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Dissipation and diffusion by internal wave breaking
by Ann E. Gargett1 and Greg Hollowayl

ABSTRACT
Recent direct observations of the rate of kinetic energy dissipation, l', tend to vary

systematically with buoyancy frequency, N. This note presents arguments leading to an expected
relationship between these two parameters. We first suggest that the classical separation of
velocity field into "turbulent" and "mean" (including internal waves) is inappropriate for a
stratified system such as the ocean, in which nonlinear forces and buoyant restoring forces act
over a wide range of space-time scales. Reconsidering the steady-state kinetic energy equation
without this separation, we obtain l' ex N 1.0 or l' ex N 1.5, where the ambiguity in exponent is
associated with uncertainty with regard to the appropriate form for the vertical velocity variance
of the internal wave field. With similar assumptions in the steady-state equation for available
potential energy (APE) it is shown that the rate of dissipation of APE, 'Y,also varies as 'Yex Nl.o
or 'Y ex N 1.5, where ambiguity in exponent again derives from internal wave vertical velocity
variance. If, in addition, the flux Richardson number is independent of N, the vertical eddy
diffusivity for mass Kp associated with internal wave mixing varies as Kp ex N -1.0 or Kp ex N -05.

It has recently become possible to estimate the oceanic rate of kinetic energy
dissipation l' from direct measurement of small-scale shear (Osborn and Crawford,
1980). Available data summarized in Figure 1 (Gargett and Osborn, 1981; Leuck et
01.. 1983) suggest the approximate relation € = ooN+q, where € is an ensemble
average,

N == (_giJp)I/2
Po dZ

is the buoyancy frequency, q - 1 and 00 is "constant" within a factor of 2 or 3. The
purpose of the present note is to suggest a possible explanation for this observation
based upon the hypothesis that in the interior of mid-latitude oceans, turbulent
dissipation originates through the processes of internal wave breakdown (double
diffusion is not considered).

Consider the kinetic energy equation for a rotating stratified fluid under the
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Figure I. Ensemble-averaged values of kinetic energy dissipation rate E as a function of N in
logarithmic coordinates. The measurements of Gargett and Osborn (1981) were taken in the
Sargasso Sea (open circles) and near Bermuda (filled circles); those of Leuck et al. (1983) are
from continental shelf and slope waters off British Columbia, the far eastern North Pacific.
The difference between joined symbols at the same N is due to finite instrumental noise levels.
Lines of slope + I and + 1.5 are drawn for reference.

Boussinesq approximation

~ (~u/) + u,u} au; = _ Po-I U;ap + v ~ (u; (au; + au}) )
at 2 ax} ax; ax} ax} ax;

_\ _ v (au; aUj)2-gpo pw-- -+-
2 ax) ax;

where U; = (ul, u2, U3 == w) are components of the velocity vector (z is positive upward),
p is pressure, v is kinematic viscosity, the perturbation density p is defined as the
instantaneous departure from a slowly varying background field p = Po(1 - g-IN2z),
and repeated indices are summed over i = I, 2, 3. Since Coriolis acceleration is
perpendicular to the momentum vector, it is absent from the energy equation.

It has been customary (Osborn, 1980; Dillon, 1983) to separate the velocity field
into "mean" and "turbulent" parts, assuming first that it is possible to separate
internal waves from "turbulent" motions and second, that wave motions may be
considered part of the "mean." (Velocity fields which are nonpropagating, cause fluid
parcels on average to cross mean density surfaces, and dominate mean-square shear at
dissipation scales are called turbulence; velocity fields which propagate, i.e., frequency
and wavenumber, are connected through a dispersion relation, and are relatively
nondissipative are termed waves.) It is becoming clear that a scale-dependent
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separation of the velocity field may not be possible in the stratified interior of the
ocean. An example of a fully resolved spectrum is the vertical shear spectrum of
Gargett et al. (1981) which is flat (kO) at low vertical wavenumber, falls as k-I

