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The flow of equatorial Kelvin waves and the 
equatorial undercurrent around islands 

by P. B. Rowlands1 

ABSTRACT 
A linear theory is presented for the flow of equatorial Kelvin waves and of the equatorial 

undercurrent around islands situated on or near the equator. The island is modelled as an in-
finitesimally thin meridional barrier. It is shown that small islands affect the flow very little, 
while large islands effectively block the flow. To the east of such large islands the flow takes 
the form of a meandering current system, which is in agreement with various observations. To 
the west of the island nonlinearities are expected to be important. 

1. The problem 

In this paper the problem considered by Anderson and Rowlands (1976a), that 
of the response to an equatorial Kelvin wave incident on an eastern coast, is gen-
eralized. We ask the question: what happens when the coast is not of infinite extent, 
but only forms a partial barrier? If an equatorial Kelvin wave is incident on such 
an obstacle, we expect from the work of Anderson and Rowlands (1976a,b) that 
other equatorial waves will be reflected back along the equator, and that coastal 
Kelvin waves will be generated which will propagate away from the equator along 
the barrier (if the barrier comes within a distance of the order of the equatorial 
radius of deformation from the equator). When these Kelvin waves reach the tips 
of the barrier they will generate further coastal Kelvin waves, to the east of the 
barrier, which will propagate toward the equator and generate short equatorial 

I. Deceased. Manuscript completed by D. L. T. Anderson, Department of Atmospheric Physics, 
Clarendon Lab., Parks Rd., Oxford, England, OXl 3PU, and D. W. Moore, JIMAR, University of 
Hawaii, Honolulu, Hawaii, 96822, U.S.A. 
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Rossby waves and another equatorial Kelvin wave propagating eastward. The ampli-
tude of this equatorial Kelvin wave will be less than that of the incident wave, as 
energy has been lost to other equatorial waves in the process of travelling round the 
barrier. The aim of this paper is to consider the disturbance caused PY such a bar-
rier, to calculate the change in amplitude of the equatorial Kelvin wave, and to 
indicate the nature of the fl.ow due to the other equatorial waves which are generated. 

It is apparent that a model for this flow could represent the propagation of equa-
torial Kelvin waves around islands situated on or near the equator. A better model 
for such islands would presumably be to give the barrier a thickness, making it into 
a rectangular obstacle. However, as discussed below, this would complicate the 
analysis; and anyway the main effects are expected to be similar to those for a thin 
barrier. 

Another application is the study of the flow of the equatorial undercurrent around 
islands. McIntyre (personal communication) and Gill (1975) have suggested that 
the equatorial undercurrent has a meridional structure similar to that of a time-
independent equatorial Kelvin wave in the second baroclinic mode. Thus we expect 
to be able to model the flow of this current around islands by seeking the longtime 
asymptotic response to an equatorial Kelvin wave of step function form ( or in fact 

with any time dependence such that the amplitude tends to a constant nonzero 
value for large times). 

There are several possible applications of the present theory to the real ocean. 
First, there is the fl.ow of the undercurrent around the Galapagos Islands in the 
eastern Pacific. However, this flow is complicated by the proximity of the South 
American coast, and care must be exercised in interpreting the results for this case. 
A complete analysis of this problem would be possible by combining the present 
work with that given in Anderson and Rowlands (1976a) for a continuous coast. 
The main complication would be the continued reflection of equatorial waves back 
and forth between the island and the coast, in the absence of any dissipation, which 
would mean that one would have to solve the problem of Anderson and Rowlands 
(1976a) for incident short equatorial Rossby waves of all orders and including the 
full time dependence. We will not pursue this here, but simply will note that obser-
vations indicate that there is a region to the east of the Galapagos Islands where the 
effects of the coast are not obvious. 

The second application arises from the GATE experiment of 1974. Some cur-
rent meter moorings were placed just to the east of St. Peter and Paul Rocks in the 
Atlantic, on the assumption that any equatorial Kelvin waves would not be greatly 
affected by the presence of such small obstacles. The present analysis confirms this 
faith in intuition. 

Finally, Hendry and Wunsch (1973) have considered the fl.ow of the undercurrent 
around Jarvis Island in the Pacific. They attempt to explain the observed flow usin 
a nonlinear model and neglecting Coriolis forces. They note that there are som! 
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regions, especially to the east of the island, where their theory is not satisfactory, 
although it does quite well to the west. It will be seen that the linear theory de-
veloped here, with account taken of the Earth's rotation, gives reasonable results to 
the east, but not to the west, of the island. It would appear that the inclusion of 
nonlinear terms in the present theory would give a much better agreement with 
observations, although it is not obvious how the analysis should proceed in this case. 

In addition to the theory given by Hendry and Wunsch (1973), White (1971a) 
solved a problem similar to the present one. He considered a steady uniform (i.e., no 
meridional variation) zonal flow impinging on a circular island. His analysis was 
nonlinear and used the beta-plane approximation to represent the Earth's rotation. 
His results are qualitatively similar to ours with short Rossby waves apparent to 
the east of the island. To the west his solution is similar to that of Hendry and 
Wunsch (Zoe. cit.) . Unfortunately, he has to make two ad hoc assumptions to enable 
a solution to be found. The first of these is that there should be no disturbance far 
upstream from the island. This is certainly not the case in the linear model dis-
cussed below. The second is an assumption of symmetry about the line of latitude 
through the center of the island. This is questionable as the beta effect certainly in-
troduces an asymmetry into the problem. The assumption is needed because, away 
from the equator, there can be coastal Kelvin waves of arbitrary amplitude propa-
gating around the island; in effect, White assumes a particular value for this ampli-
tude, which may or may not agree with the required condition of no such waves 
when there is no incident current. In fact, unless the island is situated symmetrically 
about the equator, the solution is not expected to be symmetric (due to the definite 
direction of propagation of Kelvin waves) even for his assumed incident current 
which is independent of latitude. In the present analysis we are able to apply an 
initial condition of no flow around the island, which eliminates the need for any 
such assumption. 

