YALE
PEABODY
MUSEUM

P.O.BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU

JOURNAL OF MARINE RESEARCH

The Journal of Marine Research, one of the oldest journals in American marine science, published
important peer-reviewed original research on a broad array of topics in physical, biological, and
chemical oceanography vital to the academic oceanographic community in the long and rich

tradition of the Sears Foundation for Marine Research at Yale University.

An archive of all issues from 1937 to 2021 (Volume 1-79) are available through EliScholar,
a digital platform for scholarly publishing provided by Yale University Library at
https://elischolar library.yale.edu/.

Requests for permission to clear rights for use of this content should be directed to the authors,
their estates, or other representatives. The Journal of Marine Research has no contact information
beyond the affiliations listed in the published articles. We ask that you provide attribution to the

Journal of Marine Research.

Yale University provides access to these materials for educational and research purposes only.
Copyright or other proprietary rights to content contained in this document may be held by
individuals or entities other than, or in addition to, Yale University. You are solely responsible for
determining the ownership of the copyright, and for obtaining permission for your intended use.
Yale University makes no warranty that your distribution, reproduction, or other use of these

materials will not infringe the rights of third parties.

This work is licensed under a Creative Commons Attribution-
‘ @ @ @ @ \ NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

SSSSSSSSSSSSSSSSS




Modeling salt-fingering structures

by Otto Zeman' and John L. Lumley?

ABSTRACT
Results are presented of calculations with a second-order turbulence model which has been
modified to evolve continuously from full turbulent convection to thermo-haline convection,
under appropriate circumstances. A three-layer system is simulated, with a salt-fingering inter-
face between two convectively-driven turbulent layers. Experimental results on the salt/heat
flux ratio are reproduced.

1. Introduction

Salt fingering belongs to a class of phenomena called double-diffusive convection
(Turner, 1974). Salt fingering may occur at the interface of a warm, salty layer of
water overlying a cooler, less salty layer. The saltier water stays on top because its
higher temperature more than compensates for the top-heavy distribution of salt,
and the overall density stratification is stable if molecular diffusion is neglected. If
the interface is disturbed, the difference between the molecular diffusivities of salt
and heat lead to a double-diffusive convective instability (Stern, 1960) manifested
by columns of rising (cold) and sinking (hot) water which approximately retain the
salt content of their initial elevation; motion in these columns is almost vertical with
an overall finger-like appearance. These salt-fingering structures have been gen-
erated in the laboratory (Turner, 1967; Linden, 1973; Griffiths and Ruddick, 1980)
and gained acceptance as a naturally occurring phenomenon, for example, on the
underside of the Mediterranean outflow (Williams, 1975). Excellent reviews of this
type of phenomenon are Turner (1974) and Sherman ez al. (1978).

There is mounting observational evidence of salt fingering and its importance in
mixing (very efficiently) salt and heat across density interfaces in the oceans. A
lucid account of the history of research on and the search for salt fingers is in
Kerr (1981).

The modeling effort lags behind the experiments. The stumbling block in success-
ful modeling is that a salt-fingering interface (hereafter SFI) cannot be modeled in
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isolation from its environment. The positive buoyant flux through the SFI causes
convective instability, maintaining fairly deep turbulent convective regions between
two neighboring SFI's. Hence the simplest autonomous salt-fingering structure con-
sists of one SFI sandwiched between two convective layers as in the two-layer
run-down experiments (Turner, 1967). Thus a model has to be capable of resolving
motions on the molecular scales within the SFI, as well as large convective (tur-
bulent) motions. In the oceans the Reynolds and Rayleigh numbers within the
convective layers are likely to be large, so that the disparity of scales is considerable.
Presently it is beyond the capacity of computers to compute the real-world salt-
fingering structures by direct simulation of the Navier Stokes’ equations. Piacsek and
Toomre (1980) did simulate directly two-dimensional salt fingers. They showed that
such salt fingers naturally occur if otherwise linear gradients of salt and temperature
are perturbed. They were, however, unable to provide suitable boundary conditions
to maintain the salt-fingering structure in a statistically steady state. '
Lumley (1980) suggested that a second-order model, if suitably modified, should
be able to simulate the statistical properties of the SFI-convective layer system. He
argued that the salt fingering can be viewed as a stochastic process with the prevail-
ing motions in the vertical direction. Since the second-order technique proved to
be successful in simulating convectively mixed layers (Zeman and Lumley, 1976,
1979; Lumley et al., 1978) one should hope to model the average fluxes, variances
and mean profiles of heat and salt if the model equations are made to behave
properly in the limit of one-dimensional (1D) motion. This paper reports on the
progress in developing such a model. We do not intend here to make a fundamental
contribution to the understanding of SFI-convective layer systems; we feel that these
systems are already in most respects well understood. Rather, we wish to present a
flexible, realistic, inexpensive computational model for such systems. Preliminary
results presented in Sections 4, 5 show that the behavior of these systems is realis-
tically predicted. The following two sections deal with development of the model.