between k = ko = 0.1 cpm and k = kh == (N3 I~)1/2, then finally rises (no steeper than
k+ I) to a dissipation-scale peak before falling steeply for k e:: ks == (~/V3) 1/4. When this
shear spectrum is converted to a velocity spectrum (by dividing by the square of
vertical wavenumber), the result is monotonic decreasing: there is no evidence of a
spectral gap which might be used to separate mean and turbulent motions by defining a
suitable averaging length. The velocity spectral slopes are sufficiently steep that the
energy of the system resides at low vertical wavenumbers, the region of the spectrum
which obeys WKB-scaling (Gargett et al., 1981) and is interpreted as internal waves
(Garrett and Munk, 1975). Attempting to distinguish between "mean" and "turbu-
lent" velocities on the basis of scale-separation appears to be inappropriate for an
environment in which both nonlinear interactions and buoyant restoring tendencies are
active over a wide range of scales.

Our approach will be to defer making any "mean" I"turbulent" or "waves" I
"turbulence" distinction throughout as much of our argument as possible. Assuming
only a statistically steady-state, we time-average Eq. (1), obtaining

where

au; _I a -( -) a ( (au; auj)) _I :;--u;uj - = - Po - U;p + v - U; - + - - gpo pw - ~aXj ax; aXj aXj ax; (2)

is the kinetic energy dissipation rate, and the incompressibility condition au;jax; = 0
has been used. Time-averaging is denoted by an overbar; the averaging time must be
sufficiently long to ensure the steady-state of the energy-containing (wave) motions.
The second term on the right-hand side is negligible compared with ~ (their ratio is
(AI L)2 « 1, where A is an internal length scale characteristic of the shear (dissipation)
field and L is an external length scale characteristic of the velocity (energy-containing)
field (Tennekes and Lumley, 1972, Sec. 3.2). The meager observational information on
the pressure-velocity correlation (Elliott, 1972; Wyngaard and Cote, 1971) suggests
that its divergence makes only a small contribution (of order 10%) to the kinetic energy
budget of the highly anisotropic stable atmospheric boundary layer: in the more
isotropic (horizontally at least) oceanic internal wave field, it should be an even smaller
part. Thus the dominant balance is

au; _I :;--u·u·- = - gpo pw -~.
I J iJxj

(3)
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Although the oceanic shear tensor is dominated by terms involving the vertical
derivative of horizontal velocities, the contribution of the purely horizontal stress/
shear terms to the triple correlation in (3) is not known. Based upon this lack of
information, we choose to discard the horizontal divergences (these are identically zero
if the internal wave field exhibits horizontal homogeneity), and further simplify (3) to

au; _,::-
uw-=-gpo pW-f

I az (4)

where now the repeated index summation is over i = I, 2 only.
We finally assume that the processes in this system are characterized by a small flux

Richardson number,

-I -o < RJ == - gpo P W« 1
au;

u·w-, az
(5)

as suggested by the laboratory results of Britter (1974) and McEwan (1980) and the
oceanic measurements of Oakey (1982). Note that although Rfas defined above differs
from its more normal definition (i.e., where the denominator is written as ujwa[f;/az),
the denominator still represents the source of energy, hence the argument of Stewart
(1959) that RJ must be considerably less than I still holds. Using (5), Eq. (4)
becomes

O au; f . R I< - ujw - = --- ~ f SInce J « .az I - RJ
(6)

Introducing a nondimensional triple correlation coefficient C" Eq. (6) can be
written as

a (-(a )211
/
2

u 22 u·
-UjW az' = C, Uj W dZ' ~ f. (7)

We now examine the N-dependence of the variances in Eq. (7), first noting that the
correlation coefficient C, cannot depend on N since there is no other intrinsic time scale
with which to form a nondimensional variable.