2. The model 

We wish to study the effect of a partial meridional barrier on an incident equa-
torial Kelvin wave of step function form. As in Anderson and Rowlands (1976a,b), 
the barrier must be oriented exactly north-south, to enable the variables to be 
separated in the differential equations, and we consider a flat-bottomed ocean of 
infinite extent with no topography other than the barrier (in particular no continental 
shelf). Suppose the barrier is at x = 0 (where x is measured eastward, y northward, 
and y = 0 is the equator). Then for x > 0 or x < 0 separately we can expand the 
dependent variables in vertical and meridional modes. In the following analysis we 
concentrate on a single vertical mode, which could be any of the infinite set (for a 
general stratification), but we will be thinking of two of these in particular: the first 
baroclinic mode, as this is so relevant to upwelling studies, and the second baro-
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clinic mode, as this is expected to be a reasonable model of the equatorial under-
current. In the chosen vertical mode we then have to satisfy the differential equations 
for x > 0 or x < 0 separately and at x = O we must satisfy the boundary conditions 

u=O 
and 

u,p continuous 

(b<y<a) 

(y>a, y<b) 

(1) 

(2) 

where the latitudinal extent of the barrier is from y = b to y = a, and the dependent 
variables are as in Anderson and Rowlands (1976a,b): u-zonal component of 
velocity, p-pressure anomaly. In the two modes of special interest to us, p may 
be interpreted as (i) vertical displacement of the thermocline (positive downward) 
in the first baroclinic mode, and (ii) change in thickness of the thermocline from 
its value in a state of rest (positive for increase of thickness) in the second baro-
clinic mode. Also we must satisfy the radiation condition for the reflected and 
transmitted equatorial waves. 

We can now see the extra difficulty involved in giving the island a finite zonal 
width. There would be two longitudes at which matching would have to be per-
formed. This is quite possible to do, but it would add an unnecessary complication, 
as the results are expected to be similar to those derived here. More details of this 
comparison are given below. 

3. The solution 

The method used to solve this problem is an integral equation formulation simi-
lar to that used by Buchwald and Miles (1974) to describe the flow of coastal Kelvin 
waves around a partial barrier on an !-plane. A solution is sought for the long-time 
asymptotic response to an incident equatorial Kelvin wave of step function form (or 
indeed any form which tends to a steady value after some time). The response to 
such an incident wave does not itself become independent of time (at least in a 
linear nondissipative theory), the flow to the east of the island taking the form of 
a constantly narrowing boundary layer (c.f., the Somali Current, Lighthill (1969), 
or Anderson and Rowlands (1976b)). However, the response to the west of the 
island is expected to become independent of time (as in Anderson and Rowlands 
(1976a)) and thus so are u and pat x = 0. 

As in Anderson and Rowlands (1976a,b), we introduce the variable q == p + cu 
where c is the speed of equatorial Kelvin waves in the vertical mode under con-
sideration. _We retain the _varia~le u _rather _than introduce r as was done previously. 
The equations are _nond1mens10nahzed With length scale yc/2/3 and time scale 
yl/2{3c, where /3 1s the rate of change of the Coriolis parameter (f) with 1 • d 
(y). Suppose that the nondimensional latitudes of the tips of the island ati~u e 

are given 
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by b and a, with b < a. Then if u were known as a function of latitude, y (now 
nondimensional), at the longitude of the island (x=O) we could write 

q(x,y, t) = qT(x,y, t) + (f ~"" + s: ) Q_(x,y, t ;Y))U(O,'Y) )dYJ (x< O) 

(3) 
and 

q(x,y, t) = (f ~"" + s: ) Q + Cx,y,t ,YJ)u (o,YJ)dYJ (x> O), (4) 

where qT is the long-time asymptotic value which q would take if there were a com-
plete coast at x=O, and Q ± are the Green functions for x > 0 or x < 0, respectively 
(i.e., they are the values which q (or q-qT) would have for x > 0 or x < 0 for 
u(o,y) = o(y-Yj)) . In equations (3) and (4) we have used the fact that u(o,y) is ex-
pected to be independent of time and also the boundary conditions (1) and (2). 

The term qT in equation (3) is known from Anderson and Rowlands (1976a). It is 
the asymptotic form of q for large times as derived in that paper. In particular, for 
an incident equatorial Kelvin wave of unit amplitude, i.e., if the incident wave is 
of the form 

q ~ D0 (y) = exp(-y2/ 4) as t oo for fixed x, (5) 

where D 0 (y) is the lowest order parabolic cylinder function (Abramowitz and 
Stegun, 1965), then we have at the longitude of the island (x= O) 

1 
qr (o,y,t) ~--= as t oo . y 2 (6) 

It should be noted that the incident wave is included in qr, The boundary condition 
(2) implies that q should be continuous at x=O for y < b and y>a. Applying this to 
equations (3) and (4) gives 

(S~C() + s~ ) { Q +Co,y,t ,T} ) - Q_(o,y,l ,YJ) } u(o,YJ)dYJ = 

qT(o,y,t) 

for y>b and y < a. (7) 

In this equation qT(o,y,t) is known from equation (6). If we can calculate the Green 
functions, Q±, equation (7) becomes a Fredholm integral equation of the first kind 
for u(o,y) which is solvable, at least in principle, once the boundary conditions have 
been specified. The appropriate boundary conditions are apparently 

u(o,y) 0 as y ± oo , (8) 

for waves can exist only near the equator or when supported by a coast. When 
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u(o,y) has been found this may then be substituted in equations (3) and (4) to give 
q everywhere. Then with u and q known at x=0, we may calculate P = q - u (in 
nondimensionalized units) at x=0. An expansion in terms of parabolic cylinder 
functions then enables p and u to be evaluated for all x,y, and t using the method 
of Anderson and Rowlands (1976a,b). The next step therefore is to calculate the 
Green functions, Q ±. 

