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On forced coastal trapped waves at low latitudes 
in a stratified ocean 

by R. D. Romea1 and J. S. Allen 1 

ABSTRACT 
The response on the continental shelf and slope of a baroclinic ocean to driving by an along-

shore wind stress at the coast (r•,o,) and by barotropic and baroclinic wind forced interior mo-
tions is studied as a function of latitude. A two layer linear model is utilized. Solutions are ob-
tained in two ways: (1) the cross-shelf eigenfunctions of the unforced problem are used to de-
rive a forced first order wave equation for the alongshore and time dependent behavior of each 
eigenfunction in an f-plane model; (2) the shelf response is obtained directly using an idealized 
wind stress forcing with sinusoidal dependence on time and on the horizontal spatial coordi-
nates in a ,8-plane model. The cross-shelf eigenfunctions consist of an internal Kelvin wave 
(IKW) and a series of shelf waves (SW) whose vertical structure depends on latitude. For mid-
latitudes the SW modes are barotropic while for low latitudes they are bottom trapped. For 
forcing at low latitudes, the IKW mode is efficiently excited by r•,o,, while the SW modes are 
not efficiently excited. The relative excitation of the SW modes with respect to the IKW mode 
is greater away from lower latitudes. For mid-latitudes, the forced SW mode energy is com-
parable or greater than the forced IKW mode energy, and barotropic interior motions force 
energetic SW modes. Using method (2), the relative effects of interior barotropic motions and 
of r•,o, are compared. For forcing by a sinusoidal traveling wave at mid-latitudes, the shelf cir-
culation is predominantly due to the local alongshore wind stress. Near the shelf break, however, 
the effects of motions in the interior may be felt, and phase differences between the response 
forced by r• ,o, and by interior barotropic motion may lead to cross-shelf phase lags. For lower 
latitudes, interior effects are larger relative to direct wind stress as a driving mechanism for 
motion in the lower layer. For latitudes <10°, the forced response in the lower layer due to in-
terior motions may be comparable to or greater than the local wind forced response. For de-
creasing frequency, the interior motion penetrates less effectively onto the shelf-slope region, 
and the coastal wind forced response is confined more closely to the coast. For these cases, 
motion near the slope-interior junction will be driven predominantly by offshore circulations. 

1. Introduction 

The response on a continental shelf and slope to forcing by wind stress and by 
interj.or oceanic motion will vary with latitude. This response will also depend on 
the stratification, the shelf-slope topography, and the nature of the motion in the 

interior ocean. 

1. School of Oceanography, Oregon State University, Corvallis, Oregon 97331, U.SA. 
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Recent observations from the Coastal Upwelling Ecosystems Analysis (CUEA) 
experiment on the continental shelf and slope off the coast of Peru (Brink et al., 
1978; Smith, 1978) at 10-15S indicate strong poleward propagating wavelike mo-
tions in the alongshore component of the currents which are typically not well cor-
related with the local alongshore component of the wind stress. Motivated by these 
observations, we study the characteristics of forced long waves trapped over a 
continental shelf and slope as a function of latitude and we investigate the interior 
oceanic motion as a possible source for the observed propagating energy. We con-
sider a linear inviscid two layer ocean with a continental shelf and slope along the 
eastern boundary. A response may be forced on the shelf by the wind directly 
through the alongshore component of the wind stress at the coast and indirectly 
through the interaction with the shelf of motions forced in the interior ocean by the 
wind stress-curl. 

We first solve the forced problem in terms of cross-shelf eigenfunctions of the 
unforced problem, using an /-plane. With this approach, a first order wave equation 
may be obtained for the alongshore and time-dependent behavior of each wave 
mode. This method is particularly well suited for initial-value problems where it 
shows how the forced flow on the shelf develops as each wave mode responds to 
the forcing. Since the phase velocities vary and the eigenfunctions change structure 
as a function of latitude, the mid-latitude forced response, aspects of which have 
been discussed by Gill and Schumann (1974) and Allen (1976a), will differ from 
the low latitude forced response. 

The problem is also approached in another way. For an idealized wind stress 
forcing, with sinusoidal dependence on time and on the horizontal spatial coordi-
nates (e.g., a traveling wave), the onshore-offshore structure of the solutions on the 
shelf may be obtained directly. These solutions are particularly well suited for 
determining the relative importance of the various mechanisms for forcing shelf 
circulations. For example, the offshore dependence of the solutions forced by the 
alongshore component of the wind stress at the coast and by the interior wind 
forced batrotropic and baroclinic motions may be compared as a function of lati-
tude, forcing frequency and wavenumber. Since the solutions change character for 
forcing at very low frequency (Section 5b), the fi-effect is included in the analysis 
to establish the validity of the /-plane solutions presented in Sections 3-5. 

2. Formulation 

We consider a north-south oriented boundary on the eastern side of a two layer 
fi-plane ocean, where Cartesian coordinates (x', y', z'), are utilized/ with x' positive 
in the offshore direction (the coastline is at x' = 0), y' positive southward, and r 

2. In this and the following sections, dimensional variables for which a nondimensional counterpart 
wiJI be defined are denoted with primes. 
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positive vertically upward. Stratification is modelled by two layers of homogeneous 
fluid of different density, with the h_eavier fluid on the bottom. The top surface is 
bounded by a rigid lid . The upper layer fluid has density pi, and a constant undis-
turbed depth H' 1, The lower layer fluid has density p2 and a variable undisturbed 
depth H'2 = H\ (.x', y'). The total depth is H' = H'1 + H' 2 • The difference in density 
Ap= P2 - P1 is assumed to be small, l::lp / p2 < < 1. Along the boundary there is a 
continental shelf and slope topography which is confined to the region O .x' Ls. 
In the interior (.x';;;: Ls), the depth is constant, H' = H'0 = H'1 + H\0 • 

Dimensionless variables are formed in the following manner: 

(x, y) = (.x', y')/ L, z = z' /H'o, i = i'fo, 
(Ui, V;) = (u'1 , v't)/ U, w, = w';L/(H'oU), 
P1 = [p'1 + p1g(z' - H'o)]/(p1UfoL), 
P2 = [p '2 + p2g(z' - H'20) - p1gH'i]l(p2UfoL), 
h = h' gl::lp / (p2Uf oL), 
(H1, H2, H) = (H'1, H'2 , H') / H' 0 , 

-r = -r' / (U pdoH1), 
f = <to - {3'y') / fo = 1 - {3y, (2.1) 

where i = 1, 2 .refers to the upper and lower layer, respectively'. The variables (u', 
v', w') are the velocity components in the (x', y', z') directions, p' is the pressure, 
i' is time, L is a characteristic horizontal alongshore scale (the dimensional along-
shore wavelength >..' = 21rL), V is a characteristic horizontal velocity [if = T'ol 
(p2f 0H 1), where r' 0 is a characteristic wind stress], g is the acceleration of gravity, 
-r' is the surface wind stress vector with (.x', y') components (r'', T 11'), f0 is the value 
of the Coriolis parameter at a reference latitude and /3 = {3'L l fo, h = P2 - _P1 is _the 
dimensionless perturbation interface height. 

The resulting linear, depth integrated continuity and momentum equation~ for 
each layer are (subscripts x, y, i denote partial differentiation) 

U1i - fV1 = -pl :D + r', 

- ' . , 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

'(2:2e) 

(2.2f) 

wher~ S = (NH'0 / f0L)2 is the stratification parameter and N2 = gAp/(p2H'o) is the 
square of the Brunt-Viiisiila frequency. 