It is at this point that we introduce the hypothesis that wavelike motions determine
the variances appearing in (7), supplying the energy which is dissipated at the smallest
scales. If, as suggested by Munk (1981), total shear variance in the internal wave field
is Richardson number limited, a characteristic wave Richardson number

(8)

[(~~JL
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where the subscript implies that the shear variance

is due to wavelike motions. This suggestion (hence (8» has been supported by the
observations of Gargett et al. (1981), which indicate that Riw - I if ku = 0.1 cpm (the
wavenumber of the observed change in slope of cJ>sfrom kO to k -I) and Riw - '/4 if ku =

kb == (N3 If) '(2 (at and beyond kb, the "turbulence" parameter f is necessary for
scaling shear spectral level). Thus the appropriate shear variance to use in (7) is

regardless of the exact nature of wave breaking.
The N-dependence of the product u/ w2 depends upon the character of the wave

field. We identify two extremes:
Type (I) is the narrow-band case of internal waves of a (nearly) single frequency,

and includes internal seiches in closed basins and various classes of topographic lee
waves. Wave velocities obey WKB scaling (Phillips, 1977) with

Since from (8)

u2 _ N
I

and

Eq. (7) yields

(9)

Type (2) is the broad-band case of a multi-wave environment in which frequency
band-width as well as velocity magnitude varies with N: the classical example is the
deep-ocean internal wave field as described by the GM model spectrum (Garrett and
Munk, 1975, 1979). Munk (1981, see Eq. (9.24» shows that for the semi-empirical
spectrum GM79,

A straightforward calculation similar to those carried out by Munk for other
mean-square quantities shows that for GM79,

w2 _ N0

So that Eq. (7) gives

(10)
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Although it seems likely that the actual oceanic interval wave field is associated with
f = aoN+q, where 1 :s q :s 1.5, the appropriate choice for q is far from clear, due to
uncertainty as to the appropriate scaling for w2• In fact, observed oceanic vertical
velocity spectra are often not well described by GM79, which assumes that vertical
velocity is white with frequency betweenf and N. Many spectra, such as that derived
from a rotating drifting float (Voorhis, 1968), or those derived from isotherm
displacements at depths greater than 200 m (Desaubies, 1975; Pinkel, 1981) are all
reasonably flat for an interval above f, but rise to a broad peak at N (c.f. Fig. 2a).
When plotted in variance-preserving form (Fig. 2b), the dominance of the vertical
velocity variance by motion of (more nearly) a single frequency is obvious. The
dominance is further enhanced in the upper 200 m, where observed vertical velocity
spectra are depleted at low frequencies relative to the deeper spectra (Finkel, 1981). If
this observed Viiisiilii "ringing" of the ocean is due to wave groups which individually
obey WKB scaling, and if it dominates the time-averaged vertical velocity field, then
the oceanic internal wave field would be closer to Type (I) (hence f (X N+ I) than Type
(2) above. If not, we must await experimental determination of the appropriate scaling
for w2

• Whatever the value of q, the "constancy" of the proportionality factor ao should
be of the same degree as the "universality" (factor of 2-3) of the internal wave field if,
as we are assuming, those processes producing dissipation are just those responsible for
maintaining the statistically steady-state of the wave field.

We should point out that the relatively small variation in N between the abyssal
ocean (N - I cph) and the seasonal thermocline (N - 6 cph), coupled with noise
and/or sampling problems associated with microscale measurements, makes it diffi-
cult to test the proposed weak dependence of f (or Kp) on N: we need more
measurements with lower noise levels at all depths. The stronger dependence of X (as
N+3 or N+3.5), may prove easier to test. Because even a weak dependence of f, hence Kp,
upon N has dynamical implications for ocean circulation (Gargett, 1983), it seems
imperative to carry out such measurements.

