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Double Kelvin waves in a two-layer sea

by S. A. W. Bondoki and H. G. Pinsene

ABSTRACT
It is shown that a depth change such as a fault line acts as a wave guide to long period waves in

a two-layer rotating sea, in a similar way to the Double Kelvin waves of Longuet-Higgins
(1968a, b) for a homogeneous sea. For a sea with a step discontinuity in depth, the effect of an
extra layer leads to only small changes in the dispersion characteristics.

For a continuous monotonic depth change taking place over a width I it is found that as I
increases the Double Kelvin wave period increases, and the elevation at the interface decreases
relative to the free surface elevation.

Finally the effect of a time periodic wind stress suddenly applied is considered for step
discontinuity in depth. For a maximum wind stress of I dyne the free surface wave amplitudes of
the Double Kelvin wave are significantly less than those given by Mysak (1968). The
corresponding interface amplitudes are about 10 em. It is suggested, unlike their one-layer
counterparts, that it may be possible to detect the two-layer waves successfully in practice, since
they are predicted to have relatively large elevations at the interface.

1. Introduction

Energy can be propagated freely in the form of plane long waves across a sea of
constant depth, and constant Coriolis parameter f, provided the wave frequency (J >f
If there is no restriction on the frequency, wave energy can in fact be propagated long
distances, but only around coastlines bounding the sea in the form of Kelvin waves. In
these waves the amplitude decays exponentially with distance away from the coast.

Longuet-Higgins (I 968a, b) has shown that in theory energy can be similarly guided
across a homogeneous one-layer sea provided a change of depth exists; for example, a
geological fault line. He called this wave a Double Kelvin wave. Mysak (1968) deals
with the generation of Double Kelvin waves. In these waves, which as far as we know
are still undetected in practice, the wave amplitude is predicted to decay exponentially
with distance on each side of the change in depth. For these waves f > (J, if the depth
changes are monotonic, and such waves could be significant in transferring energy
across open sea when plane waves are not available to do so. In this discussion we are of
course excluding .8-plane waves which only apply on an ocean scale and have very long
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periods. In the present paper we wish to extend Longuet-Higgins' work to consider a
sea with two density layers as a more realistic approximation to a sea with a
thermocline. There is an important practical reason for such an extension which we
now develop.

For a two-layer sea, two completely independent plane wave modes are possible for
(J > f, an ordinary wave which is identical to that found in a one-layer sea, and an
internal wave which displays amplitude changes at the density interface about 30 times
larger than those occurring at the free surface. If the depth is variable these plane
waves lose their separate identity and display both ordinary and internal wave
characteristics. Waves with exponential decay behavior are similar in many respects to
plane waves. It seems reasonable, therefore, to infer that if a Double Kelvin wave exists
in a two-layer sea having a depth change, it must also display dual characteristics. This
then implies that it may be possible to detect a Double Kelvin wave in practice by
observations in the vicinity of the thermocline, where the interface elevations could be
expected to be large due to internal effects. By the same reasoning, purely homoge-
neous Double Kelvin waves would not appear to be possible in a sea with a strongly
developed thermocline.

Basic equations. We take a two-layer sea consisting, when undisturbed, of an upper
layer of density p and thickness h, over a lower layer of density p' = p/,,!, where,,! < I,
see Figure 1. We take coordinates (x, y, z) with z vertically upward. The bottom of the
sea is variable and given by z = - H (x). If (, (' are the surface and the interface
elevations caused by the wave motion, the hydrostatic pressure distribution is

P = P a + p g«( - z),

P=Pa + pg«(+ h - (') + p'g(f' - h - z),

(1)

(2)

where Pa is the atmospheric pressure, g acceleration due to gravity, and the prime
refers, as always here, to the lower layer.