372 Journal of Marine Research [40, 2 

If (2.2a) and (2.2d) are combined, a streamfunction may be defined, such that 

tf,11 = u1 + (H2/H1) U2, (2.3a) 

-tf,., = V1 + (H2/H1) V2, (2.3b) 

The general governing equations for the perturbation interface height h and the 
streamfunction tf, may be obtained from (2.2) (Allen, 1975) and are: 

[tf,.,., + t/lw - (H.,/H)t/J., - (H11/H)t/J11ll- f3t/J., 
= (Hz/H) (h11 - ft/111 + T 11) - (Hy/H) (h., - ft/I.,+ r) 
- (1"11111 - Tyz), 

[h.,., + hw + a(H.,/H)h,, + a(H1jH)h 11 - (SH)-1 Dh 
- (/3/f) (hz - hv)li - f3h., 
= -a(H.,/H) [1h 11 - DtJ,11 + fr11 + rt] 
- a(H,jH) [fh., - Dt/J., + fr - r 111] 

+ {3r - f(r,,V- r,/ ) -

(T,/~ + T 1111)l, 

where D = /2 + (fJ2/oi2) , a= H1/H2, 
The following assumptions are utilized: 

(2.4a) 

(2.4b) 

1) restrict the topography to have no alongshore variations, so that H = H(x) 
only; 

2) assume f3 << l; 
3) restrict attention to motions on a time scale 8i large compared with an inertial 

period, i.e., 8i > > J-1
; 

4) assume the scale of the wind stress and therefore the scale of the interior 
motion and the alongshore scale of the motion on the shelf is 0(1); 

5) assume the interior Rossby radius of deformation [defined in (2.8)] is much 
smaller than the 0(1) alongshore scale, 

(2.5a) 

6) assume the dimensionless width of the shelf-slope region 8 is also much 
smaller than the 0(1) alongshore scale, 

8 << l; (2.5b) 

7) assume that the small parameters 8, 8Rr, and f3 are, in general, of the same 
order-of-magnitude, i.e., 

0(8) = 0(8R) = 0(/3). (2.Sc) 

It is convenient to define a new cross-shelf variable and Rossby radius 
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and an associated time scale 

t = 18. 

373 

(2.6a) 

(2.6b) 

With the above assumptions the equations for the interior, where H,. = 0, are 

8(1{,.,z + t/,1111)1 - f3t{,,. = -(T.,11 - T11'") , 

6(h_ + hi/I/ - aRI-2 h)t -/3hz = - f(T.,11 - T/'), 

(2.7a) 

(2.7b) 

where a tilda superscript denotes an interior variable. The interior Rossby radius, 
which is the natural offshore decay scale for baroclinic disturbances, is given by 

(2.8a) 
where 

(2.8b,c) 

Equations (2.7a) for the barotropic interior motion and (2.7b) for the baroclinic 
interior motion are uncoupled and may be solved separately, subject to the proper 
boundary conditions. 

At x = 6, the junction of the interior and the shelf-slope region, the matching 
conditions, which follow from the continuity of mass flux and pressure, are 

h(x = 8) = hff =1), 

k.tCx = 8) = cS-1h{1({ = 1), 

t{,v(x = 6) = 1/Jy{{ = 1), 

1/J.,tCx = cS) = 6- 1-,,,M = 1). 

We expand tp in an asymptotic series, i.e., 

1/J = cS-1(-./Jo + 6tp1 + .. . ), 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.10) 

where the leading order is suggested by (2.7a). With this representation, (2.7a) is 

(tpo.,., + 1/Jo1111)1 - /38-l -./Jo., = -(T.,11 - T11"'). 

The interior variable h is conveniently written as two terms, 

ii= hp+ iin, 

where, from (2.7b) and with assumption (2.5a), 

68R1- 2 iiPt + {3hp., = f(r ,.11 - r/"), 
and 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

The variable hp is an approximate particular solution for the interior baroclinic 
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field forced by a wind stress curl with 8llr <.< 1, whereas hn is an approximate 
homogeneous solution which is added to hp so that h satisfies the boundary condi-
tions. Except for very low frequency motion, w < < ½ /38llr, the second term in 

(2.13) and the last term in (2.14) are small with respect to the other terms, and hn 
in (2.14) represents the interior extension of a coastally trapped internal Kelvin 
wave. For very low frequency forcing, the third term in (2.11) and the second term 
in (2.13) balance the wind stress curl, resulting in an interior Sverdrup balance. 

Expansions of the form 

h = ho + 8h1 + ... , 

(2.15a) 

(2.15b) 

are assumed for the shelf. Since the interface perturbation h over the shelf due to 
the interior solution will consist of the interior interface deformation hp (x = 0), 
with a boundary layer correction to satisfy the boundary condition at f = 0, it is 
convenient to define a new shelf variable h, where 

h = hP(O) + h, (2.16) 

(where the subscript (0) denotes evaluation at x = 0). 

Using (2.Sa,b), (2.6a,b), and (2.16), the lowest order equations for the shelf vari-
ables become 

(l/lou - Bn- 1 l/lot)t - 8n-1(h 11 -/"1011) = 8n-1(Tco)11 + hPy(o)) 

-8(r.,io>11 - T11 co>"') + /31/1oe, 

(hH + a8n-1h, - 8R-2h)t + a8n-1f(h 11 - fiJ,0 11) 

= -a8R-1/(Tco>11 + /ip11 co>) - /8(r.,co)11 - T11 co>"') + {3kg, 

(2.17a) 

(2.17b) 

where 8n-1
(() = HdH and where 8R2

(() = f- 2 SB(() 8-2• The last two terms in 
(2.l7a,b) are 0(8/w) and 0(/3/ w) with respect to terms on the left hand sides and 
are neglected in general, except in the limit w 0 . 

. The velocities on the shelf may be obtained for each layer from ij,0 and h. They 
aie ·· · 

U 1 = H- 1 H1['Po11 + f- 2a-1(fhv + h,1) + (af)-1(T co> 11 + hpc~>11)], (2.18a) 

U 2 = H-1 H1['Po11 - f- 2(fh 11 + hei) -/-1(rco>11 + liPCoJ11)], (2.18b) 

V1 = (8H)-1 Hi[-iJ,ot - (af)- 1hg], (2.18c) 

V2 = (8H)-l H1[-if,o t + 1-1ht], (2.18d) 

where (2.5b) has been used in the derivation of (2.1 Sc,d). Eqs. (2. l 8c,d) imply that 
~he alongshore component of the velocity is _in ge9strophic balance, . . . · 
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The boundary conditions at the coast, which follow from the requirement that 
U1 = U2 = 0 and (2.18) are 

t/1011 = 0 at { = 0, 

ffzv + h ft = -f(Tco/ + hP<oiv) at g = 0. 

(2.19a) 

(2.19b) 

li a Taylor series expansion around x = 0 is used for ..p, (2.10) and (2.15) may 
be substituted into the matching conditions (2.9c,d) and terms of the same order 
may be collected to yield (Allen, 1976b): 

-,Po,v(X = 0) = 0, 

'¢0.,i(X = 0) = o/ott(t = 1), 

(2.20a) 

(2.20b) 

Assuming that a boundary condition for -,P 0, similar to (2.20a), holds on the other 
boundaries of the interior region, the lowest order barotropic motion in the interior 
may be determined from (2.11), (2.20a), and that condition, and is uncoupied from 
the shelf motion . 

. The relations (2.12), (2.15b), and (2.16) are substituted for h and h in (2.9a,~) 
and a Taylor series expansion around x = 0 is utilized for hp to yield the matching 
conditions for the perturbation interface, i.e., 

hB(X = 8) = h(t = 1), 

hp.,(X = 0) + ho.,(X = 8) = 8-1 h~(t = 1). 

(2.2,la) 

(2.21b) 

The two terms on the left-hand side of (2.21b) are retained with the anticipation 
tha_t, over the total frequency range, either one may be important in balancing the 
right-hand side. 

3. The free wave solutions 

Before proceeding to the forced problem, it is useful to have an understanding 
of the unforced or free wave problem. The detailed solutions to (2.17a,b) for the 
free waves are discussed in Allen and Romea (1980) (henceforth denoted as AR), 
and only a brief summary will be presented here. 

We adopt an /-plane analysis (/3 = 0, f = constant), and choose the exponential 
shelf profile of Buchwald and Adams (1968), i.e., 

H = exp [(t - l)/8B]. (3.1) 

In this case, H d H = 8B-1 is a constant. This depth profile, while still highly ideal-
ized, is not an unreasonable approximation to actual shelf slope topography. 

· The equation for the free waves may be written 

(3.2a) 
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(hdaH)ft - 8R-2(ht!H1) -f(HdH 2
) Ul/lo11 - h11) = 0, 

1/1011 = o, fh 11 + htt = o at ! = o, 
I/loft= 0, h, + aRI-ii,, = 0 at g = 1. 

[40, 2 

(3.2b) 

(3.3a,b) 

(3.4a,b) 

· By multiplying (3.2a) and (3.2b) by, respectively, tfro and h, integrating the two 
equations over g from O to 1, assuming periodicity in y and integrating over a peri-
od in y, we obtain an equation for the total energy density: 

E = ½ {S: [H- 1 l/lol + (aj2H)-l hl + (f28R2H1)-1 h2]d[ 

(3.5) 

As a result of assumptions (2.5b), all of the coastal trapped waves in the present 
model are nondispersive. Accordingly, free wave solutions are sought in the form 

("10,h) = Re{exp [-iw(t + c-1y)] (cp(g),g(g))}, (3.6) 

where w is the radian frequency, c is the phase velocity, and Re denotes-the real 
part. 