4. The Green functions 

The Green functions can be thought of as the response to a steady flux of water 
through a pinhole at y=YJ in an infinite barrier. We can expand q and r (= p- u in 
nondimensional form) as series of parabolic cylinder functions (Abramowitz and 
Stegun (1965), Ch. 19): 

00 

q= L qm(x,t)D.,n(y) 
m=O 

and (9) 
00 

r= L r>n(x,t)Dm(y) 
m=O 

From equations (2.11) and (2.12) of Anderson and Rowlands (1976a) we have, 

after taking Laplace transforms with respect to time (ijm = s~ qme-st dt, etc.) 

where 

with 

Also, 

and 

2s2qm+z + 2kmstr+2 + (m+2)q"'+ 2 = pm (m=0,1,2, - - - ) (10) 

-1 1 3 km= -- - -- + m + - + s2 

4s 16s2 2 (x>O)J 

-1 1 3 
= 4s + l 6s2 + m + T + 5 2 • 

ij o = qo(s)e-•"' l 
ij_1 = q1(s)exp {-(s + 1/ 2s)x} f 

(m= 0,1,2 - - -) 

(x<0) 

for x>0 only, owing to the 
radiation condition. 

(11) 

(12) 

(13) 

In equations (12) the branch of the radical is chosen to satisfy the radiation condi-
tion, that q"' and rm represent waves travelling away from the on·gm· at 1 1 
of 14 arge va ues 
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If the Green functions are given by 

then at x=0 we require 

u = o(y-YJ)H(t) 
which may be written 

qm - r"' = 2om/ s at x=0 

00 

where o(y-YJ) = L o,,,Dm(Y). 

m=O 

921 

(14) 

(15) 

(16) 

(17) 

We seek the asymptotic solution for large time by letting s 0 in the Laplace 
transforms. Taking this limit for x < 0 and combining equations (10) and (16) we 
find that 

(m+2)qm+2 
- q"' = -2om/ s (m=0,1,2, - - -) . (18) 

This is written as a differential equation as follows. Multiply equation (18) by 
Dm+1(y) and sum over all m. Then using the recurrence relations for the parabolic 
cylinder functions: 

D (y) _ 1 D ( ) dDm(Y) } 
m+1 - 2 y "' y - dy 

_ 1 dD,n(Y) 
mDm_ ,(y) - 2 yD,..(y) + dy 

(19) 

we find that 

2(j = q0D 0(y) _ _L o(y-n) + -3._ o (y-n) y s ., s y ., (20) 

00 

where (j = L qmDm(y) is the Laplace transform with respect to time of q == Q_ 
m = O 

at x=0, and a subscript y indicates differentiation. 
Now, the Green function is supposed to be forced only by the nonzero zonal 

component of velocity at x= 0. That is, there are no incident equatorial waves. 
Equation (18) has eliminated all of these unwanted waves except for the equatorial 
Kelvin and Yanai waves (which correspond to nonzero (j 0 and (j1

, respectively). The 
Yanai wave can be neglected simply by setting (j1 

- 0 in equation (20). This is 
easily shown by noting that, using the orthogonality of the parabolic cylinder func-
tions, we need 

f :
00 

qD1(y)dy = 0. 

Integrating by parts we have 
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0 = 2 f :
00 

lj," exp(-y2/4)dy (as D 1(y)=Y exp(-y2/4).) 

= f :
00 

41 
[ D 0(y)] 

2 

dy -+ s:
00 

{y8(y-71)-2811(y-71)}Da(y)dy 

from equation (20) 

= y21r 41
, integrating the last term by parts. 

The general solution of equation (20) is then 

4 = - !]_ H(y-71) + _!_ 8(y-77) 
s 2s s 

(21) 

where H(t) = 1 for g > 0 and 0 otherwise, and A is a constant to be determined 
by eliminating the equatorial Kelvin wave. The orthogonality property of the para-
bolic cylinder functions gives the condition for this as 

f :
00 

4Do(y)dy = 0. 

Substituting from equation (21) into this yields 

A = 71 f 00 e-!• dg - e-ri'/ 4 • 

2y1r TJ/ 2 2y1r 
(22) 

Hence we have the Green function to the west of the island, evaluated at x=O, as 

Q_(o,y,t,71) ~ 11-f 00 e-'2 dg-~e-ri'/4 

2y 1T TJ/ 2 2y 1T 

- i H(y-71) + 8(y-71). (23) 

For x>O the derivation is similar, but slightly more complicated. In this case 
equations (10) and (16) become 

(m+l)4m+ 2-4m = -28m/S. (24) 

Multiplying this by Dm+1CY) and summing over all mas before we find 

00 

24v = 41D o(y) + 4m+2Dm+1CY) - 8(y-77) + ; 811(y-71) . (25) 
m= O 

Multiplying equation (24) by Dm(Y) and summing over all m gives 

00 

( 
1 + d) Am + 2D ( ) A - 2 2 y dy ,L. q m+1 y - q = -s-8(y-71) . (26) 