Substituting for the pressure in the equations of horizontal motion, ignoring vertical
velocities compared to horizontal ones (u, v) and (u', v') in the (x, y) directions, then
we have at time t,

where

u; - fv' = -gMx,

VI + fu = -gfy + 7Y/ph,

v; + fu' = -gMy,

(3)

(4)

(5)

and (7X
, 7)') is the wind stress at the free surface of the ocean. We have ignored stresses

at the interface and at the sea bottom. The corresponding continuity equations are

(6)
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Figure I. Guided waves being propagated along the transition zone between two regions of
uniform depth for a two-layer ocean.

and

[(H(x) - h)u'lx + (H(x) - h)v~ = -t;. (7)

In the first part of this paper we are particularly interested in the existence of guided
waves propagating parallel to the lines of constant depth in the y direction. We will
therefore ignore the wind stresses until the final section and assume all perturbed
quantities have a eimY-iut dependence where m is a wavenumber. For simplicity we
retain the same notation for the perturbations, but now it is understood they all depend
only on x. From (3), (4) we obtain the velocity perturbations

u = - 2 g f2 (i0' tx - ifm n,
0' -

u' = - 2 g f2 (iO'Mx - ifm M),
0' -

g
v = - a2 _ f2 Utx - am n,

v' = - a2 : f2 (fMx - am M).

(8)

(9)



32 Journal of Marine Research [42, I

Eliminating these using (6) and (7) gives

)-' g
~ = - 2 f2

(J -

(10)

. {[ (H(x) - g) (Mx ~ {mM)t + (H(x) - h) ({ Mx - mM)m}. (II)

Finally substituting for r' from (10) into (II) using (5) gives a fourth order ordinary
differential equation for the free stream elevation r(x) i.e.,

(12)

where D is the differential operator D = d / dx.

2. Depth discontinuity

In this case we assume H(x) ~ H for x < 0, and H(x) = H* for x> 0, taking the
bottom to be a step of height H* - H> 0 at x ~ O. For x < 0 we look for exponential
solutions of the form enx --+ 0 as x --+ - 00, for constant n > O. (12) yields for x < 0,

For I - 'Y« I, (13) yields two values of n, no for an ordinary wave type, and nj for a
wave type with internal characteristics, i.e.

2 f22 2 (J-
no =m --g-H-

2 2 (J2 - f2 H
n =m ---------
I (I - 'Y)gh (H - h)

(14)

Taking a linear combination of these solutions in terms of constants Ao, Ai and using
(8), (9), (10) gives for x < 0

)-' (I h) n"x ( H) niX~ ~ - H Aoe + I - (I _ 'Y) (H _ h Aje ,
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• gi
u=f~ -u

. {( 1 - (l - 'Y) ~ ) (uno - fm) Aoen.,x- H ~ h (uni - fm) AieniX}. (15)

In a similar manner for x > 0, results corresponding to (14) and (15) can be obtained
replacing Ao, A;. H, no, n; by Ao*, Ai*, H*, -no*, -n;* where no*, ni* > O.

The solution may now be completed by matching these results at x = 0 using four
boundary conditions. By inference from the one layer case of Longuet-Higgins we
assume at x = 0

s~ s*, hu = hu*

s' ~ s'*, (H - h) u' = (H* - h) u'*, (16)

i.e., continuity of free surface and interface elevations, and continuity in each density
layer of the total mass flux perpendicular to the step. The conditions (16) give

( 1 - ~) Ao + ( 1 - (1 _ 'Y)~H _ h) ) Ai

(h) * ( H*) *
= 1 - H* Ao + 1 - (1 _ "()(H* _ h) Ai

(uno - fm) Ao + (un, - fm) A, = (-uno * - fm) Ao * + (-un;* - fm) A,*,

(H - h) [ (uno - fm) ( 1 - (l - 'Y) ~) Ao - (un; - fm) H ~ h Ai]

= (H* - h) [ (-uno* - fm) ( 1 - (1 - 'Y) ;*) Ao*

+ (uni* +fm) H*h_ hAi*]' (17)

To obtain a consistent solution the fourth order determinant of the unknown
constants Ao. A;. Ao*, Ai * must vanish. This leads us directly to a nondimensional
equation of the form

D( T, f, h, r, 'Y) = 0 (18)

where T ~ - flu, f =FIgH*m2
, Ii = hi H, and r = H*I H.