The equations and boundary conditions for the eigenfunctions ( cf>,., gn) with cor-
responding eigenvalues en are 

'PnU - fjB-l 'Pnf + (8BCn)-l (f<p,. - g,.) = 0, 

g,.u + a8B-l g,.f - 8R- 2 gn - a(8Bcn)-l fUcJ,n - g,.) = 0, 

<f>,. = 0, g,.f + (f /c,.)g,. = 0 at g = 0, 

'Pnf = 0, g,.f + {jR-l g,. = 0 at g = 1. 

The orthogonality relation for the eigenfunctions is 

+ [(aH)-l g,.gm](o)} = 8mnCnEn, 

where, from (3.5), the energy density for each mode is 

E,. =+{f: [H-1cp,.l + (af2H)-1 g,.e2 + U28n2H1)-1 g,.2]d[ 

+ [(8naHj2)- 1 g,,2](1)}. 

(3.7a) 

(3.7b) 

(3.8a,b) 

(3.9a,b) 

(3.10a) 

(3.10b) 

The factor on the right-hand side of (3.10a) follows from multiplying (3.7a,b) for 
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(cf,,.,g,.) by, respectively, cf,,. and g,., integrating over g from O to 1 and combining. 
The result is 

CnE,. = Kn=-½- f- 1 
{ f : (8Bll)- 1 (fcf,,. - g,.)2d{ + [(all)- 1 g,.2) co) } . (3.11) 

We may rewrite (3.11) as 

(3.12) 

Eq. (3.12) represents a variational formulation of (3.7) and (3.8) in the sense 
that the admissible functions (cf,0,g0) which minimize the quotient e,./K,. are eigen-
functions for the problem defined by (3.7) and (3.8), and the minimum value is the 
associated eigenvalue c0 -

1
• If the orthogonality condition (3.10a) is imposed, the 

variational formulation results in an increasing sequence of values for c-1 , e.g., 
C1 -

1 is the minimum of E,./ Kn among functions orthogonal to ( cf,0,g0). In addition, 

Lim c,.-1 = oo, 
n oo (3.13) 

and the eigenfunctions (cf,,.,gn) form a complete set (Courant and Hilbert, Vol. 1, 
pp. 412, 424-426). The result (3.13) was demonstrated explicitly in Appendix B 
of Allen (1975). 

Similar variational principles are obtained by Clarke (1976) and Huthnance 
(1978) in connection with the eigenvalue problem for coastal trapped waves in a 
continuously stratified fluid. One additional consequence of (3.12) (also reported 
by Clarke and Huthnance) is that for monotonic H, the right-hand side of (3.12) 
is positive definite and all free waves propagate poleward (toward -y). 

While (3.7b) and (3.9b) have non-constant coefficients, if we assume that 

aco> = H,/H2co) << 1, (3.14) 

(3.7a,b), (3.8a,b), and (3.9a,b) may be solved by perturbation methods, as in AR. 
The eigenfunctions consist of an infinite set of "shelf wave" (SW) solutions (cf,n,g,.), 
(n = 1,2, ... ), and a single internal Kelvin wave (IKW) solution (cf,0,g0). At mid-
latitudes, 8R < < 1, the SW modes are barotropic and have offshore structures 
which are essentially those found for barotropic continental shelf waves in an un-
stratified ocean. For 8R >> 1, the SW modes are "bottom trapped," i.e., all their 
motion is confined to the lower layer. The IKW mode is baroclinic and has an off-
shore structure and wave speed similar to that obtained for a flat bottom internal 
Kelvin wave. In this case, however, there is a barotropic contribution to the onshore 
velocities from c/>o-

The phase speed c0 of the IKW mode is independent of f while the SW mode 
phase speeds depend on f. Estimates of c0 and c1 (the first SW mode) are calculated 
in Appendix B of AR for the Pacific coast of South America. For latitudes less than 
SS, c0 > > c1, i.e., the IKW mode travels faster than the first SW mode, while for 
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0 z- 3 4 5 

' 2 .0 

C 

1.0 

OR 
Figure 1. Variation of wave speeds as a function of Ila for the 3 eigenfunctions E,_, E,, and 

E,, which, for Ila < 0.43, represent the internal Kelvin wave, the n = 1 and the n = 2 shelf 
. WjlVes, respectively. The values a<o> = 0.3 and lln = 0.33 have been utilized. Dimensionless 
' f (J = f' I f ., where f' . is the dimensional latitude for the interaction between the internal 

Kelvin wave and the n = 1 shelf wave) is plotted along the top axis. With dimensional values 
of shelf width L, = 90 km and internal Kelvin wave phase speed c'o = 100 cm s-•, Ila = 
c'0/(f'L ,) -is plotted along the bottom axis, where Ila = 0.43 at the critical latitude f = /',. 
Corresponding latitudes for f = 1, 2, 3, 4, 5 are 10°, 21°, 32°, 45°, and 63 •, respectively. 

mid-latitudes, c0 < < Ci, i.e., the first SW mode travels faster than the IKW mode. 
The two wave modes have the same phase speeds at a latitude of about lOS. 

For parameter values where the wave speeds of the IKW mode and a SW mode 
are nearly equal, i.e., where c0 2'E Cn, there is a coupling between the two types of 
waye modes. A plot of the phase speeds for the first three eigenfunctions as a func-
tion of i>n is shown in Figure 1. As is indicated by the behavior of the wave speeds 
as a function of i>n the mode which is originally an IKW becomes a first SW mode, 
anci vice versa. At a larger value of 8R, a similar behavior occurs for the IKW and 
second SW modes. 

Note that, while the parameter 8R varies strongly with latitude, it is also a func-
t\on of shelf width, so it is possible, for example, for i>R to be small at low latitudes 
for a very wide shelf. 

4. Solutions via a cross-shelf modal analysis 

,,Solutions to the shelf equations (2.17a,b), with the boundary conditions (2.19a,b), 
(2.20b), and (2.21a,b) may be obtained for a coastal wind stress with a general 
(y, 't) structure by expanding the shelf variables in terms of the cross-shelf eigen-
functions ofthe unforced equations. 
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As in Section 3, an /-plane analysis is employed here and the assumptions in 
Section 2 (2.5a,b) are retained. 

In a manner similar to (2.16) for h0 , we define 

o/o = 'P + '1/1:c(ol s: H(f)df. (4.1) 

The last term in ( 4.1) represents the extension of the interior alongshore velocity at 
x = 8 onto the shelf topography. s 

With (4.1), the governing equations for the shelf variables (2.l 7a,b) are 

(tpfg - aB- 1tpg)t - aB- 1(h11 - Nv) = aB- 1F, 

(hgg + a8B- 1hg - aR- 2h)1 + fa8B- 1(h11 - N v) = -aaB- 1fF, 

where 

F(g,y,t) = T (o) 11 + hP(O)y + f1P:c(O)y s: H(g''Jdf. 

The boundary conditions at the coast are 

tp11 = 0 at g = 0, 

h,1 + th11 = -f F at g = o. 
The solution to (2.14) (with /3 = 0) is: 

hB = Co(y,t) exp(-x/ 8RI). 

(4.2a) 

(4.2b) 

(4.2c) 

(4.3a) 

(4.3b) 

(4.4)' 

This solution may be used in (2.21a,b) to derive the boundary condition on h at 
g = 1. The boundary condition at g = 1 for tp may be derived by introducing (4.1) 
into (2.20b). These conditions are 

tpg1 = 0 at g = 1, 

h, + 8n1- 1 h =oat g = l, 
(4.5a) 

(4.5b) 

where the term hpz(O ) is neglected relative to aR[-l he,, and a-1hg in (2.21b), and 
where we use, from (2.21a), 

(4.6) 

This relation may be used to calculate Co and hence liB, after a solution is obtained 

for h. 
We now expand the shelf variables in terms of the eigenfunctions of the unforced 

problem, i.e., 

3. In Allen (1976b) the substitution t/lo = 1" + qVJ,<o> was used. This represents an extension 
of the interior alongshore transport onto the shelf. The definition (4.1) turns out to be more 
appropriate. 
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"" 
(tf,,/i) = L [4,m(g}, gm(l)]Y m(y,t). (4.7) 

The series in (4.7) is summed over the single IKW pair (4,o, go) and all the SW pairs 