As an aside, we note that a result reminiscent of the Type (I) expression for f as a
function of N has been derived for application to the stably stratified atmosphere
(Businger and Arya, 1974; Zeman and Tennekes, 1977) by using energetic arguments
to obtain

where CT~ is the variance of the "turbulent" vertical velocity. Weinstock (1981)
determined a numerical value of 0.4 for the constant Co, under the assumptions of
isotropic and locally inertial spectral forms for k > kb = (N3/f)I/2, and claimed
satisfactory agreement between measured f and Co CT.} N. Understanding the connec-
tion between the atmospheric and oceanic cases is complicated by two factors. First,
the value of N is constant (N = 2.1 x 10-2 s -I, the isothermal stratospheric value) for
the atmospheric measurements, so they do not constitute a critical test of the
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Figure 2. (a) Spectrum of vertical velocity as a function of frequency, determined from isotherm
displacement measurements (Pinkel, 1981). The variance is confined to internal wave
frequencies between f and local N, and the peak at the buoyancy frequency is typical. (b) A
variance-preserving plot of this spectrum (values taken approximately from (a)) makes it
clear that vertical velocity fluctuations are dominated by motions of near buoyancy frequen-
cy.

dependence of E on N. Secondly, in the atmosphere as well as the ocean it is not clear
how to separate the "turbulent" part from a total vertical velocity variance which is
dominated by wave motions, hence has an implicit N-dependence. Weinstock (1981)
suggested that the turbulent part should be defined as the variance contribution from
wave numbers greater than kb, a suggestion which is consistent with the interpretation
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(11 )

of the oceanic spectra advanced by Gargett et al. (1981) and accepted here. However
actual atmospheric variances often appear to be calculated using a fixed lower
wavenumber for convenience, regardless of the local value of E, hence kb (for example,
Lilly et al. (1974) use k ~ 21Tj(640 m) as the low wavenumber limit for calculation of
(T .}). These features, coupled with possible effects due to anisotropy of "turbulent"
velocity fields in a stratified fluid, leave the value and constancy of the coefficient Co in
some doubt.

The present analysis can be extended to include dissipation rates of available
potential energy (APE). However, this raises some new and potentially disturbing
questions.

The evolution equation for perturbation density p is

ap ap N2 a2p
-+U·--W--~K--at I ax; gPo-I ax; ax;

where K is the effective diffusivity for p (if density is controlled by temperature, K is
thermal conductivity times volumetric coefficient of thermal expansion) and repeated
indices are summed over i = 1, 2, 3. From (11), perturbation density variance is
governed by:

a (p2) _ ap -:- N2 a (_ ap) (a1»(a1»- - + pU; - - pW --I = K - P - - K - -
at 2 ax; gpo - ax; ax; ax; ax;

(12)

Perturbation density variance is related to APE by considering the hypothetical
vertical displacement r which a fluid element would experience if moved adiabatically
to that depth at which its perturbation density vanishes. Thus

Gravitational energy released by such hypothetical displacement is

-1/2pgr = V2p2g2N-2

(13)

(14)

where a coefficient 1/2 enters because p relaxes linearly to zero over the total
displacement r. Identifying APE as 1/2p2g2N -2, we see from (12) that g1>w acts as a
source term for APE just as g1>w acts as a sink in the kinetic energy equation (2).

The second term on the right side of (12) is a dissipation term for density variance.
The density variance dissipation rate X == K(a1>/aX;)(aP/iJx;) is related to the
dissipation rate l' for APE through (14):

(15)

Our goal is to seek a relationship between l' (or X) and N.
The first term on the right side of (12) is small compared with the second by a ratio

(Ae/ L) < (A/L) « 1, as discussed in connection with Eq. (1). Thus a stationary balance
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(16)

It has been customary to cast the triple correlation term as a flux divergence

and to suppose that such terms are negligible, permitting the estimation of vertical
mass flux from direct observations of ap j 8z and x. As first introduced by Osborn and
Cox (1972), the technique actually estimates vertical heat flux from measurements of
aT jaz and microscale temperature gradient variance, then assumes that the turbulent
eddy diffusivity for density Kp == -pwj(apjaz) = gPo-lpwjN2 is equal to that for
temperature KT == - Tw j(8T j az). This technique has been widely used (Gregg et al.,
1973; Gregg, 1977; Gargett, 1976; Oakey and Elliott, 1977; Caldwell et al., 1980 are
but a few examples) and the inferred values of Kp have found wide use in climate
studies (ocean heat storage) and in studies of geochemical distribution balances.
However just as we have considered the role of a triple correlation term in the kinetic
energy budget, we are obliged to consider this term in the APE budget or alternatively,
the budget of fluctuation density variance (16).