2. Salt fingers as a one-dimensional stochastic motion

Ordinary turbulence as found in nature is typically very nearly isotropic in the
sense that the departure of the turbulent stress tensor u;u, from its isotropic value
1/3¢%5,; is small (the quantity g® is twice the kinetic energy of the fluctuating
motion)._ThE degree of anisotropy is measured by the nondimensional quantity
bij = wiu;/q* —1/38;. Inertial effects in fully developed large Reynolds number
turbulence (far enough from the solid boundaries) do not allow | bij |max to exceed
0.15 or so, even if buoyancy forces are not negligible. Most second-order models
perform well in this range. The smallness of b;; is a convenient property since the
modeled terms that are functionals of b;; can be truncated at first order. It turns out,
that in rare situations when turbulence becomes very anisotropic, the usual second-
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order model equations yield unphysical results (Zeman and Lumley, 1979). If,
however, the model equations are made to satisfy the so-called realizability condi-
tions, the unphysical behavior (nonrealizability) can be removed (Schumann, 1977;
Lumley, 1979).

One can consider the motion in an SFI as one of the extreme limits of three-
dimensional turbulence. The motion is organized in the vertical direction but other-
wise it is likely to be random in space and time. In the ocean the Reynolds number
in an SFI is not necessarily small, while in the adjacent convective layers it is
definitely large. The Rayleigh numbers (in the notation of Turner, 1974)

R, = gBASh®/kev
R, = gaAOh3kev

(corresponding to an SFI of thickness # and concentration and temperature dif-
ferences AS and A® across the layer) are expected to be much larger than one.
Overall, the SFI with the adjacent convective layers can be viewed as a stochastic
process where within the SFI the motion tends to the one-dimensional limit and in
the adjacent convective layers it is fully turbulent. Our task then, is to form con-
servation equations for the variances and covariances of the variables involved in
the process which satisfy the realizability conditions in the 1D limit, as well as in
various other limits associated with small Reynolds and Peclet numbers. Such a
(realizable) set should be capable of simulating ensemble-averaged second-order
moments in salt-fingering structures.

a. Second moment conservation equations. The second moment (one point) equa-
tions which statistically describe the salt-finger process are derived from the govern-
ing equations of motion involving two (nonpassive) scalars, salt and temperature. In
the Boussinesq approximation, we obtain the following set of (otherwise exact)
equations applicable to the horizontally homogeneous field in the mean (Turner,
1974; Lumley, 1980):

i IL,, ety 2€,
u? =— 2p.ui/po — w2w) . — 2vuy juy
U2 = w2 = 2g(a0—w —,357) —zm/Po _(Tv_a),z —2vw W
II.; 2€;33
T, €30

ow = —w20 , + g(cb? —Bs0) —p .8/ po —(OW?) . —(v + Ke)O W ;
5w = —wS,, + 8(050 —B5%) —D,e5/Po —(SWD),. —( + KIS, W5
Hsa Eas
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6 =—20w 0,, —(0°w),. —2k0e0,/0,;} € ,