(If,,., g,.), (n = 1,2, ... ). The expansions (4.7) for tf, and h are substituted into the 
shelf equations (4.2a,b) and the forced boundary condition at E = 0 (4.3b). If 
(4.2a,b) are multiplied by (cf>rn, gm) respectively, integrated with respect to f from 
O to 1, and are combined in a suitable manner with (4.3b) and the orthogonality 
relation (3.6), a forced first order wave equation is obtained for the (y,t) structure 
of each mode (Gill and Clarke, 1974; Clarke, 1977), i.e., 

where 

c,,.-1Ym1-Ym11=-Tm, 

T m(y,t) = 1-1 { f laBH)-l Ucf>m - gm)Fdg 

- [(aH)- 1 gmFJ(o)} • 

(4.8) 

(4.9) 

T m(y,t) contains two terms; one is integrated over the shelf and one is evaluated at 

the coast. 
Two separate types of forcing contribute to F, i.e., 

F=(l>+f, 

where 

(l> (l,y,t) = /VJ.,11<0> s: H(f)df, 

(4.10) 

(4.1 la) 

(4.1 lb) 

The alongshore•component of the wind stress at the coast and the baroclinic interior 
flow force motion on the shelf through the boundary condition at g = 0 and always 
appear together, while (l>, the effect of the interior barotropic flow, depends on g 
and vanishes at the coast ((l><o> = O; F<o> = f). For 8R << 1, f forces the IKW re-
sponse mainly through the boundary term in (4.9), since g0 decays rapidly from the 
coast and the contribution from the integral in (4.9) is small. The SW response 
arises predominantly from the integrated term in (4.9) which represents the cross-
shelf bottom velocity U2, For 8n < < 1, an offshore barotropic flow interacting with 
a shelf-slope topography can force a SW response in this manner. 

In order to examine the relative efficiency of excitation of the various modes by 
both T<o>11 and (l> we use (3.5), (3.10), (4.8) and (4.9) to calculate the total energy 
density Em of the lower modes. Approximate expressions for Y m may be obtained 
for short time by solving (4.8) as an initial value problem with initial condition 

Y,,, (y,t = 0) = 0. (4.12) 
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For this case, the balance in (4.8) is Y mt e - CmT m, and 

(4.13) 

Figures 2 and 3 show the energy density ( divided by t2) of the first several modes, 
forced by f and <I>, respectively, as a function of oR. As in Figure 1, we use the 
solutions derived in AR for aroi << 1. The mode which for oR << l is an IKW 
is labelled Ei, while the mode which is a first mode SW is labelled E2. The interac-
tion (see Fig. 1) between E1 and E2 occurs at oR = 0.43. For oR < < 1, E1 is a first 
mode SW. E2 interacts at On = 0.11 with Ea (the second mode SW). Poleward of 
this interaction, Ea is an IKW and E2 is a second mode SW. 

Without solving the interior problem for hPcoi11 and 1Px(oi, the relative importance 
of driving by f and <I> cannot be deduced, and we defer a discussion of this subject 
until Section 5. However, several points can be made from Figures 2 and 3, together 
with our understanding of the eigenfunctions discussed in Section 3. 

Forcing by f for oR < < 1 results in an IKW response which is confined within 
oR of the coast and a set of barotropic SW modes which extend over the shelf. 
This implies that it is possible for interior baroclinic motions to drive barotropic 
motions on the shelf, although estimates using typical parameter values give IT<oll!I 
>> lliP<oivl• For On >> 1 the response to f consists of a baroclinic IKW mode 
which decays slowly into the interior and a set of "bottom trapped" SW modes. 
Hence, forcing by a surface wind stress or interior baroclinic motion yields a SW 
response on the shelf which is bottom intensified. 

Figure 2 shows that, for on > > 1 and forcing by f, E1 (the IKW) is very effi-
ciently excited, while E2 (the bottom trapped first mode S\Y) is not very energetic. 
For latitudes less than 5°, the SW response is negligible. For On << 1, Ea (the 
IKW) and E1 (the first mode SW) are both excited, with the IKW more energeti-
cally forced than the SW. If kinetic energy density (not shown in Fig. 2) is con-
sidered instead of total energy density, the IKW mode, with a<o> = 0.3, is less 
energetic than the first mode SW for on> 0.15, i.e., for latitudes >40°. 

Note that, for a completely two-dimensional response, the dependence of h and 
tf, on y vanishes and (4.2a,b) uncouple. Forced solutions may be directly obtained 
and may be used in (4.13) to derive the total energy density which is also sbown 
in Figure 2. The response will consist of an infinite sum of modes and the total 
energy of the response, of course, will be higher than that of the first two modes 
alone. Note, however, that the first two modes contain most of the energy. 

The barotropic interior forcing excites an IKW response and a SW response on 
the shelf. Figure 3 shows that both the IKW and the SW responses are not forced 
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Figure 2. Energy density £ ,. (4.13) divided by t2 as a function of 5a for the 3 eigenfunctions 
.Ei, E2, and E,, forced by f (i' = I). The dashed line represents the total energy density. The 
parameters used are the same as in Figure 1. 

efficiently for SR > > 1. For mid-latitudes, the IKW response (E2) is not forced effi-
ciently, while the first mode (barotropic) SW is relatively energetic. 

Examples. It is useful to consider some simple solutions to (4.8). We focus only on 
d~ivfo.g by the alongshore component of the wind stress at the coast (F = Tco>u 

(y,t)), so that (4.8), (4.9) and (4.12) are 
' · 

.. 
L (/<pm - Cm)bm = 1, 
m=O 

Y m (y,t = 0) = 0. 

(4.14a) 

(4.14b) 

(4.14c) 

(4.14d) 

In the following examples, we concentrate on the qualitative differences between 
th~ results at mid and low latitudes. (Examples at mid-latitude have been discussed 
by Allen [1976a].) 

. We first examine a simple impulsive· wind stress with a limited alongshore extent, 
i,e;·, 

where, e.g., 
T(y,t) = 6(t)T(y), 

T(y) = To exp(-y2/ 2). 

(4.15) 

(4.16) 
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Figure 3. Energy density £,. (4.13) divided by f' as a function of 6R for the 3 eigenfunctions 
Ei, E,, and Ea, forced by <I>, (-,p.,,., = 1). The parameters used are the same as in Figure 1. 

The solution to (4.14a) with a wind stress given by (4.15) and (4.16) is 

Y m = -CmbmT(y - Cm!). (4.17) 

This solution corresponds to a response of limited extent propagating in the nega-
tive y direction (poleward) with speed cm, for each mode. At low latitudes, the IKW 
response_propagates relatively quickly away from the forcing region while the bot-
tom trapped sw_ modes; whose phase speeds cn are small compared with co, rem:ain 
behind. This behavior can result in bottom intensified undercurrents over the con-
tinental _slope. 

We next consider an alongshore wind stress of the form 

T(y,t) = H(t)T(y), (4.18a) 

where H(t) is the Heaviside unit function. Here, for simplicity in illustrating the 
features of the solution (Allen, 1976a) we use the "top hat" function 

l O O < Y, 
T(y) = To -IYo l < y< 0 

0 Y < - IYol 
(4.18b) 
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y 

Figure 4. Y .. as a function of y for four values oft > t,) [from Allen (1976a)]. 

The solution for Y m as a function of y for various times is shown in Figure 4. 
This solution is obtained by the method of characteristics in Allen (1976a). For the 
purely baroclinic problem, Yo is the interface height at the coast, while for the 
purely barotropic problem Y,. gives the (y,t) structure in the expansion of the mass 
transport streamfunction in terms of the free shelf wave eigenfunctions. 

The initial response, for -JYoJ < y < -cmt, is time dependent and two-dimen-
sional (Y mu= 0). The three-dimensional flow pattern develops as a free IKW front 
and a set of SW fronts are generated and propagate poleward (toward negative y). 
For Cmt > JYoJ, a region where Y ... is constant and where the alongshore velocity 
associated with a particular mode m is in steady geostrophic balance exists between 
the time dependent free wave front and the location of forcing, i.e., in -cmt < y < 
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-IYol, A steady state is achieved at a given y as t oo after the free wave fronts 
associated with every mode have propagated past that location. 

The two-dimensional flow pattern which results from the impulsive application 
of To in the region -IYol < y < 0 consists of an offshore flow uB in the surface 
Ekman layer which is balanced by an inviscid onshore flow u1 toward the coast in 
the same cross-shelf plane. For the mid-latitude case Sn<< 1, the onshore flow u1 
is depth independent over most of the shelf. Within a distance Sn from the coast the 
flow also has a baroclinic component and the interface rises. At g = 0, a mass flux 
equal to the offshore Ekman transport is fed into the surface Ekman layer from the 
upper layer interior and the lower layer onshore flux is zero. 