As previously, we will neglect horizontal contributions to the balance (16), although
this is not easily justified: we depend upon horizontal isotropy. The triple correlation
can be expressed as

~ _ C [~2-; (ap)2]1/2pw- - 2 P w -
8z az (17)

where C2 is another nondimensional triple correlation coefficient. By WKB scaling,
consistent with GM79,

p2 _ r2 N4 _ N3

We have indicated that w2 may take one of two forms, namely

Type (I): w2
- N-1

Type (2): w2 _ N°

Finally,
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where the condition
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(ar)2 = 0(1)
aZ w

[42, 1

(18)

is a gravitational overturning condition, as (8) is a shear instability condition, For a
broad spectrum of waves, the two conditions may not be distinct and can be expected to
occur together (Munk, 1981), Thus the right side of (17) is expected to vary as

Type (1): N3

Type (2): N3.5 (19)

The term pw N2
/ gpo -I is easily seen to have the same N variation as the triple

correlation term.
The relative importance of the two terms cannot be decided apriori, since it depends

upon the relative magnitudes of the triple correlation coefficient C2 and the correlation
coefficient for pw, both unknown. Holloway (1983) conjectures that the shapes of both
kinetic and potential energy wavenumber spectra can be explained assuming relative
dominance of the triple correlation term; in this case, estimates of Kp based on
temperature microstructure observations will be overestimates.

Since both terms on the left side of (16) vary as (19), the dissipation rate 'Yfor APE
varies as

Type (1): N1

Type (2): N15

just as does f. The ratio 'Y/ f should be nearly constant, as has been observed by Oakey
(1982) from simultaneous observations of shear and temperature gradient fine
structure.

We are now in a position to examine the question of density diffusion produced by
internal wave breaking processes. We introduce the standard concept of gradient
diffusion by the usual definition of a "turbulent" diffusivity for density

(20)

(21 )

Using this definition alone with expression (5) for RJ, the kinetic energy Eq. (4) may be
rewritten as

RJ f

Kp = 1 _ RJN2'

This relationship was most recently derived by Osborn (1980), who argued from the
usual viewpoint of separated mean and turbulent velocity scales. It still holds without
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this separation and, moreover, we now know the N-dependence of €. If the flux
Richardson number Rf is now taken to be nearly constant, the N-dependence of Kp is

Type (1): Kp - N-1

Type (2): Kp _ N-O.5

It should be emphasized that this derivation of the functional form of Kp does not
involve the APE equation from which the Osborn and Cox (1972) method develops,
hence is unaffected by the problem of not knowing relative magnitudes of the double
and triple correlation terms in this equation. It is dependent upon the assumption of
near constant Rf' This has been a point of considerable discussion recently, because of
apparently contradictory laboratory results. Britter (1974) found that, regardless of
the value of gross Richardson number Ri, the transport properties of a temperature-
stratified channel flow were best described as the result of turbulence existing at a
constant (critical) "Richardson flux number" Rf == p/€, where p == gpo ~l pw. The
critical value of Rf "" 0.20 determined by Britter corresponds to a value of the flux
Richardson number (as defined by (5)) of Rf = p/(p + €) "" 0.17. Britter's results
appeared to contradict the laboratory data collated by Linden (1979, Fig. 4). which
show a maximum Rf - 0.20-0.25 near Ri "" 0.10, followed by an abrupt decrease to
near-zero values of Rf at only slightly higher Ri. McEwan (1980) has recently
suggested that resolution of this contradiction lies in recognizing that viscous losses due
to wall friction and internal (but nonturbulent) friction are unavoidable in laboratory
experiments of modest scale, and contribute a sizeable fraction of the total energy
dissipation in the regime of sparse instabilities which prevails as Ri - 1. He
differentiates between flux Richardson number Rf and mixing efficiency 1/, defined
respectively as