Ei = _25; S,z —(W)’z _2’(35,7,!}55 ’
58 = —0w S,, —sw0,, —(s6w),, —(ko + K,)s,,0,; . 1)
€50
0 =—(OW),;; S =—(W),s- )

Here the vertical axis x; = z is oriented upwards, @, S are mean temperature and
salt concentration, small letters mdlcate fluctuating parts with zero mean; u,> = w?
is the vertical velocity variance, 0w, sw are total vertical fluxes of temperature and
salt; i.e., in the limit of molecular motion these are respectively —k¢0,, and —«,S,,.
Since the stochastic motion is axisymmetric with respect to the x; axis, the horizon-

tal variances u,?, u,® are equal. The equations in (1) contain unknown quantities.
These are transport terms involving the third-order moments, pressure terms (la-
beled IT) which are correlations of pressure gradients with other quantities, and
molecular terms (labeled €) which are the destruction rates of correlations by molec-
ular smearing; in particular, € is the dissipation rate of the kinetic energy ?/2' €,
€ and €, are respectively destruction rates of the temperature variance 62, the
salinity variance s? and the covariance sf. The molecular transport terms involving
the gradients of variances are either negligible (on account of large Reynolds num-
bers) or unimportant. These terms were deleted from (1) and formally absorbed in
the third moment terms. Once the unknown terms in (1) are established along with
the appropriate boundary and initial conditions the set of equations (1) and (2) can
be solved. Our principal objective is to determine the constitutive relationships
between the principal variables, the scalar fluxes 6w, sw, and the respective gradients
in mean quantities @,;, S,.. The remaining variables in (1) are not presently ac-
cessible to measurements and in that sense they are of secondary importance.

b. Governing equations in the one-dimensional limit. Lumley (1980) suggested that
since the motion within the core of the SFI is one-dimensional, the correlation
between the fluctuating 6, s and w should be nearly perfect just as in linear stability
problems. This does not contradict Stern (1968), who showed that the correlation
coefficient of the 6 and s gradients was not likely to be large. Typical 6 and s
profiles in an SFI give a correlation coefficient for 6 and s of roughly 0.9, while that
for the gradients can easily be of order 0.2. Of course, as the correlation coefficient
between 6 and s increases to 1.0, that between the gradients must also. Furthermore
in strictly one-dimensional motion the terms involving gradients with respect to the
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axis of the motion must vanish. Hence the set of equations (1) reduce to (Lumley,
1980)

w?: = 2g(abw —Bs_ﬁ) —2€
0w = —w0,, + g(ad® —;835) —(1 + ko/v)OW/T ,

sw =-—w2S,. + g(ash —Bs?) —(1 + k,/v)sw/r,

(3)
= 20w 0,, —2(ke/v)0? /7T,

$ =—25wS,, —2[(k,/v)]s%/7,

§0 = —6wS,, —sw 0,, —[(ke + k,)/v]s0/T .

Here, € = v(w,;w,),j = 1,2, and 7 = g*/€ is the dissipative time scale. For €, €;,,
€s, €, and €, we used the perfect correlation assumptions (Lumley, 1980)

0,w,; = (e/v) (6°/w>)2, 0,0, = (¢/v) 6*/w* (j = 1,2),

and similar relations when 6 is replaced by s. With the assumption of stationarity
Lumley (1980) showed (3) to be reducible to the criterion for salt fingering obtained
from the linear stability theory (Turner, 1974)

(BS,./ ks —®,./Ke) (8/V) W2/ w,w,;)? = 1.0 , )

where ks/k;, the ratio of heat to salt diffusivities, is about 100.

The assumption of perfect correlation would introduce a numerical error in the
critical Rayleigh number applied to real salt fingers, since (as disussed above)
the gradients there are not perfectly correlated. The error need not concern us,
however, since we do not use this criterion in the development of our model. Our
purpose in deriving it here is simply to show that the second moment equations
contain the linear stability theory, if taken to the one-dimensional limit.