For Sn>> 1, the two-dimensional picture is much the same except that the baro-
clinic component of the flow becomes important farther offshore and the flow is 
surface intensified over the shelf with a weak onshore velocity component in the 
lower layer. As a result the bottom trapped shelf waves are not efficiently excited, 
as is evident in Figure 2. 

In order to describe the three-dimensional flow field, we utilize (4.7) in (2.18a-d) 
to obtain expressions for the velocities. In particular, 

.. 
fu1 = (H1/H)a-1 {To+ L [(af<f>m + gm)Ym11 + f-1g,,.fY.,.t]}, (4.19a) 

tn=O .. 
fu2 = (H1/H) {-To+ L W</>m - g,,.)Y m11 - f- 1gmfY mt]}• 

m=O 

The steady solution, with y mt= 0, y m11 = bmTo and with (4.14c), is 

.. 
fu1 = (H 1 /H) (1 + a)a-1 L f<J,mbmTo, 

m=O 

When Y mt = 0, we may write 

(4.19b) 

(4.20a) 

(4.20b) 

(4.21) 

Utilization of (4.14c), (4.21), and (4.7) in (2.18d) yields the result that Vz = 0. 
Hence for all SR the final steady solution over the slope has no motion in the lower 

layer. 
The cross-shelf eigenfunctions obtained in AR and discussed in Section 3 of this 

paper may be used to examine the steady flow field in the upper layer. With a<o> 

< < 1, the IKW solution for g is 

(4.22) 
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\Vhile, for the SW piodes 
(4.23) 

From (2.18); (4.7), (4.14), (4-.i'2), and (4.23), U1 and V1 may be expressed as 

_fu 1 ""'70 [1 - exp(-U8R)] + O(a), . (4.24) 

/v1 91 «5-1 exp(-t/8R) s: 'Tdy + O(a). (4.25) 

Eqs. (4.24) and (4.25) show that baroclinic processes bring U1 to zero at f = 0 
~ithin a scale of 8R, and that the final steady alongshore flow in the upper layer is 
confined to a region with an offshore scale of the Rossby radius (this· result and the 
linvting behavior U2,V2 0 was not pointed out in Allen [1976a]). 

The flow pattern that devdops ai mid-latitudes is different from that at low lati-
tudes arid we will briefly discuss each case. The qualitative discussion given here 
can be easily verified using the approximate solution for the eigenfunctions given in 
AR for .a "weak slope" and with the assumption acoi < < 1. 

Fo~ mid-latitudes, the Rossby radius is a fraction of the shelf width. The SW 
modes are barotropic and the first several modes (en > Co) travel faster than 'the 
IKW mode while the remainder (en < co) travel slower. Fluid is drawn onshore in a 
region near each SW front and the region of onshore flow to the shelf-slope region 
propagates poleward with the SW phase speed. (The region of dominant onshore 
flow occurs in connection with the first mode SW and propagates poleward with the 
~st mode SW phase speed.) The solution for increasing t, as the first several SW 
modes achieve a steady balance but before the IKW front has propagated away 
from the forcing region, consists of an equatorward barotropic alongshore current 
which connects the locations where fluid is drawn onto the slope to the region of 
forcing. The IKW front propagates into this barotropic current, leaving behind a 
steady baroclinic alongshore current which is positive in the upper layer and nega-
tive in the lower layer and which is confined within a baroclinic deformation radius 
of the coast. As the slower SW modes attain a steady state they adjust the velocities 
in the bottom layer to zero and concentrate the upper· layer flow. within a scale of 
8R, 

At low latitudes, the IKW mode has a large offshore scale with respect to the 
shelf width and propagates poleward with a much faster speed than the SW modes 
which are bottom trapped. A schematic of the flow field for low latitudes is shown 
in ·Figure 5. When the IKW mode has propagated away from the forcing region, 
the onshore flow in the bottom layer turns poleward in a broad region within 8.n of 
the coast. The velocity in the bottom layer is poleward up to the location of an IKW 
front, where the density interface moves vertically upward (Allen, 1976a). The cor-
responding return flow in the top layer, from the location of the wave front to the 
re.~<m where the stress acts, is turned and fed horizontally to the coast, and, to-
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Figure 5. A schematic of the flow pattern that develops at low-lati tudes in the upper and lower 
layers for a constant wind stress which is switched on at t = 0 in the region - IY•I < y < 0. 
For simplicity, the effects of all the SW modes are represented by one SW front. Regions 
where the density interface moves vertically upward are shaded. The upper layer flow pattern 
does not include the offshore flow due to the surface Ekman layer. 

gether with a component of the flow which comes directly onshore in the upper 
layer, is fed into the surface Ekman layer at f = 0. The SW modes are forced by 
the stress driven onshore flow in the lower layer and respond such that the location 
of the onshore flow to the slope in the lower layer propagates poleward; The veto.: 
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cities in the lower layer behind the region of onshore flow for all the modes are 
zero. This implies that, for steady forcing of limited extent at low latitudes, the 
upper layer will assume a steady flow relatively quickly, while the lower layer will 
be time dependent, adjusting slowly toward a steady state with zero motion in the 
lower layer over the slope as each bottom-trapped SW mode propagates away from 
the region of forcing. In addition, Figure 5 shows that, as the flow field develops, 
water is drawn onto the slope at different alongshore locations in the upper and 

lower layers. 
As a final example, we examine forcing by a standing wave, given by 

T = r 0cosly coswt, (4.26) 

where r 0 is a constant. For Cm >> w/l, the balance in (4.14a) is approximately 
steady, i.e., 

(4.27) 

while for cm < < w/l, the balance is time dependent and locally two-dimensional, 
i.e., 

(4.28) 

For w/l in the range c0 >> w/l >> c,. the balance in (4.28) applies to the time 
dependent solutions Y,. for the SW modes at low latitudes, while (4.27) is the ap-
proximate balance for the more rapidly propagating IKW mode. 

These solutions are 

Yo= bol-1 To cos (ly - ½ 1T) coswt, 

Yn = -bn(Cn/ w)To cosly cos (wt - ½ 17). 

(4.29a) 

(4.29b) 

Since the shelf wave modes are bottom trapped, the (y,t) behavior of v1 will be gov-
erned by Y0 whereas that of v2 will depend on a sum involving Y 0 and Y,.. This will 
lead to phase differences between v1 and v2 and therefore the flow will have a depth 
dependent phase relation with r . 

With an IKW speed Co 2,! 200 km/ day (Smith, 1978), an estimated first mode 
wave speed C1 25 km/ day (AR), and wind stress forcing with wavelength =' 

1000 km, the solutions (4.29a,b) are valid for wind stress forcing with period in the 
range 5 days < T < 40 days. 

5. Sinusoidalforcing 
We now consider solutions for the interior and shelf motion when the wind stress 

has a sinusoidal dependence on time and on the horizontal spatial coordinates, i.e., 

(T", T 11) = Re{T0 exp[-i(wt- kx - ly)]}, 

so that the wind stress curl becomes 

(5.1) 
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T.,v - T y~= Re{imT0 exp[-i(wt - kx - ly)]}, 

m=k-1, w > 0. 

We look for interior and shelf solutions of the form 
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(5.2) 

(5.3a,b) 

(t/Jo,ho,'Po,h) = Re{[cp(x), g(x), cf,(g), g(!m exp[-i(wt - Ly)]}. (5.4) 

Equations for cp and g may be obtained by substituting (5.4) in (2.11), (2.13) and 
(2.14) while equations for the shelf variables may be obtained by utilizing (5.4) in 
(2.17a,b) (Appendix A) . As in Section 4, the shelf equations are forced at the 
boundary g = 0 by Tcoi11 and by interior baroclinic wind forced motions. In addi-

tion, interior wind forced barotropic motion cp drives a flow on the shelf through 
the boundary condition at g = 1 (A13c). Expressions for the interior motions are 

presented in Appendix A (Al-A4), and <Pz<o>, the relevant expression for interior 
barotropic forcing at g = 1 is given by (A 7). In general, <Pz <o> is complex and the 
shelf circulation due to cp will have components both in phase and out of phase with 
T eo/'. Examination of the forcing terms in (A12a,b) and (A13b) indicates that the 
response over the shelf due to Tcoi1' is 1r/ 2 out of phase with the wind. 