Calculation reveals that these Double Kelvin waves do exist theoretically. In Figure
2 the period measured in pendulum days is shown as a function of f the wavenumber
parameter. for various values ofr(> 1) and Ii ~ 0.5, .5, .95 in the case 'Y = pi p' = .998.
We note that only positive values of T exist showing that in the Northern Hemisphere
(f> 0) the wave propagates in the negative y direction with deeper water on the left of
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Figure 2. Wave period T measured in pendulum days against ~ = /2/ m2 gH * for various values
of r = H* / H and Ii ~ h / H when p / p' ~ .998. Also shown are wavelength I and period seales
T for the special ease / ~ \0.4 see -I, H* = \08 em, g ~ 1000 em see~2. Dashed lines are from
(19).

the direction of propagation. In the Southern Hemisphere (f < 0) the deep water will
lie on the right of the propagation in the positive y direction. In addition we see that T >
I, i.e., the period of the waves is always greater than a pendulum day. Longuet-Higgins
(1968a) puts forward similar conclusions for a homogeneous sea. The results for the
case h = 0.05 in Figure 2 are almost identical to those of the one-layer case which can
be shown theoretically from (17) to coincide with the limit h = a as the top layer
becomes vanishingly thin. Thus it would appear from Figure 2 that whether the sea is
of one or two layers Double Kelvin waves have very similar dispersion relations, and
similar properties for the wave lengths, periods and phase velocities.

Rhines (1977), page 275, gives a dispersion relation for a two-layer ocean whose free
surface is assumed to be a rigid lid. In our notation this result becomes

(19)
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being valid for small step changes and therefore r values near unity. The results for r ~
1.125 and 1.25 are shown as dashed lines on Figure 2.

Also shown are the limiting cases as € = f2 1gH* m2
---+ 0, given by T = 21(r - 1). As

can be seen from Figure 2 taking free surface effects fully into account does lead to
significant differences except in the limiting case € ---+ O. These differences will be even
more marked in the group velocities du1dm than in phase velocities u1m. It would
appear from Figure 2 that Longuet-Higgins' one-layer theory with its unrestrained
free surface gives more realistic information even for a two-layer ocean than the 'rigid
lid' result (19).

Although the one- and two-layer Double Kelvin waves have similar propagation
characteristics, they display differences particularly in regions just above the disconti-
nuity. Above x = 0 the ratio of maximum interface to free surface elevations, say R,
can be quite large. For example for the case r = 1.25, T = 11, then R = 70 if Ii = 0.5,
€ = 0.56, dropping monotonically to R = 50 for Ii = 0.05, € = 0.4. In the former case if
H* = I km it can be shown that R > 10 for a region of width 80 km above x = O. This
yields quite a wide lateral region in which to observe the interface for the possible
detection of these waves. Further evidence in this connection is illustrated in the next
section (Figs. 5, 6, 7) where we display typical elevation profiles over depth profiles of
differing width.

3. Continuous depth case
We follow Longuet-Higgins (1968b), using an identical bottom profile of thickness I

defined in our notation as

(H + H*) { H* - H }
H(x) = 2 1 + H* + H tanh (1.83xl /) (20)

where fori x I< I, H(x) varies over 95% of its range. For large Ix I, the solution of (12)
will involve a combination of the four solutions described in the last section, two for
x ---+ + 00, and two for x ---+ - 00. For each solution in turn initial values of r and its first
three derivatives are found and numerical integration of (12) is carried out using (20)
in the transition zone until x = 0 is reached. At this point the linear combination of the
solutions can be matched by imposing four continuity conditions, i.e., continuity of r
and its first three derivatives with respect to x. This leads, as in the discontinuous case
above, to a fourth order determinant in the form of a Wronskian which must then
vanish for consistency.