R = P
f P + € + €,

p
and 1/ = -.-

p + €

Here € is dissipation in the (small) volume of fluid containing turbulence, while €, is
viscous dissipation, unaccompanied by buoyancy flux, in the remaining (large) fluid
volume (including a large component from sidewall boundaries). His experiments were
carried out in a regime of sparse instabilities produced by forcing the fundamental
internal wave mode in a rectangular box to sporadic and localized "breaking." The
results show that although Rf- 0 as Ri increases beyond Ri - 0.10 (due to increased
importance of €v relative to €), the mixing efficiency 1/ remains constant at a value of
- 0.26. This value of 1/, the appropriate flux Richardson number for the turbulence (as
opposed to the entire system), is in reasonable agreement with values of Rf obtained
from experiments (such as that of Britter) where turbulence occupies a much larger
fraction of the experimental volume. In the ocean it is clear that dissipation and
diffusion due to turbulence dominate that due to molecular processes (Munk, 1966):
thus our assumption of constant Rf"" 0.20-0.25 seems justified.
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In closing we would like to emphasize the most important qualitative feature of the
arguments presented here, namely the idea that in a stably stratified fluid, it may not
be possible to separate "turbulence" from "mean" (including internal waves) in the
velocity field, but that some progress may be made by introducing a constraint on the
shear field in the form of a statistically constant Richardson number. The subsequent
examination of the connection between internal waves and the enhanced dissipation
and diffusion which result when they "break" should be regarded as a preliminary one.
A major contribution of such an attempt is to define specific questions which should be
investigated by appropriate observations. We suggest a few such questions. What is the
importance of the horizontal terms which we have ignored in Eqs. (3) and (16)? What
is the appropriate time-averaged form for w2

, and how should it be interpreted? What
are the wave space-time scales at which the velocity triple-correlation arises? How can
we resolve the question of the relative importance of triple and double correlation terms
in the density (temperature) variance equation (16), hence the associated question of
the accuracy of eddy diffusivities determined from direct microstructure measure-
ments?

Acknowledgments. Steve Pond was a great support during our first attempts to give up the
crutch of the Reynolds decomposition. This paper has benefited from conversations with Rob
Pinkel and correspondence with Jerry Weinstock, and the hospitality of the Institute of
Geophysics and Planetary Physics and the La Jolla Institute during preparation of a final
reVISIOn.

REFERENCES
Britter, R. E. 1974. An experiment on turbulence in a density-stratified fluid. Ph.D. thesis,

Monash University, Victoria, Australia.
Businger, J. A. and S. P. S. Arya. 1974. Height of the mixed layer in a stably stratified planetary

boundary layer. Adv. Geophys., 18A, 73-92.
Caldwell, D. R., T. M. Dillon, J. M., Brubaker, P. A. Newberger and C. A. Paulson. 1980. The

scaling of vertical temperature gradient spectra. J. Geophys. Res., 85, (C4), 1917-1924.
Desaubies, Y. J. F. 1975. A linear theory of internal wave spectra and coherences near the

Viiisiilii frequency. J. Geophys. Res., 80,895-899.
Dillon, T. 1983. The energetics of overturning structures: implications for the theory of fossil

turbulence. J. Phys. Oceanogr., (submitted).
Elliott, J. A. 1972. Microscale pressure fluctuations measured within the lower atmospheric

boundary layer. J. Fluid Mech., 53,351-383.
Gargett, A. E. 1983. Vertical eddy diffusivity in the ocean interior. J. Mar. Res., (submitted).
-- 1976. An investigation of the occurrence of oceanic turbulence with respect to fine

structure. J. Phys. Oceanogr., 6, 139-156.
Gargett, A. E., P. J. Hendricks, T. B. Sanford, T. R. Osborn, and A. J. Williams III. 1981. A

composite spectrum of vertical shear in the upper ocean. J. Phys. Oceanogr., II, 1258-1271.
Gargett, A. E. and T. R. Osborn. 1981. Small-scale shear measurements during the Fine and

Microstructure Experiment (FAME). J. Geophys. Res., 86,1929-1944.
Garrett, C. J. R. and W. Munk. 1975. Space-time scales of internal waves: a progress report. J.