Figure 6 shows the absolute value of 'Pz<o> scaled by T0/ w for various k/ 1 as a 
function of inverse frequency scaled as /3(2w8l)-1

• Figure 7 shows the phase of 

<Pz<oJ • For l > > k (alongshore traveling wind) the phase relation between com-
ponents driven by 'Pz<o> and Tcoi1' changes considerably as a function of w, with 
these components being 1r/ 2 out of phase for /3(2w8l)-1 << 1 and in phase for 
{3(2w8l)-1 =" 1. Fork >> l (onshore traveling wind) the phase difference is'"" 1r/2. 

Therefore, motions on the shelf driven by <p and TcoJ11 will exhibit a phase relation 
which is dependent on the frequency and wavenumbers of the wind. 

a. Forced coastally trapped waves. In Appendix A it is shown that for forcing at 
moderate frequency (A5a,b) (e.g., T' < 60 days for oceanic parameters at 6° lati-
tude off the west coast of South America) the interior baroclinic forcing term is 
negligible compared to T0 (A15) and hence is neglected in the calculated examples 
below. Also, the interior barotropic forcing is given by the approximate form (A8a) 

<p:,: (O) s, To/ uJ. (5.5) 

The validity of this approximation for forcing at moderate frequencies is also dis-

cussed in Appendix A. 
With (A5a,b), the equations for the shelf variables are given by (A12a,b) and 

solutions which represent coastally trapped waves may be obtained by perturbation 
methods for a coJ << 1 using an exponential slope topography (Appendix B). These 
solutions are presented in Figures 8-10 with To= 1, where the figures show the con-
tributions of forcing by the wind stress at g = 0 and by interior barotropic motions 
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Figure 6. Scaled interior barotropic forcing l<P,<o>l/(To/w) as a function of scaled inverse fre--
quency /3(2wo/)-1 for various values of kl/. 

at g = 1. The parameters we vary are on, oR, and l/w. Figures 8 and 9 represent 
solutions for I > 0. We choose aco> = 0.3 (the results are relatively insensitive to 
the value of aco> in the range 0.05 < aco> < 0.3). As indicated above, the forcing 
in (Al2a,b) and (Al3b,c) appears as T0 /w, if 1/w is regarded as a parameter. Ac-
cordingly, the velocities in Figures 8-10 have been rescaled with w, i.e., 

(5.6) 

Note that, in comparing solutions at different latitudes (i.e., different on), 1/w con-
tains a factor of lo, and 1/w corresponding to a wave with a certain period and 
wavelength will vary with lo (e.g., in Figs. 8a,b a wave with period T' = 10 days 
and wavelength 'A.'= 1000 km corresponds to 1/w a.. 16 for on = 0.05 and 1/w 
0.4 for on = 2.0). 

Figures 8a and 8b show V1 and V2 on the shelf (0 g 1) for oR = 0.05 and 
on= 2.0 respectively. The subscripts T and <I> refer to forcing by Tco>11 and interior 
barotropic motions, respectively. The phase relation between V c:, and T may be ob-
tained from Figure 7 with /3 = 0. Figure 8a is the mid-latitude case and, except on 
the inner shelf, the flow is barotropic. The highly baroclinic region near g = 0 is 
due to the forced internal Kelvin wave which decays rapidly away from the coast. 
The interior motion forces a non-negligible barotropic shelf response which is con-
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Figure 7. Phase difference 8 between ef>,co> and Tco>w as a function of /3(26J0[)-1 for various 
values of k l /. 

fined to the outer slope. This behavior is evident in the approximate solutions 
(BlOa,b) given in Appendix B for 8n << l. 

Figure 8b shows V 1 and V 2 for the low latitude case (V 11- is rescaled for ease in 
plotting). These solutions are qualitatively very different from the mid-latitude re-
sponse, due to the increased decay scale for baroclinic motions at low latitudes, and 
to the increased coupling between the equations (Al2a,b) for the shelf variables. 
For low latitudes, the response over the entire shelf-slope region is highly baroclinic. 
V1 is dominated by the forced internal Kelvin wave. This is evident in Figure 8b, 
where V1 decays with exp(-U8n) with only a slight modification due to other 
terms. This behavior may be seen in the approximate solution (B 11 a,b) given in 
Appendix B for 8n > > 1, where the contribution to the alongshore velocity in the 

upper layer due to <Po is cancelled by the O(a) correction to g. This is equivalent to 
bottom trapping of the modal SW forced response at low latitudes. Similar qualita-
tive behavior was obtained by Clarke (1976) with a step shelf topography. For 8n 
>> 1, v2~ V 2T over the whole shelf region. Similar behavior is evident in the 
low latitude approximate solution (Bl lb), where V 2T is 0(8n) while V 2~ is 0(1). Note 
also that v2T is relatively large near the shelf edge and decreases toward mid-shelf. 
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Figure 8. (a) Scaled alongshore velocity V1 (in the upper layer) and v. (in the lower layer) over 
the shelf (0 g 1), for 5a = 0.05, /Jw = 16, 5s = 0.33, and a,o> = 0.3 (V, = v,w, i = 1,2). 

The solid line represents VT forced only by Teo,•, with <P•<•> = 0. The dashed line represents 
V ,., forced only by <f>,,o>, with Teo,• = 0. V,T near g = 0 goes off scale (V,,o> = 0.51). (b) V, 
and v. for 5n = 2, llw c:: 0.4. V,T has been rescaled. 

A dependence on latitude is also evident in Figures 9a-d where solutions have 
been plotted for BR << l (9a,c) and BR >> l (9b,d) for various w/1. V1T decays 
away from g = 0 with exp(-(/811) in all cases. For 811 = 0.1, the decay is rapid, 
and the response is confined to the near-shore region. As 811 becomes larger, the 
baroclinic decay scale increases, and the response extends across the entire shelf-
slope region into the interior. 

Figures 9b,d illustrate the growing importance of V 2<1> with respect to V 2T as 811 
increases. Near g = 1, V 2<1> dominates for all 811. For BR < < l, the wind forced 
motion is the dominant response for g < 0.5. For 811 = 2.0, 1V2<1>! > IV2TI over the 
entire shelf-slope region. 

We may examine the behavior of the exponential slope solutions given in Ap-
pendix B as a function of w, keeping in mind the conditions (ASa,b) required to 
preserve their validity. In particular, for y 2 l(w8n)-1 >> 1, y >> 811- 1 , approxi-
mate solutions for the shelf velocities with low frequency forcing are given in Ap-

pendix B (B12a-c). The contribution to v1 due to <f> is cancelled by part of the O(a) 

correction to g, which is equivalent to bottom trapping of the modal SW solutions 
when their cross-shelf scale is much less than the Rossby radius. The contribution 

to V2 due to 80 is cancelled by part of ¢, which implies that the IKW response be~ 
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(d) 
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Figure 9. (a) V,T; 5R = 0.1, (b) v.T and v ... ; 5n = 0.1, (c) v ,T; 5R = 2, (d) v2T and v ... ; 5R = 2, 
for various values of l/w, with 5s = 0.33 and aco> = 0.3. V,,. << V,T in both cases (a) and (c) 
and V,,. has not been plotted. 

comes surface trapped for forcing at low frequency. V1 is due entirely to the IKW 
response with offshore Rossby radius scale and v2T and V 2~ are confined within 
boundary layers of width y- 1(<<8n) and decay rapidly away from { = 0 and 
f = 1, respectively. Wind forced and interior barotropic motions penetrate less 
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1<0 

.R>o 

V1 (o ) Of----+----+-----!---; 

Figure 10. V1T<•> (V1T at t = 0) vs. 1/w for l < 0 (forcing traveling poleward) and l > 0 (forcing 
traveling equatorward), with 8a = 0.1, 8a = 0.33, and aco> = 0.1. A resonance at jl/wl = 10 
occurs for the case I < 0. This corresponds to the atmospheric forcing resonating with the 
free internal Kelvin wave. 

effectively onto the shelf in the lower layer as w becomes small, reflecting the re-
luctance of low frequency motions to cross contours of constant depth. 

Several of the qualitative features of (B12a-c) are evident in Figure 9b,d. For 
both 8 n > > 1 and 8 n < < 1, V 2<1> exhibits a decreased penetration onto the shelf, 
and becomes more important with respect to V 2T, as w/l decreases. 

It is evident from (B12a-c) that as w 0, interior barotropic motions do not 
penetrate onto the slope and V 2T 0, which implies that for nearly steady forcing 
there is no motion in the lower layer. This corresponds to the limiting steady solu-
tion as t oo for "top hat" forcing ( 4.18), given in the modal analysis of Section 4. 