In Figures 3, 4 we show the periods of the first mode Double Kelvin waves as they
vary with the width of the bottom profile for certain values of € = j2 1gH* m2, for the
two cases r = 2, 1.25 respectively. Results are given also in terms of the nondimen-
sional parameter L = Ifl (gH *) 1/2 as well as for the actual width I for the special case
off = 10 4 sec-I, g = 1000 cm sec-2

, H* = 108 cm. The actual wavelengths are also
shown. Higher modes are ignored since they will have much larger periods. The results
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1000 2000
\ (km)
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3000

Figure 3. Wave period T variation against L ~ Ifl /iii, where I is the width of depth change for
various values of ~ - f2 IgH*m2 for r ~H* IH - 2 and pip' - .998. Also shown are values of I
and wavelengths for the special casef = 10-4 sec7, H* ~ 108 em, g ~ 1000 em sec-2•

reduce to those values given in Figure 2 for the limiting case of / = 0 for the step
discontinuity. As reported by Longuet-Higgins for a homogeneous sea, as the width I,
increases the periods of the waves increase, tending eventually to steady motions.

Figures 5, 6, 7 show the unnormalized elevations of the surface and the interface
which result from solving Eq. (12) for L = .025, .26, .42 respectively for the case r = 2.
As in the corresponding one-layer case there is a reduction in elevations as L increases.
A significant feature of these results is the way in which the ratio of maximum
elevations R reduces from R = 20 for L = .025, to R = 4 for L = .42. In addition we
observe that the maximum elevations are all shifted toward the shallower end of the
depth case. A similar behavior was found by Longuet-Higgins. The Double Kelvin
waves do not appear to suffer inversion of the interface elevation relative to the free
surface as they are guided along the depth change. This demonstrates that they are not
purely baroclinic waves. Two-layer internal plane waves do of course display inverted
elevations when they propagate.
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Figure 5. Unnormalized free surface elevation!, and interface elevation !" against xl I and x
scales across a continuous depth change of width I - 25 km given by (20) for pi p' = .998.
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(21 )

4. Wave generation by wind stress

a. One-layer case. For a one-layer ocean Mysak considers the response to a time
periodic wind stress starting up at t = 0 of the form

I
rX = 2 roX H(t) cos ITt exp (~k Iy I),

TV = 0 where H (t) = I for t ~ O.

= 0 for t < O.

Mysak points out that this stress field could be regarded as a rough approximation to
fluctuating winds caused by alternating anticyclonic and cyclonic weather systems.
Concentrating on the region of maximum disturbances directly over a step discontinu-
ity at x = 0, Mysak gives the elevation response as a Fourier integral which in our
notation becomes the real part of the result:

r = - _T_/_ {eiUI 1-B(_~) [i __a _(r_-_1_) (KI - ~) ] exp (ikya) da
pgH*k G K2 KIE r

1B (a) r (KI + K2) }+ ------exp (i[kya + wut]) da ,
G r E KjK2

where

(22)

aT
B(a) = 27r (a2+ 1) ,

(I-r)ar
w({3) = (K

I
+ K

2
) ,

I
E (a) = a (r - 1) + - (K1 + rK2),

T

/r = --.
u

Here G denotes the path from a = - 00 to + 00 in the complex plane indented above
the simple pole a = q on the real axis where E(q) = O. For r large, to small,
q"" - ..rr;,,/T(rl/2 - 1). In (22) the first term is a standing wave response which
decays as Iy 1- 00. The last term represents a Double Kelvin wave type progressing in
the negative y direction away from the wind disturbance which is concentrated about y
= O. Mysak calculates its asymptotic behavior only for Iy I large. Since the wavelengths
are large and depth discontinuities in practice are of limited extent we have calculated
the full response (22) for a wind force T OX = 1 dyne, r = 1.3,f = 10 -4 sec -1, H* = 4 x
lOs cm, g = 103 cm sec-2, IT = 0.5 X 10-5 sec-I, k = 1.58 X 10-8 cm-I so that to =

/2/ gH* k2
= 0.1. The forcing period is about 15 days and the winds are mostly

confined to a region of width 1500 km about y = O. The free surface response is given in
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Figure 8. Free surface elevations at x ~ 0 plotted against y for a one-layer ocean at various times
T measured in days due to a periodic wind stress given by (21) with r: ~ I dyne, H* ~
4 X 105 cm and forcing conditions K ~ 1.58 X 10-8 cm -I, (i ~ 0.5 X 10-5 sec.