The development of the models for the various unknown terms in Eq. (1) can be
found in Zeman and Lumley (1981, 1982). These models are extensions of the
models used for convective turbulence to assure proper behavior in the one- and
two-dimensional limits and the limit of perfect correlation. The modeled flow, of
course, goes toward these limits, but does not arrive there. All that need concern
the oceanographically oriented reader is the recognition that the basic model has
been thoroughly explored and is known to work well in convective situations, and
that the modifications necessary to include the salt-fingering region follow directly
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from the simple physical ideas presented. The reader interested in turbulence
modeling will find some points of interest in the way in which this modification is
carried out.

3. Scaling of salt-fingering processes

It is expected that at large enough Rayleigh numbers, R,, and R,, the salt-
fingering structure will evolve into a self-similar, statistically steady state and it
will be convenient to present the numerical results in a normalized form. The
appropriate similarity parameters are not, however, obvious if, in particular, the
molecular properties are taken into account. We need to define four fundamental
scaling quantities: w., ©., S. the characteristic scales of velocity, temperature and
salinity fluctuations within the SFI, and the length scale d associated with the SFI
(the spacing of salt fingers). It is apparent that 0., S. are proportional to A®, AS the
differences across the SFI, where 0,,=A0®/A and S,.=AS/h (h is the SFI depth).

In order to estimate w. let us consider a tube-like flow of diameter d. The
descending element of fluid of thickness AZ retains its excess density due to the
salinity excess AS and is acted upon by the downward force

(1/4)md*AZp,BAS .

This force is counteracted by the frictional force wdAZ7,, where 7, is the shear
stress between the finger and adjacent fluid—clearly 7, = vw./d. Equating the
driving and the frictional forces we obtain, apart from the unknown proportionality
constants

w. = gBAd?/4v . (5

The above equation coincides with Turner’s (1979) equation (8.3.14) if in his
equation the flux ratio r = afw/Bsw is set at 1/2. Turner obtained w. by con-
sidering linearized equations for w, 6, s with prescribed square-shaped planforms of
salt fingers. Substituting in (5) for d from Turner (1974, 1979) we finally have

we = (1/2)hNo/R\/ P, (6)

where R = aA®/BAS is the salt finger stability parameter. Hence, for a given tem-
perature gradient A®/h, w. is linearly proportional to the SFI depth and as expected
decreases with the stability ratio. Concerning ©, S. it is clear that we can safely set
S« = AS because salt is virtually nondiffusive and within the SFI, fluid elements re-
tain their salt concentration. The analogous relationship ©.xA® still holds, although
0. (6?2 is likely to be small compared with A® because Ko»Kj.

As suggested by Turner (1967) the salt flux sw is related to AS by the free con-
vection relationship

Bsw = (gk,?/v)/3(BAS)/ ,
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Linden (1973) and Stern (1976) pointed out that the salt diffusivity , is not the
appropriate parameter and as verified later (Schmitt, 1979a; Griffiths and Ruddick,
1980) a more correct scaling law is

Bsw. = A(gke)/*(BAS)"* , 0

with the coefficient of proportionality A(R) being on the order of 10—* and de-
creasing with the stability ratio R. We note that with (7) the velocity scale w. is
proportional to (8AS)'/? and the length scale d « (8AS)—*/3 (Turner, 1979).

An important parameter and indicator of salt fingering is the density flux ratio
r = abw/Bsw. Both 6w and sw are negative (downward) and it is the salt flux which
contributes to the kinetic energy production while the heat flux destroys it (see
Eq. (1)). Hence, the condition for the existence of salt fingers is r < 1. We shall
discuss this parameter in detail in the next section.

