for most values of L shown.

The flow scenarios in (I) for £ = 0, the "increasing flowrate" and "increasing depth"
instabilities, will not be examined here because the cost of computation is prohibitive.
We can look at some data for the mean flow to see under what circumstances the flow
could be unstable. From the data of Pollard, the value of £ varies from about .3 to .8.
The largest mean flow in the data has £ about .6 and Uo about 90 cm/sec. For No/fo =

400, 'Y= I, and h = 25 m./o = .9 . 10-4 sec-I and L = 3 km. Figure 1 indicates R~""
3.0, ke "" 1.85, We = 1.0 so that Uo = R;foL/~(l - £)2 + £2 "" 110 cm/sec and the
wavelength Lx = 27rL/ ke "" 10 km. So for this value of L = .,JvH/fo we would not expect
an instability. If L is chosen to be 2.5 km, the critical flow is about 90 cm/sec. Since Uo

varies linearly with L and R~does not change much until L becomes sufficiently small,
Uo at the critical value continues to decrease until a minimum is reached. So an
instability is possible depending on L.

Of the figures for varying L, Figure 10 for £ ~ .5 is the most realistic. At the
maximum L at which there can be an instability, L = 5 km, the value of Uo is about 200
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Figure II. Same as Figure 10 except t - 1.0 and We - 1.0 for all L.
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Figure 12. Neutral stability curve for the conditions of Figure II for L = .7 km. The numbers in
parentheses are frequencies, w,.
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cm/sec which is unrealistically large. The value of Vo is a minimum of about 20 cm/sec
at about L = .7 km where the wavelength, Lx, is about 1.2 km. So here the flow is easily
obtained but the wavelength would seem unreasonably small. The limited amount of
data indicates that Lx should be 0 (10 km) (Sanford, 1975; Pinkel, 1983 for example).
So assuming that Vo <: 100 cm/sec is realistic, then L on Figure 6 cannot be any larger
than about 4 which corresponds to a wavelength of about 10 km. If Lx <: 5 km. is
realistic, then L cannot be any smaller than about 2 km. So to have instability at these
conditions, the horizontal eddy viscosity must be such that 4 . 106 cm2/sec :S PH :S 16 .
106 cm2/sec, a somewhat limited range. This range can be expanded by varying the
parameters, an increase in h or a decrease in g', for example.

7. Summary ofresuIts

Based on the limited calculations shown in the figures and a few not shown, the more
important results are:
I. The solution seems to behave in the same manner as (I) (f = 0) with respect to the
parameters a, Bo and "'(. That is the value for Rc increases (higher stability) and kc
decreases as Bo decreases, 'Yincreases or a increases. Thus, as with (I), a more stable
density stratification produces less flow stability. (Based on Figure 3 and calculations
not shown.)
2. The frequency at the critical point, Wn is much more likely to be near-inertial for f ;>
.3 than for f = O. (Figs. 1,2,9, 10, 11.)
3. The critical frequency increases as R' is increased from R~. This allows energy
originally at a frequency that is exactly inertial on the neutral curve to vertically
propagate at a near-inertial frequency. The energy of the resulting wave is concen-
trated at the near-inertial frequency though there can be significant components which
are integral multiples of the inertial frequency above the near-inertial frequency. The
energy flux is concentrated in these higher frequencies and the flux associated with the
near-inertial frequency is insignificant in comparison (Fig. II, Fig. 8).
4. The growth of an unstable wave is limited as in (I). The frequency at the point of
greatest growth is not necessarily going to be near-inertial. (Fig. 7).
5. As in (I) the magnitude of PH' which is unknown, will be significant in determining
whether the flow can become unstable. For the data considered, PH = 0(107 cm2/sec)
seems to be necessary. This restriction on PH can be relaxed with various changes in the
values of the parameters.

8. Conclusions
The analysis of this model with the realistic addition of inertial oscillations in the

mean flow reinforces my contention that this instability can be a source of downward
propagating near-inertial motion. Not unexpectedly, if there is an instability, this
model will more likely have perturbations with near-inertial frequency than the steady
mean flow model of (I).
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Also, as might be expected from the nature of a parametric instability, frequencies
that are nearly integral multiples of the inertial frequency can be significant. The
observation of such would be evidence of the existence of the instability. However, the
instability can still be occurring while the amplitudes of super-inertial frequencies are
not significant enough to detect. Interestingly, though the super-inertial waves would
be difficult to detect, they would constitute the greatest energy sink of the steady state
from this instability mechanism.

This model is mathematically involved but still rather crude physically. The velocity
of the real mixed layer has some shear especially in the direction normal to the
direction of the transport. More importantly the problem of finding the amplitude of
the energy flux of the perturbation from the mixed layer should be addressed to see if it
is a significant energy sink for the mixed layer energy budget.
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APPENDIX
It makes sense to utilize the solution for the f = 0 case already known, to gradually

increase f from zero and look for a solution in the neighborhood of a previous solution.
It then makes sense to assume that the dominant coefficient is oAo and to rearrange the
matrix in (10) to obtain a semi-infinite banded matrix system to solve:

oAo _lA, lA_I -2A2 2A_2 -2A3 3A-3 0 Co 0

lAo oA, 2A_1 -IA2 3A-2 -2A3 0 -3A4 C1 0

_lAo _2A, C_, 0

2AO lA, C2 0

-2AO _3A, C_2 0

3AO 2A,

_3AO 0

3A,

0

Not much is known about such systems (Smith pers. comm.). The only known
method to find a solution is truncation (e.g., Mied, 1976), where one decides that an
accurate value of w is obtained when an increase in the order of the determinant
changes the value of w only negligibly and the coefficients, Cn, decay toward zero for
increasing 1n I. Rather than calculate complex w, we calculate stability curves k = k
(R). 1m (w) is fixed (1m (w) = 0 for the neutral curve), and we calculate the two
unknowns Re (w) and R, given k and the rest ofthe parameters, from the two equations
which are the real and imaginary parts of the determinant set to zero. We use a two
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dimensional Newton's method scheme to find these values, using Gauss elimination to
evaluate the determinant. The order of the determinant necessary for reasonable
accuracy ranges from 1 for ~ = 0 to around 50 for ~ = 1. Reasonable accuracy was
arbitrarily chosen to be a relative change of the calculated values of less than about
10-3 for an increase in the order of the determinant of 5.
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