1n=O 
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Combining these last two equations leads to 

2qvv + yqv - q = -3 o(y-77) - _21 y2o(y-11) + 2 ov1h-7J) . (27) 
s s s 

The boundary conditions to be applied to the solution of this differential equation 
arise from the fact that there must be no coastal Kelvin wave at x=O which propa-
gates in from high latitudes toward the equator. Thus we must have 

q 0 as y ± oo • 

The solution of these equations is fairly easy; it is 

y 1 f1112 
Q + (o,y,t ,11) ~ 4 + 2y °ii (e-11•14 + y o e-t• dt) + o(y-11) 

_ __l_H(y-11) 
2 

as t oo • 

(28) 

(29) 

In equations (23) and (29) the delta functions are just the contributions to q from 
the imposed zonal component of velocity, u, at x=O. There is no such contribution 
from p, which is as we would hope, else this would give rise to a derivative of the 
delta function in the meridional momentum equation which could not be balanced 
by any other term in that equation. Away from the forcing (i.e., for y ¥o 11) Q_ is 
independent of y. It is interesting to note that there is always some response in the 
hemisphere where there is no forcing, and that this response increases as the forcing 
moves nearer the equator. This is, of course, a manifestation of the radius of de-
formation: a coastal Kelvin wave is forced which moves away from the equator, but 
there is always some disturbance equatorward of the forcing. This is expected to be 
concentrated within a distance of the order of the radius of deformation from the 
forcing and decays toward the equator. At the equator, however, there is always 
some disturbance, albeit usually exponentially small, which generates a coastal 
Kelvin wave in the other hemisphere. When the forcing is near the equator this other 
Kelvin wave is larger in amplitude, and this is shown in equation (23). The exponen-
tial decay expected equatorward of the forcing is smoothed out by the coastal Kelvin 
waves so that for large times the solution becomes independent of latitude away 
from the forcing region. 

The behavior of Q + is much more surprising. If the forcing is sufficiently far 
from the equator 1111 >> equatorial radius of deformation = 1 in our nondimen-
sional units) then there is a region in O < IYI < 1111 in which Q + decreases linearly 
toward the equator. This unexpected difference between the asymptotic forms of 
the coastal Kelvin waves to the east and west of the barrier will later be seen to give 
rise to completely different behavior on opposite sides of the island in addition to 
the difference in wavelengths between the equatorial Rossby waves on opposite 
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sides. There is, once again, in Q + a disturbance on the other side of the forcing to 
the direction of propagation of coastal Kelvin waves, although now this disturbance 
decays exponentially with latitude. There is also a disturbance in the other hemi-
sphere, within a distance of the order of the equatorial radius of deformation of the 
equator, as would be expected. 

The x dependence is easily introduced into Q ±. To the west of the barrier the 
solution becomes independent of x for large t, and so equation (23) is correct for 
all x 0. Care must be exercised though as the convergence to this limit is non-
uniform in x. To the east of the barrier all disturbances except the equatorial Kelvin 
wave have a Bessel function dependence on ,jxt, as was shown in Anderson and 
Rowlands (1976b). The equatorial Kelvin wave becomes independent of x. In equa-

tion (29) the equatorial Kelvin wave is given by the term , \- exp(-y2 
/ 4), as 

2 v 'TT 
can be verified by multiplying by Do(y) and integrating over all y. This term must 
be independent of x and t, while the other terms are multiplied by l o(\/2xt) giving 

!/ 

Q+(x,y,t;Y}) ~ e- 11' 14 + {L + Y - 12 e-E• d~ + S(y-'1]) -
2\/'TT 4 2\/ 'TTJ 0 

H(y-'1])} Jo(y2xt) . (30) 

where / 0 is the Bessel function of the first kind and of order zero. 

5. The solution of the integral equation 

Now that the Green functions are known we can solve the integral equation (7) 
once we have specified qT, that is, once we have specified the form of the incident 
wave in x < 0. When the incident disturbance is an equatorial Kelvin wave, qT is 
just the asymptotic value of q as t oo at x = 0 which was calculated in Anderson 
and Rowlands (1976a). Thus for an equatorial Kelvin wave whose amplitude be-
comes independent of time as t oo we have 

qT = l/y2 (31) 

where because the problem is linear we have assumed, without loss of generality, 
that the amplitude of the incident equatorial Kelvin wave is unity, i.e., 

q ~ Do(Y) as t oo for fixed x . (32) 

We now restrict attention to the case of an island situated symmetrically about 
the equator, i.~., b = -a. Thi~ gives all th~ features for the general case but simpli-
fies the analysis somewhat. First we consider a large island, a > > 1. For "1 a 
we then have 
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and (33) 

and the integral equation (7) is 

-½f 11 YJLL(o;ry)dYJ +-
2
1 f"' yu(o,YJ)dYJ = 1

_ for y;;;:, a. 
a 11 v2 (34) 

This has the obvious solution 

u(o,y) = vi 8(y-a) for y ;;;:, O 
a (35) 

where we take the delta function to be applied at a value of y which is very slightly 
larger than a, in order to make the first term in equation (34) meaningful. By sym-
metry we have 

u(o,y) = V2 
{B(y-a) + 8(y+a)} 

a 
for ally. 