Within the convective layers the velocity scale is expected to be different from w..
In analogy with the buoyancy-driven mixed layers we define the convective scale:

Wo = (—gpwhe/po)/*

where A, is the convective layer depth and pw = p,Bsw(1 —r) is the net density flux
at the interface between the convective and salt-finger layers. With (7) and r =
const < 1 we obtain

Wo & h1/3(BAS)*/?
and the velocity scale ratio w./w. is
Wc/w‘ 28 (hc/h)l/SPrl/g Rsl/g . (8)

Thus the intensity of convective turbulence depends on the salinity Rayleigh num-
ber, which is guaranteed to be large in nature, and on the depth #.. It is not obvious
whether the ratio 4,/A is controlled by the salt-fingering process or whether it de-
pends on the initial (undisturbed) structure of ©® and S. To obtain actual numbers
let us use the ocean data of Tait and Howe (1971):

h=17m, h, =20 m, AS = 0.03%, and A® = 0.02°C.

This gives R, = 3.6 X 10** and w,/w. = 35. Also by (7) we have w. = 0.03 cms—?
and w, = 1 cms—. These are reasonable numbers although the SFI depth 2 = 7 m
in the Tait-Howe observations is rather large; perhaps due to vertical distortions of
the SFI by waves, currents or even by the induced convection in the adjacent layers.
Williams’ (1975) observations suggest much smaller 4, on the order of centimeters.

4. Simulation of one-dimensional SFI
Observations suggest that within the core of the SFI the motions are very nearly
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one-dimensional and it is therefore sensible to first simulate a strictly one-dimen-
sional SFI. From the discussion in 2b, it is evident that this should give essentially
the linear stability result. The set of model equations is then greatly simplified: the
mean gradients ©,,, S,. are kept constant and the third-order terms set in (1) are
neglected. With the appropriate closure relations (Zeman and Lumley, 1981, 1982)
the equations in (1) can be integrated in time. The major purpose of this simulation
was to verify the internal consistency of the model, to determine the model free
coefficients by comparison with experimental data, and to demonstrate that the
model will evolve into a salt-fingering regime regardless of the nature of the initial
(perturbation) conditions.

The background conditions were specified by fixing the temperature gradient 6,,
and the stability parameter R = a®,./fS,.. Initially a small isotropy perturbation
q% = 3w?/(1 + 3b;,) was introduced with a varying level of anisotropy (in the
range between an isotropic (3D) perturbation b;; = 0 and a 1D perturbation b, =
2/3). The initial value of the time scale 7 = F/e was determined by the thermal
Brunt-Viiséla frequency Ny, i.e.:

TNo =10 .

The initial energy level g%, was set by the condition that the initial (total) viscosity
is essentially molecular so that the Reynolds number R, = (vw?/2v), is on the order
of unity. Initial conditions for the remaining variables in (1) turned out to be un-
important as long as the decay scales 79 and 7, were of the same order as, or larger
than, 7. The molecular properties were specified as follows: for the heat-salt case
P, =v/ke = 7 and the diffusivity ratio o- = ke/x, = 100; for the salt-sugar case P, =
700 and o = 3. The water kinematic viscosity was taken to be v = 0.0135 cm?s—™.

The one-dimensional salt-fingering process is unsteady—the model equations are
linear and kinetic energy grows exponentially. There is, however, a self-similar
asymptotic state in the sense that all quantities grow in proportion to each other; in
particular, the flux ratio r asymptotes to a constant value independent of the initial
condition. Needless to say, all the variables attain the exact 1D limit as revealed by
correlation coefficients and time scale ratios, and demanded by Eq. (3). Thus the
important property of the model is that regardless of the details of the initial per-
turbations, the model gravitates toward the salt-fingering state if the background
stratifications of salt and temperature are favorable.