Geophys. Res., 80,291-297.
-- 1979. Internal waves in the ocean. Ann. Rev. Fluid Mech., II, 339-369.



1984] Gargett & Holloway: Internal wave mixing 27

Gregg, M. C. 1977. Variations in the intensity of small-scale mixing in the main thermocline. J.
Phys. Oceanogr., 7, 436-454.

Gregg, M. c., C. S. Cox and P. W. Hacker. 1973. Vertical microstructure measurements in the
central North Pacific. J. Phys. Oceanogr., 3, 458-469.

Holloway, G. 1983. A conjecture relating oceanic internal waves and small-scale processes.
Atmosphere-Ocean, 21, 107-122.

Lilly, D. K., D. E. Waco and S. I. Adelfang. 1974. Stratospheric mixing estimated from high
altitude turbulence measurements. J. Appl. Meteor., 13, 488-493.

Linden, P. F. 1979. Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn., 13, 3-23.
Lueck, R., W. R. Crawford and T. R. Osborn. 1983. Turbulent dissipation over the continental

slope off Vancouver Island. J. Phys. Oceanogr., 13, 1809-1818.
McEwan, A. D. 1980. Mass and momentum diffusion in internal breaking events, in Stratified

Flows 1980 Proceedings, Vol. II, T. Carstens and T. McClimans, eds., Tapir, N-7034
Trondheim, Norway, 1095 pp.

Munk, W. 1966. Abyssal recipes. Deep-Sea Res., 13, 707-730.
-- 1981. Internal waves and small-scale processes, in The Evolution of Phys. Oceanography:

Scientific Papers in Honour of Henry Stommel, B. A. Warren and C. Wunsch, eds., MIT
Press, 264-291.

Oakey, N. S. 1982. Determination of the rate of dissipation of turbulent energy from
simultaneous temperature and velocity shear microstructure measurements. J. Phys. Ocean-
ogr., 12, 256-271.

Oakey, N. S. and J. A. Elliott. 1977. Vertical temperature gradient structure across the Gulf
Stream. J. Geophys. Res., 82, 1369-] 380.

Osborn, T. R. 1980. Estimates of the local rate of vertical diffusion from dissipation measure-
ments. J. Phys. Oceanogr., /0, 83-89.

Osborn, T. R. and C. S. Cox. 1972. Oceanic fine structure. Geophys. Fluid Dyn., 3,321-345.
Osborn, T. R. and W. R. Crawford. ]980. An airfoil probe for measuring turbulent velocity

fluctuations in water, Chapter 19 in Air-Sea Interaction: Instruments and Methods, F.
Dobson, L. Hasse and R. Davis, eds., Plenum, New York 801 pp.

Phillips, O. M. 1977. The Dynamics of the Upper Ocean (second edition). Cambridge Univ.
Press, 309 pp.

Pinkel, R. ]981. Observations of the near-surface internal wavefield. J. Phys. Oceanogr., 11,
1248-1257.

Stewart, R. W. ]959. The problem of diffusion in a stratified fluid. Adv. Geophys. 6, Academic
Press, 303-311.

Tennekes, H. and J. L. Lumley. 1972, A First Course in Turbulence. The MIT Press,
Cambridge, Mass., 300 pp.

Voorhis, A. D. 1968. Measurements of vertical motion and the partition of energy in the New
England slope water. Deep-Sea Res., /5, 599-608.

Weinstock, J. ]981. Energy dissipation rates of turbulence in the stable free atmosphere. J.
Atmosph. Sci., 38, 880--883.

Wyngaard, J. C. and O. R. Cote. 1971. The budgets of turbulent kinetic energy and temperature
variance in the atmospheric surface layer. J. Atmos. Sci., 28,190-201.

Zeman, O. and H. Tennekes. 1977. Parameterization of the turbulent energy budget at the top
of the daytime atmospheric boundary layer. J. Atmos. Sci., 34, 111-123.

Received: 28 April, 1983; revised: 23 August, 1983.