The case l < 0 is more difficult to interpret due to the fact that the wind forcing 
can resonate with the free wave solutions. Figure 10 is a plot of V 1(0) for l > 0 
and l < 0 as a function of l/w(8n = 0.1), and clearly shows the resonance with the 
free internal Kelvin wave mode for l/w = 8n-1 = 10. There is a 7r phase shift as 
l/ w passes through the resonance. 

In addition to the above resonance, free barotropic continental shelf waves over 
an exponential shelf will resonate with the wind forcing (l < 0) when 'Y satisfies (see 
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(5.7) 

where 'Y is given by (B5e). With Sn= 0.33, a= 0.l, the first three resonance points 
are (l / w)1 2.33, (l / w)2 9.04, and (l/ w)3 ="' 22.09. 

b. Very low frequency behavior. The cases (A6a,b) and (AlOa) where g1 and gn 
are given by (A6c,d) respectively, and where cf>zco> is given by (AlOb) correspond to 
forcing at very low frequency (T' > 60 days). The approximate 0(1) motion in the 
interior consists of a Sverdrup balance in the upper layer which extends onto the 
shelf and no motion in the lower layer. 

The alongshore coastal wind stress and interior baroclinic motions force an in-
ternal Rossby wave which propagates into the interior (Anderson and Gill, 1975). 

The transition from a coastally trapped internal Kelvin wave to a westward 
propagating internal Rossby wave as the forcing frequency is lowered may be seen 
in the expression for R in (A4b). For Sn- 2 > (½/3/ w)2, the solution is coastally 
trapped with an oscillatory character. As (½/3/ w) 2 8R- 2 the trapping scale grows, 
until (½/3/ w) 2 SR-2 and the solution is no longer coastally trapped. 

6. Summary 

The main question we pose in the introduction is: what is the response on a con-
tinental shelf and slope to direct wind stress forcing and to forcing by interior mo-
tions, and how does this response vary with latitude? The simple theory presented 
here provides some answers to this question, and gives some insight for further 
observational and theoretical work. 

In Section 2, it is shown that motions in the shelf-slope region are coupled to 
those in the interior ocean. The cross-shelf modal analysis of Section 4 clearly 
shows forcing of shelf circulations by interior barotropic and baroclinic fl.ow. The 
modal solutions of Section 4 exhibit a dependence of the cross-shelf and vertical 
structure on latitude. At mid-latitudes, the barotropic (shelf wave) response extends 
over the shelf, while the baroclinic (internal Kelvin wave) response is confined to a 
region of width SR < < 1 near the coast. At low latitudes, the response is highly 
baroclinic over the entire shelf, reflecting the relatively large size of the baroclinic 
boundary layer. The shelf wave response is bottom intensified for low latitudes. This 
depth dependence, coupled with the fact that, for low latitudes, the internal Kelvin 
wave speed is larger than the n = 1 shelf wave speed, yields a different qualitative 
time dependent response to wind stress forcing than that obtained for mid-latitudes. 
With a constant wind stress forcing which is switched on at t = 0 and which has a 
limited extent in y (i.e., a "top hat" function), the upper layer assumes a steady 
flow relatively quickly with an offshore scale given by BR, while the lower layer re-
mains time dependent, adjusting slowly toward a steady state of no motion. 
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Using the modal solutions of Section 4 and the energy density of each forced 
mode, we obtain an understanding of the relative efficiency of energy transfer into 
each mode. At low latitudes, Tco>v, the alongshore wind stress at the coast, forces a 
very energetic internal Kelvin wave, but is inefficient in forcing shelf waves. For 
driving by Tco>v at mid-latitudes, the IKW and n = 1 SW modes have energy densi-
ties of the same order. However, the kinetic energy of the n = 1 SW mode is greater 
than that of the IKW mode at mid-latitudes. Interior barotropic motions do not 
efficiently excite the IKW or the SW modes at low latitudes. The n = 1 SW mode 
is efficiently excited, however, for mid-latitude offshore barotropic forcing. 

A simple solution obtained with forcing by a traveling wave wind disturbance 

enables us to compare the relative effects of forcing by Teo/ and by 'P:cco>, offshore 
generated barotropic motions. With the assumptions of the present model, interior 
baroclinic motions are unimportant except for very low frequency driving. 

Coastal wind stress forcing is an important effect for all latitudes. For mid-lati-
tudes, interior driving mechanisms force motions on the shelf and slope which, for 
g > 0.5, are as large or larger than the coastal wind stress forced motion. The mid-
latitude forced response over most of the inner shelf and slope (g < 0.5) is pre-
dominantly due to the local alongshore wind stress. However, the effect of interior 
forcing on the velocity in the lower layer grows with respect to the direct wind 
forced effect as 8n becomes larger, and the low latitude forced response to interior 
barotropic motions V24> can be comparable to or greater than the wind forced re-
sponse V 2T• 

For low frequency driving [l8RI {3 << w << Jll / 8B, (20 days< T' < 60 days at 
6° latitude)], interior motions penetrate less effectively onto the shelf, reflecting the 
topographic constraint on low frequency circulations. The coastal wind forced re-
sponse is also inhibited from crossing contours of constant depth, so that, for low 
frequency driving, the circulation over the outer shelf and slope is controlled pre-
dominantly by the interaction of the interior flow with the shelf. In cases where VT 
is concentrated near the coast and V <1> is concentrated near the outer shelf, cross-
shelf phase shifts of TT /2 are predicted for driving by a wind which is traveling 
predominantly in the alongshore direction. In the general case, predicted cross shelf 
phase lags may be estimated using Figure 7. For forcing at very low frequency 
[w << ½ 8RJ {3, (T' > 60 days at 6° latitude)], an interior Sverdrup flow in the 
upper layer extends onto the shelf and represents the dominant shelf response. 
Wave motions on the shelf are not coastally trapped, but propagate into the interior 
in the form of westward traveling long internal Rossby waves. 

Finally, we point out that the ability of interior motion to contribute significantly 
to shelf-slope circulation is limited for this model by assumptions of a linear interior 
ocean driven locally by a wind stress curl. Strong nonlinear offshore baroclinic cur-
rents, for example, might drive appreciable baroclinic shelf motion at low latitudes. 
This problem remains to be investigated. 
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APPENDIX A 
Sinusoidal forcing 

a. Interior solutions. With a wind stress given by (5.1), we seek interior solutions given by 

(5.4), and, in a manner similar to the representation for fi in (2.12), we define 

ff(x) = Cr + gs. (Al) 

The solutions to (2.11), (2.13), and (2.14) for <{,, gr and go, subject to (2.20a) and (2.21b) 
and appropriate for an eastern boundary, are 

<P =-mTo[w(k' + F)- (k/3/6)]-1 [exp(ikx)- exp(Q_r)], 

Q~ = (i{J/2w6) ± [l" - (/3/2w6)']'12, 

Cr= fmTo[k/3 - w6Ba,-i-1 exp(ikx), 

Ka = Co exp(R.r), 

R = (ifJ/2w6) - [Ba,_. - (/3/2w6)'l',,., 

(A2a) 

(A2b) 

(A3) 

(A4a) 

(A4b) 

where assumption (2.5a) has been used in (5.7) and where the constant Co in (A4a) may be 

determined from (2.21a) after a solution for ii on the shelf is obtained. 
For 

w >> kf36al 6, w >>+Bar /3, 

applied to (A3) and (A4) respectively, we obtain 

gp ~ - fmT,(6al6/ w) exp(ikr), Cn ~ Coexp(-x/8ar). 

(A5a,b) 

(A5c,d) 

Eq. (A5d) in the interior extension of a coastal trapped internal Kelvin wave. This case is in-

vestigated in Section 5a. Note that in general (A5b) implies (A5a) since Bar k << I. Condition 
(A5a) corresponds to forcing at wavenumbers and frequencies above the cutoff for long internal 
Rossby waves. 

For very low frequency forcing, i.e., for 

w << k/36al 6, w <<+Bar /3, (A6a,b) 

we obtain 
ffp ~ fm(Tolk/3) exp(ikr), go~ Coexp(iw8x/f38nl), (A6c,d) 

and the interior solution takes the form of an interior Sverdrup flow (A6c) and a westward 
propagating internal Rossby wave (A6d). This case is briefly discussed in Section 5b. 

The relevant expression (2.20b) for the forcing at!= 1 by the interior barotropic motion is 

<P•<o> = im(Tolw) (k + iQ.)-1
• (A7) 

In general <P,<o> is complex and the forced shelf circulation will have components both in phase 
and out of phase with the wind stress driving. For the purposes of calculating specific solutions 
in Section 5a for the shelf velocities, we employ the approximate expression 
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obtained with the conditions 
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<f>«co> · Tol.ru, 

I'>> (/3/2ru6)', lkl 0. 