Figure 8. As can be seen as time increases (measured in the figure in days) there is a
distinct movement away from the disturbance region in the negative y direction. These
results are in accordance with those given by Mysak for slightly different conditions.
We see that the elevations have a maximum amplitude of about 0.7 cm for a windstress
T / ~ 1 dyne. We discuss this case further below.

b. Two-layer case. For a two-layer case we adopt the same time period wind stress as
given in (21). The theoretical response for free surface rand interface r is very similar
to (22), also consisting of a standing wave and a Double Kelvin type contribution. Since
the equivalent expressions to (22) are quite complicated and long, only the numerical
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y (km)

41

Figure 9. Free surface elevations of x ~ 0 against y for a two-layer ocean under the same wind
stress and conditions as in Figure 8, for upper layer thickness h = 4 x 104 cm -I and p / p' =

.998.

results are presented here in Figures 9, 10 for identical conditions as stated above in the
case Ii = h / H = 0.1. Full details are given by Bondok (1980).

The free surface response is shown in Figure 9. Although the elevations again have
similar amplitudes to the one-layer case we see that the response appears to be
dominated by the standing wave component. Only a relatively weak Double Kelvin
type contribution is apparently present. The results for the interface elevation response
given in Figure lOon the other hand are similar in type to those of Figure 8. The
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T=9.6 ~' (em)

Figure 10. Interface elevation at x ~ 0 against y for a two-layer ocean under the same wind
stress and conditions as in Figure 8, for upper layer thickness h - 4 x 104 cm -I and pip' -
.998.

interface maximum amplitudes are about 10-15 cm and there is a similar wave
development moving in the - y direction on a similar time scale as given in Figure 8.
Although the Double Kelvin wave response in Figure 9 seems exceptional it must be
remembered that our earlier work has indicated values of maximum elevation ratio R
of about 70 as commonplace over step discontinuity. On this basis the expected free
surface Double Kelvin wave amplitudes would be only of order 0.15 cm.

The periodic wind stress starting up at t = 0 has a forcing period of 20 pendulum
days, or iff = 104 sec-I, 14.5 days. Figure 2 shows that over a depth discontinuity
both the one-layer case and the two-layer case for Ii = hi H* = 0.1 have ~ "" .37. For
H* = 4 X 105 cm this corresponds to a wavelength of Double Kelvin wave of about
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7600 km, and a corresponding phase velocity of 22 km/hour. Looking in particular at
Figures 8 and 10 for y large and negative, estimates of the period and wavelength of the
wave motions seem to be in accordance with these results.

Mysak estimates maximum current velocities using typical free surface elevations of
the Double Kelvin waves, generated by the wind stress, inserted into the equations of
motion. Doing the same from Figure 8 we come to similar conclusions, i.e., the
maximum current velocities in the one-layer case are of the order of 0.75 em/sec for
To' = 1. For the two-layer case, Figure 9 reveals current velocities of the same order
also occur in the upper layer but only for the standing waves which lie in the vicinity of
the wind disturbance about y ~ O. There is an absence of significant free surface
elevations as y becomes large and negative, which in turn suggests much smaller
current velocities occur in the upper layer for these Double Kelvin waves. In the lower
layer the elevations given in Figure 10 appear to lead in this example to current
velocities of the Double Kelvin waves also of about 0.75 cm/sec as for the one-layer
ocean. The reason for this is that given the elevations in Figure 10 are large ("" 10 cm)
for y large and negative, and the transverse space derivatives of r' are also large,
nevertheless r' in the equations occurs multiplied by a small factor 1 - 'Y ~ .002. To
conclude it would appear in this example that the upper layer in the two-layer ocean·
reacts to the wind stress only as a standing wave. The Double Kelvin wave moving
away from the forcing zone takes the form of a submerged wave affecting only the
lower layer. Although the current velocities in this lower layer are similar to those in
the one-layer case through its whole depth, the interface elevations will be much larger.
For a weather system of reasonable strength with To' = 3 dynes these elevations are of
order 30-40 cms. For this reason it may be possible to detect Double Kelvin waves in
practice by looking at the thermocline.
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