Then just to the west of the island we have, from equation (3), 

(36) 

q = V2 
{8(y-a) + 8(y+a)} + 1

_ H(y+ a) -
1 

H(y-a), (37) 
a · v2 v2 

and just to the east of the island equation ( 4) gives 

q = \;~2 { 8(y-a) + 8(y+a)} + ( e-Y'/ 4 + y f :1\ -e• d() 
( H(y+a) - H(y-a)) . (38) 

It should be noted that there is no disturbance for latitudes greater than a. This 
result is surprising as we would normally expect a coastal Kelvin wave at the tip of 
the island decaying in a distance of the order of the radius of deformation away 
from the tip. There are two possible explanations for the calculated behavior. Firstly, 
we have a > > 1 and so the radius of deformation at y = a is very small (2/ a, in 
fact) and we would, perhaps, not expect to be able to resolve distances of this mag-
nitude. In fact Q ± as given by equation (33) are accurate to within an exponentially 
small term and so if the disturbance were in fact spread over a radius of deforma-
tion this should be apparent in the solution (36). The second possibility, and almost 
certainly the correct interpretation, is that the effect is due to the vanishing thickness 
of the barrier2 : there is no zonal coast to support a proper coastal Kelvin wave. 

2. In the following paper Cane and du Penhoat show this results from the assumption of steady 
state inviscid flow, and not the thinness of the island as hypothesized here. 
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Here then we see the main drawback of our model. If the island were taken to be 
a rectangle, the solution would include the expected coastal Kelvin wave, and the 
zonal component of velocity to the north and south of the island given by equation 
(36) would be spread, meridionally, over a distance of the order of the radius of 
deformation. 

One parameter of interest in this problem is the amplitude of the transmitted 
equatorial Kelvin wave. This gives a measure of the magnitude of the disturbance 
introduced by the island. It is given by 

s:1 e - Y'/
4 dy 

f 00 e-Y'/2 dy 
- oo 

at X = 0+ . (39) 

From equation (37) this is 

(40) 

Thus for large a the amplitude of the transmitted equatorial Kelvin wave is 0(a-1), 

and a large island is seen effectively to block the equatorial Kelvin wave. This result 
was not obvious a priori as it was expected that the coastal Kelvin waves might 
travel right around the island with almost constant amplitudes and generate an 
equatorial Kelvin wave at the east whose amplitude was comparable with that of 
the incident wave. 

With such a small transmitted equatorial Kelvin wave we expect the flow to the 
east of the island to be dominated by short Rossby waves. In this case p would take 
the form of a series of cells of alternating sign due to the Bessel function behavior of 
the waves. We have p = q-u, and so just to the east of the island, 

( e-Y'l 4 + y f: 1

\-<' dt)(H(y+a)-H(y-a)). (41) 

The reason for the smallness of the transmitted Kelvin wave is now apparent. The 
decrease of Q + toward the equator at x=0 causes p to decrease similarly, and for a 
large island p is very small by the time the equator is reached. For a disturbance 
which has p independent of time at .x=0, the short Rossby waves have x-t depen-
dence of the form Jo(y 2xt) for x~0 (see Anderson and Rowlands, 1976b), while 
the equatorial Kelvin wave is independent of x and t. If we separate the short Rossby 
waves from the equatorial Kelvin wave using equation (40), remembering that for 
the equatorial Kelvin wave p = u = q/ 2, we find that 

1 f y/2 . [ ] -P = a -:;, Y 
O 

e-'· df H(y+a) - H(y-a) Jo(y zxt) 

for X 0. (42) 
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Figure I. The pressure anomaly (p) in x > 0 and y > 0 for a large island (a = 5) showing the 
dominance of the short Rossby waves, linear variation of p at the coast, and no disturbance 
for y > a. 

This solution is plotted for a = 5 in y > 0 in Figure 1, where the dominance of the 
short Rossby waves is obvious. As in Anderson and Rowlands (1976b), the flow 
round these cells is approximately geostrophic away from the island. It can be seen 
that p decreases linearly toward the equator at the coast, from 1 at y = a, and the 
dependence on xt indicates the westward propagation of the series of cells and the 
constant narrowing of the boundary layer. For an incident equatorial Kelvin wave 
in the first baroclinic mode with eastward flow in the upper layer, there is a down-
ward displacement of the thermocline along the eastern coast of the island, and this 
is a maximum near the tips of the island. For the equatorial undercurrent, which 
has eastward flow in the middle layer of the second baroclinic mode, positive p 
corresponds to a thickening of the thermocline. 

To the west of the island we have from equation (3), and noting that there is no 
x-dependence in the limit of long time, 

q(x,y,t) ~ 1 + \/21 -a-f a/2 e-E' - 1 _ e-a'/4 + E._ [ H(y+a)- H(y-a)] 
v 2 a 2\/71" =-'!'. V7r 2 

+8(y+a)+8(y-a)f , x~O (43) 

= '\~ [ H(y+a) - H(y-a)] + ':i2 [ o(y+a) + o(y- a)] + O(e-a'I•) . ( 44) 

Thus 

p(x,y,t) ~ } 2 [ H(y+a) - H(y-a)] + O(e -a'I·•) in x 0 as t oo . ( 45) 

Once again there is no disturbance outside the latitudes of the island, and within 
these latitudes the pressure anomaly becomes independent of position. 
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The integral equation (7) can also be solved analytically for a small symmetrical 
island (a < < 1). In this case it is expected that the equatorial Kelvin wave will be 
only slightly disturbed by the presence of the island. Thus we substitute 

u(o,y) =-½-e-1/2/4 + <f>(y) ' (46) 

where the first term is just the undisturbed equatorial Kelvin wave, and the second 
term is the correction, expected to be small, due to the presence of the island. The 
first term must satisfy the integral equation which is appropriate for the case where 
no island is present (a= O); that is, we must have 

1 f "' 1 
2 CQ+-Q- )e-71'/4 d77 = ---= for all y . 