[40, 2 

(A8a) 

(A8b,c) 

The condition (A8b) is restrictive, implying the period T' < 20 days. However, for r ;;;i= 
(/3/2ru6)2, with lkl 0, 

l<P,<o> I'~ (Toi ru)', 

i.e., q,,,o> has the same magcitude for the more ge~eral case (see Fig. 6 with kll = 0). 
The limit 

12 ;;;i: (J312ru6)2, k >> l, 
yields 

<,&,,o> ~ -i Toi ru, 

(A8d) 

(A9a,b) 

(A9c) 

and the response, while of the same magnitude as <P,<o> obtained in the limit (A8b,c), is out of 
phase with the wind stress by a factor of Tr/2. This behavior is evident in Figures 6 and 7 
with kll = 15.0. 

Condition (A8c) corresponds to a wind stress with x wavenumber k = 0, traveling along the 

coast. For l < 0 (equatorward traveling disturbance), <P,<o> < 0. For l > 0, <P~<o> > 0. Condition 
(A9b) corresponds to a wind stress traveling in the onshore-offshore directiQn. For both k > 0 

and k < 0, <P, co> < 0. 
· We also note that <P•<o> is independent of ru for small ru, i:e., the condition 

(Ill, lkl) << f3/2ru6 
yields 

¢>,<•> ~ im(T .SI /3), 

corresponding to a Sverdrup balance in the interior. 

(AlO) 

(Al 1) 

b. Shelf equations. We restrict our attention to cases where (A5a,b) are satisfied and use 
(A5c,d) for gp and gB. For oceanic parameters at 6° latitude off the west coast of South Ameri-
_ca (e.g., 8n' "" 100 km, /3' "" 2.3 X 10-,., cm -i sec-1), (A5a,b) are satisfied for periods T' < 
60 days. 

We seek a forced response on the shelf of the form (5.4). The equations for the shelf vari-
ables, obtained by utilizing (5.4) in (2. l 7a,b) are · 

4'EE - 8s -,4iE - l(CtJ8s)-• (J<f, - g) = i1"o(ru6s)-1, 

fo + asa-'g~ - Bn-•g + afl(ru8s)-'(J<f,- g) = -iafto(rulio)-1, 

where 

(A12a) 

(A12b) 

(A12c) 

As in Section 4, the shelf equations are forced by the alongshore component of the wind stress 
at the coast and by the interior baroclinic motion. 

With (5.4), the boundary conditions (2.19a,b), (2.20b), and (2.2la,b) are 

<f,=0, f(ll ru)g - ci = if T,I ru, at f = 0, (A13a,b) 

<fi E = q>. co>, at f = l, (A13c) 

g=gom, gP,(O) + gs,m = s-'Ct. at f = I. (A14a,b) 

With (A5a,b), except very near the equator, the interior baroclinic forced response is rela-
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tively small. This is reflected in the ratio of the interior forcing term ilgP<o> and the coastal wind 

stress term To, which appear in the forcing t; i.e., 

(AlS) 

which is 0(1>) and therefore small. Accordingly, with (ASa,b) we employ the approximation 

t=""To- (A16) 

(A17) 
Note that with (A6) 

which is 0(1) in general, indicating that for forcing at very low frequencies baroclinic interior 
motions may be as important as the alongshore coastal wind stress. · 

APPENDIX B 
Exponendal slope 

Analytical results to (A12a,b) are obtainable if an exponential slope (Buchwald and Adams, 
1968) is assumed: 

H = exp[(€ - 1)/ l>s]. (Bl) 

In this case, Hf/H = as-• is a constant. This depth profile, while still highly idealized, is not 
an unreasonable approximation to actual shelf-slope topography. 

We obtain approximate solutions under the assumption 

a,o> = H,IH2<0> << 1. 

We utilize the expansion 
a= a,o> exp(-f/Bo) + 0(aco>'), 

so that (A12a,b) may be written to 0(aco>') in the form 

(B2a) 

(B2b) 

'Pff - Ba -•ef>f - (II cvBn) (ftp - g) = 0, (B3a) 

Ku - Ba-•g = [a<o>exp(-f /l>s)] [-(fl / cvl>s) (ft$ - g) - Bs _,Kf + Ba-<lg], (B3b) 

where we define 
$ = tf,+ iToll. 

For simplicity, we adopt an /-plane analysis (/ = 1) here, and assumptions (ASa,b). 
The boundary conditions are 

q> = iToll, g- (cvl[)g f = iToll , at€= 0, 

'Pf= 'P•<o>, g = Co, Kf + Ba,-• g = 0, at€= 1, 

where ef>.,o, is given by (ASa) and Co is the coefficient from (ASd). 

(B3c) 

(B4a,b) 

(B4c,d,e) 

With (B2a), (B3a,b) are weakly coupled and may be solved, subject to (B4a-e), by perturba-

tion methods. We solve (B3a) for tp only, subject to (B4a,c), to obtain a first order approxima-
tion, ef> .. Similarly, we solve (B3b) for g only, subject to (B4b,e) to obtain a first order ap-
proximation, go. 

These are 
go= K. exp(-f/Ba), 

,l,o = exp(f /2Ba) (D.sinh-yf + iToZ-' cosh-yf), 

(BSa) 

(BSb) 



400 

where 
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Ko= i(To/[) [1 + (w// llR)]-1
, 

Do = [ -i(T0 //) { + Ila - 1coshy + ysinhy ) + ef,,<01 exp ( + Ila ) ] / 

{ + Ila_, sinhy + ycoshy ) , 

y = (l/w)lla-1 + (21la)-•. 

These solutions are written for I > 0. 

[40, 2 

(B5c) 

(B5d) 

(B5e) 

We substitute go into (B3a) to obtain a 0(1) correction ef,,. The O(a<o1) correction to g, aCO>g,, 
is obtained by substituting ef,o, go, and <f,, into (B3b). Finally, we utilize a<,1g, in (B3a) to obtain 
the O(a) correction a<o1tf>, to ef,. The corrections satisfy homogeneous boundary conditions at 
[ = 0 and { = 1. Additional corrections are O(a<o>') so that the approximate solutions are 

ef, =<Po+ 4>, +a<o1ef,. + O(a<o1"), (B6a) 

(B6b) 

The corrections may be obtained in a straightforward manner but their algebraic form is com-
plicated and they are omitted here. 

This perturbation procedure was verified by comparison with expansions for a<o> << 1 of 
exact solutions which may be obtained in the weak slope limit Ila >> 1. 

The coefficient Ko possesses a singularity for w/ I llR = -1 (see B6a), while Do is unbounded 
for 

tanhy = -21lny. (B7) 

The first singularity corresponds to wind forcing at the resonant frequency for free internal 
Kelvin waves, and (B7) corresponds to the excitation of the free shelf wave modes. These 
resonances occur only for / < 0. 

Substitution of (5 .5) into (2.18c,d) yields the shelf velocities: 

where 

v, = - 8H H,-, v,({) exp[-i(wt - ly)], 

v, = - llH H,-• vM) exp[-i(wt - /y)], 

vM) = <Pt + a-'gt, 

vM) = <Pt - g,. 

(BSa) 

(B8b) 

(B9a) 

(B9b) 

The solutions (B6a,b) simplify considerably if the limits 8R << I and 68 >> 1 are examined. 
These approximate solutions may be utilized in (B9a,b) to obtain approximate shelf velocities. 
For llB << 1, 

where 

For 6,. >> 1, 

v,({) -iTo(aw)-1 exp(- { / llR) + M([), 

v,([).,,. iT .w-1 exp(- flllR + M([), 

M({) = exp([/ 26a) {D o[(26n)-1 sinhy§ + ycoslls] 

+ iTol- 1 [(26n)-• coshy§ + ysinhy§l}. 

(BlOa) 

(Bl Ob) 

t'BlOc) 

(Blla) 
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v,(f) =" [,P,,o, + iTo (l 611)-1] exp[(f - I) / 26n] 

X [(26B)-'sinhyf + ycoshyfl/ [(26a)-'sinhy + ycoshy]. 
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(Bllb) 

We may also examine the behavior of the solutions for low frequency, keeping in mind the 
conditions (A5a,b) required to preserve their validity. In particular, for -y' =" l(w68 )-

1 >> 1, 
-y >> 6n-1, 

v.(g) =" -iTo(a[)-1 6n-1 exp(-6/6n), 

v,(t) =" iTof-1 Lo exp(-yf) + ,p,,o,y-1 exp[y(f- 1)], 
where 
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