- oo -v2 (47) 

It is easy to verify explicitly that this is indeed so. Then for JyJ > a the integral 
equation (7) becomes 

(s=: + s: ) CQ+-Q- )cp(77) d77 =-½-f ~a (Q+-Q-)e-71
' 1

4 d'Y] (48) 

which for a < < 1 can be written as 

Y _ -e-f• dg-L Sy/• 

v1r o 2 

for JyJ >a. 
The solution of this equation is 

<f>(y) = ; [ 8(y+a) + 8(y-a)] + O(a3
) 

and so we have 

(49) 

(50) 

u(o,y) =-½- e-Y'I• + ; [ 8(y+a) + 8(y-a)] + O(a3
) for /y/ > a << 1 . (51) 

Substituting this result in equation ( 4) it is found that just to the east of the island 

q = e-11•1• + ( ~
2 

- -½-) [ H(y+ a)-H(y-a)] + ; [ 8(y+a)+ 8(y-a)] + O(a3) • 

Combining this with equation (51) we have 
(52) 

p = -1- e-Y'I• + O(a2) for all y 
2 ' (53) 

just to the east of the island. Thus it is seen that as far as the pressure anomaly is 
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concerned the equatorial Kelvin wave is unchanged to 0(a2). However, equation (51) 
shows that the zonal component of velocity is changed by a quantity 0(a), but that 

the total zonal transport to the east of the island ( s::dy) is the same as it was 

in the incident equatorial Kelvin wave to order a3 • From equation (52) we find that 
the amplitude of the equatorial Kelvin wave in x > 0 is 1 + 0(a3). Separating this 
contribution from u in equation (51) we have 

u(x,y,t) = + e-11
'
1 4 + 0(a3

) + {; [ 8(y+a) + 8(y-a) ]- ; [ H(y+a) - H(y-a)] 

+ 0(a2
)} lo(v2xt) . (54) 

In particular, at the equator (y = 0) we have 

1 { 1 } -u(x,o,t) = T + 0(a8
) - T + 0(a2) lo(v2xt). (55) 

Thus the zonal component of velocity is seen to oscillate about+ (its value in the 

incident wave) with a maximum of 0.7 at y2xt = 3.8 and a subsequent minimum 
of 0.35 at y2xt = 7.0. 

Similarly, for x < 0 we find 
1 

p = -e-1N• + 0(a2) (56) 
2 

which demonstrates that to the west of the island, also, the pressure anomaly is 
changed only by a term 0(a2

) from that in the incident wave. 
For other values of a, the integral equation (7) must be solved numerically. For 

this purpose the equation can be written in a rather more convenient form: 

~1T f { e-11
'!

4 + Y f :12 

e-•' d( + TJ f :12

e-•' d( + e-n'I •} u(O,YJ)dYJ 

-Lf II u(o,YJ)dTJ - -
2
1 f 00 TJU(O,YJ)dTJ = 1_ for y ~ a. 

2 a II y 2 
(57) 

The solution for y -a is obtained by symmetry. In this form the integral equa-
tion has a symmetric kernel. The equation is well conditioned in the sense of Baker 
et al. (1964). That is, the eigenvalues of the kernel do not decrease rapidly to zero 
as the order of the eigenfunction increases. This means that the naive method of solu-
tion given by Acton (1970) is suitable, as the high order eigenfunctions are not 
overemphasized by numerical errors. This method consists of writing equation (57) 
as a set of simultaneous equations for u at given values of y by expressing the inte-
grals as sums. In practice these integrals may be evaluated satisfactorily using the 
trapezoidal rule with an interval of 0.1. 
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Figure 2. The amplitude of the delta function in the zonal component of velocity at x = 0 as 
a function of a. Also shown are the asymptotic curves for a<< l and a>> l. 

It is noted that for both large and small islands the solution contains a delta func-
tion at the tip of the island, and so this is expected to be the case also for islands 
of intermediate size. That this is indeed so is indicated by the fact that when no 
special provision is made to include behavior in a numerical scheme, u has a large 
maximum at y = a. There is in fact no need to make special provision for this as 
the magnitude of the delta function can be inferred from the simple scheme by the 
following device. The solution near y = a is extrapolated to give the amplitude of 
the contribution to u at y = a from the term not including this delta function. The 
magnitude of the delta function is then obtained by subtracting this extrapolated 
value from that actually calculated at y = a and noting that the trapezoidal rule 
"smears out" the delta function over half an interval in the integration scheme. Thus 
if the extrapolated value of u at y = a is ue, the calculated value is Uc, and the step 
length in the integration scheme is h, the amplitude of the delta function is given by 

2 h (Uc - Ue). (58) 

The amplitude of the delta function calculated in this way is shown in Figure 2, 
together with the known asymptotic values for very small and very large a. The 
numerical calculations merge smoothly into these asymptotic values in the appro-
priate limits, thus strongly suggesting the accuracy of the numerical calculations. It 
can be seen from this figure that the special cases of large and small islands treated 
above are probably of more general application than was expected to be the case. 
If we judge by the way in which the amplitude of the delta functions approaches 
the asymptotic value, it would appear that a<< 1 means a< 0.5, and that a>> 1 
means a> 3.5. In particular, most real islands on or near the equator would qualify 



1982] 

2-

1 -

.. 4-
= o-

Rowlands: Equatorial Kelvin waves 

------ - ---- --- --- -1 
- - --- ---- ---- - - ---.2 
- ------ ---------- 3 

:===================================·4 5 ----- - --- - ----- - --,6 

~--=::----=----==--- - - ----- - - 7 - Equator 

931 

Figure 3. The pressure anomaly (p) in x > 0 and y > 0 for a small island (a == 0.4) showing 
the almost unchanged equatorial Kelvi n wave. 

as small islands, for in dimensional terms a small island means one less than 100 km 
in diameter for the first baroclinic mode or about 75 km for the second baroclinic 
mode. 

The pressure anomaly, p, is calculated in x > 0 as before, and typical contours 
are shown in Figure 3 (for a= 0.4) and Figure 4 (for a= 2). The transition from 
the case of a small island, with virtually undisturbed equatorial Kelvin wave, to 
that of a large island, with a series of cells stretching eastward from the tips of the 
island, is apparent from these diagrams. 

6. Interpretation and comparison with observations and existing theory 

In interpreting the preceding results and applying them to the real ocean, the 
limitations of the theory must always be borne in mind. These approximations con-
sist of the use of a linear model, the neglect of any form of dissipation, the neglect 
of bottom topography, and the simplified representation of the island. 

In the absence of any form of dissipation the linearization must become invalid 
at some time, at least to the east of the island where the short Rossby waves cause 
the length scale to decrease without limit. Nonlinearities are expected to prevent 
this decrease from continuing below some value. To the west of the island non-
linearities would have a different effect. It was shown in Anderson and Rowlands 
(1976b) that a current flowing against the direction of propagation of a coastal 
Kelvin wave can prevent that wave from propagating if the current is sufficiently 
strong. A similar process is expected here with the eastward flowing undercurrent 
impeding the westward propagation of equatorial waves. The Pacific undercurrent 

Figure 4. The pressure anomaly (p) in x > 0 and y > 0 for a medium-sized island (a== 2). 
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(or the Cromwell Current, as it is sometimes called) flows at a rate of 100 cm/sec-1 

typically, while the speed of equatorial Kelvin waves in the first and second baro-
clinic modes is about the same. The westward travelling waves have velocities, for 
large times (i.e., low frequencies), of 1/3, 1/5, 1/7, etc., of this. Thus all these 
waves are expected to be prevented from travelling very far westward by the under-
current. Comparison with the coastal case suggests that the predicted thickening of 
the thermocline to the west of the island will occur only within a certain distance 
of the island, and not infinitely far upstream as the linear theory predicts. 

Dissipation is expected to affect mainly the narrowing boundary layer to the east 
of the island. The result will, of course, be similar to that for nonlinearity, that the 
narrowing will cease after some time and the flow will become steady. The sharp 
peaks in the velocity predicted near the tips of the island would also be affected, as 
the analysis indicates that they would be concentrated in a very short distance. How-
ever, this prediction has already been argued to be rather unrealistic due to the 
modelling of the island as a thin barrier. If such large velocities were to occur the 
effect of viscosity would be to broaden the peaks and perhaps to cause a reduction 
of the flow to the east of the island, in conjunction with nonlinear effects. With a 
more realistic model of the island which has some thickness, it is expected that the 
peaks would broaden into proper coastal Kelvin waves which could still be affected 
by dissipation and might even be caused to separate from the island, in conjunction 
with nonlinearities, to give two cores to the undercurrent to the east of the island. 
This replacing of the delta function peaks by coastal Kelvin waves is not expected 
to affect the other features of the flow very much. The general pattern of meander-
ing currents to the east, with larger eddies for larger islands, will persist. 

The inclusion of bottom topography in the vicinity of the island would lead to 
vertical mode mixing. An incident equatorial Kelvin wave in one vertical mode 
would generate disturbances in the other modes as it crosses the region of depth 
change. For instance, a change in the strength of the undercurrent (in the second 
baroclinic mode) would lead to disturbances being generated in the first baroclinic 
mode which would cause the thermocline, and thus the undercurrent as a whole, to 
change in depth. The inclusion of this topographic effect in the model is extremely 
difficult. 

The theory developed in the preceding sections will now be compared with ob-
servations of the flow of the equatorial undercurrent around islands in the Pacific 
Ocean. Most observations have been made in the vicinity of the Galapagos Islands 
in the eastern Pacific. These islands form the largest barrier on the equator apart 
from continental coastlines. The islands of the East Indies are much larger, but 
they form an impenetrable barrier to the Indian Ocean undercurrent and may thus 
be considered as a continental coastline. The Galapagos Islands are situated about 
lOW of the South American coast, and the 100 m depth contour extends from about 
Oto IS. As these islands are rather near the coast, care must be taken in comparing 
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the present theory with the observations to make sure that the effects observed are 
due to the presence of the island and not to any interaction with the coast. This 
is ensured by considering only those observations which are well away from the 
coast. 

Knauss (1960, 1966) measured the undercurrent to the west of the Galapagos 
Islands. He found that the maximum speed decreased as the Galapagos were ap-
proached, from a value above 100 cm/sec-1 to rather more than 70 cm/sec-1 just 
to the west of the islands. The core of the undercurrent is at a depth of about 100 m 
in this region. To the east of the Galapagos he found maximum speeds of about 
20 cm/ sec-1 at depths below 150 m. He thus concluded that the effect of the islands 
is to reduce the speed of the undercurrent and to deepen its core. He also claims 
that the main part of the undercurrent flows around the north of the islands. 

Stevenson and Taft (1971) compare measurements made at various times and 
conclude that the undercurrent speed to the east of the Galapagos is 1/2 to 1/3 of 
that to the west. However, they disagree with Knauss (Zoe. cit.) over his proposal 
that the core of the undercurrent is deeper to the east of the islands than it is to 
the west. 

The properties described in the previous paragraphs compare favorably with our 
theoretical predictions. In the second baroclinic mode the horizontal length scale 
is about 160 km, which means that the Galapagos Islands, which have a latitudinal 
extent of about 100 km at the depth of the undercurrent (~100 m), cannot properly 
be considered a "small" island (latitudinal extent :::;;go km). Nevertheless, the flow 
is expected to be qualitatively similar (as indicated by our figures), the main differ-
ences being an increase in the meandering to the east of the island as compared with 
our predictions for a small island, and a greater reduction in the strength of the 
undercurrent. The analytical small island results are more convenient to use than 
are the numerical results for larger islands. First, from equation (55) we expect the 
zonal component of the current at the equator to vary with distance from the island, 
having a maximum of 1.4 times its value in the undercurrent far to the west of the 
island, and a minimum of 0.7 times the same amplitude. As the island is rather 
larger than the small island solution requires, we expect an oscillation about a lower 
mean value to be observed. Thus the observations of Stevenson and Taft (1971) 
are consistent with the present theory, at least at some longitudes. As was noted 
earlier, the theory cannot predict any change in the depth of the undercurrent core. 
The observations certainly suggest that this is a time-dependent phenomenon, and 
as such it is presumably due to either equatorial waves in the first baroclinic mode 
travelling past the islands, or to waves in other vertical modes which generate such 
disturbances by interacting with bottom topography. 

A more detailed picture of the observed flow is given by White (1971b, 1973). 
His observations show that in the flow to the west of the islands there is a small 
region where the core of the undercurrent is thickened in the vertical. It was argued 
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earlier that the inclusion of nonlinear effects in the analysis of the reflected long 
Rossby waves would lead to this result. The observed flow to the east of the islands 
is encouragingly similar to that shown in our figures, with an undercurrent speed of 
15 cm/ sec-1, similar to that measured by Knauss (Zoe. cit.). White notes that the 
observations were taken over a sufficiently short period (~70 days) for any time 
dependence in the meandering flow not to be apparent. Once again, it is expected 
that nonlinearities and dissipation will inhibit the shortening of the zonal length 
scale predicted here. White (1971a) analyzed such a flow around islands using a 
nonlinear beta-plane model with barotropic flow and no meridional variation of 
the incident current. While the application of his model to the equatorial undercur-
rent is questionable on the last two aspects, he does show that nonlinearities prevent 
the time variation of the flow to the east of the island. This result is expected to 
apply equally to the present model. Observations over a larger period would be 
required to establish whether the actual flow is steady or not. The alternative hy-
pothesis given by White (1973) for the observed cellular nature of the flow, that 
it is a von Kaman vortex street, has been dismissed by Hendry and Wunsch (1973), 
who note that such a flow is essentially a two-dimensional (i.e., barotropic) phe-
nomenon, while that under consideration at present is certainly three-dimensional 
(i.e., baroclinic). A point to note in White's observations is that the undercurrent 
appears to have two separate cores to the east of the Galapagos Islands. These ap-
pear to extend, approximately, from the northern and southern tips of the islands. 
This could well be a manifestation of the strong currents predicted at the tips of the 
islands in the present analysis. If nonlinearities are indeed important, as seems to 
be the case, these currents would be expected to separate from the island to give 
twin cores very much as observed. It is probably dangerous to try to deduce much 
more from the present analysis, as the presence of the South American coast must 
have a considerable effect on the flow to the east of the Galapagos Islands. 

Further detailed observations of the flow of the undercurrent around an island 
are given by Hendry and Wunsch (1973). They consider the flow round Jarvis 
Island, which is located at 00°23'S, 160°00'W, in the central Pacific Ocean. This 
island has a latitudinal extent of only about 2 km, and thus certainly qualifies as a 
"small" island. They show that upstream of this island there is a small region where 
the core of the undercurrent is thickened in the vertical, and that immediately down-
stream it is thinnest. If geostrophic flow is assumed, their diagrams indicate that 
further downstream there is a pattern of meandering currents corresponding to the 
observed variation of the thickness of the core similar to that shown in our Figure 3. 
They develop a nonlinear theory, ignoring the Earth's rotation, which agrees reason-
ably well with the upstream flow but which gives completely erroneous results down-
stream. The success of their theory to the west of the island again suggests that 
nonlinear effects are important there. However, the flow to the east of the island, 
which they are completely unable to predict, is very similar to that given by the 
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present theory, at least qualit atively, with a thinning of the undercurrent core just 
downstream and a subsequent oscillation in thickness further to the east. We thus 
conclude that even for very small islands the rotation of the Earth is important, 
giving rise to short Rossby waves which cause the observed wake of meandering 
currents. 

7. Concluding remarks 

This paper has described a possible mechanism for the generation of the observed 
flow of the equatorial undercurrent around islands. The work can also be used to 
describe the upwelling pattern due to equatorial waves in the first baroclinic mode 
which are incident upon such islands. The calculated solutions for this case are the 
same but the interpretation is slightly different. The length scale is now larger (~200 
km) and the pressure anomaly is to be interpreted as vertical thermocline displace-
ment, positive downward for eastward flow in the upper layer. 

Owing to the anisotropy of Rossby waves the meandering wake behind an island 
can appear only to the east of the island. Barkley (1972) describes a similar wake 
to the northwest of an island at mid-latitudes. This wake, presumably, cannot be 
due to the mechanism described here; even though short Rossby waves would give 
a similar meandering pattern at mid-latitudes, this should occur only to the east of 
an island. Thus there is certainly some other mechanism at work in mid-latitudes, 
and whatever it is, it may well also occur at the equator. 
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