Figure 1 shows the fundamental results of the predicted dependence r vs. R for
two cases known in the literature; the heat-salt case in Figure 1a and the salt-sugar
case in Figure 1b. It turned out that the calculated r was sensitive only to the value
of a constant associated with the Brunt-Viisild term in the dissipation equation.
The value for the heat-salt case was chosen to match the Turner (1967) average
experimental value of r = 0.56 for R > 2.0. The functional dependence of this con-
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Figure 1. Comparison with data of the computed flux ratio r as a function of the stability
parameter R = «0,./BS,.. Solid curves are 1D model calculations; (a) heat-salt case: O, ®,
X are data points of Turner (1967); [0 Schmitt (1979b); (b) salt-sugar case: (O, Stern and
Turner (1969); @, Lambert and Demenkow (1972).

stant on P, suggested in Zeman and Lumley (1981, 1982) is only tentative; it was
needed to obtain reasonable values of the flux ratio for the salt-sugar case. It is
worth noting that recent salt-finger results of Schmitt (1979b) also shown in Figure
1a were obtained without external stirring of the adjacent, convective layers. Stirring
was employed by Turner (1967) and Linden (1973). Schmitt’s data show a con-
tinued decreasing trend with R, while Turner’s data level off for R > 2.

In real-world salt-fingering structures, one-dimensional motions are possible only
in the core of the SFI. The excess of the kinetic energy generated in the core is
likely to be exported toward the edges of the SFI where the energy can be more
efficiently dissipated by interactions with the convective turbulence. This export of
q* can be effected only through the transport terms g*w. The export mechanism is
evident in the two-layer simulations presented in the next section.

5. Simulation of the two-layer experiment
The simplest autonomous salt-fingering flow is the two-layer run-down experi-
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ment described by Turner (1967). Steep gradients are first generated by mechanically
stirring a linearly stratified column of salty water above and below the mid-height.
Thus the flow develops into an SFI sandwiched between two premixed convective
layers. The salt and heat fluxes 6w and sw are downward and since the flux ratio
Bsw/a@w = 1/r is larger than unity, the density difference between the upper and
the lower layers increases in time and the experiment runs down. Although the true
top and bottom boundary conditions are not of the same type (free surface vs. solid
wall) it is reasonable to assume the flow to be symmetric about the middle of the
salt-fingering layer and simulate only half of the flow. The appropriate set of equa-
tions for the two-layer simulations are (1), (2), and the closure relations, and the
transport model presented in Zeman and Lumley (1981, 1982). The boundary
conditions are specified as follows:

(a) at z = D, the plane of symmetry @ = A®,/2, S = AS,/2 with A®, AS, being
prescribed initial differences between the upper and the lower layers; all second-
order quantities (including €) have zero gradients 9/dz, the third-order (transport)
terms are zero;

(b) at the lower boundary z = 0 we specified adiabatic, free surface conditions

0,=S.—tw=sw-10,
and

(g%, w?, 52, 6%,50,€),=0 .

Setting up appropriate initial conditions caused some difficulty. We were unable to
satisfactorily simulate the mechanism of stirring employed in the Turner experiment.
Rather we assumed that both temperature and salt were already premixed so that
they were constant throughout the bottom layer with steep gradients in S and @
near z = D. For convenience we chose the following functions

0(2) = (A®,/2)exp{2(z/h, —D/h.)}
S(z) = B(2)AS,/Ab, ,

where A, is the depth of the steep-gradient region. Hence A®,, AS, and A, define the
scaling parameters of the problem. The initial stability ratio R, = a®,/BAS, was
usually set at 1.5 to 2; values smaller than 1.5 resulted in intense mixing and a
rapid decay of the SFI. Similar problems were encountered in the actual experiment
(Turner, 1967). The depth A, was typically on the order of centimeters and the
maximum gradient 0 (z = D) = A®,/h, was limited by numerical stability to values
below 0.01°C/cm. The coefficients in the transport model were given values similar
to those in Zeman and Lumley (1976, 1979). Although the results are not sensitive
to changes in the constants within 20% or so, the transport terms are indispensable
for maintaining convective turbulence.

As in the previous simulations we deliberately set the initial conditions for the
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second moments far from the salt-fingering state. A small, almost isotropic perturba-
tion g2 = w.,?* was introduced with bs; = 1/15. The decay time scales 7 = 79 = 7,
were set proportional to 1/Ne, = (eA®,/BAS)*/* and all other quantities were set
approximately to satisfy their respective conservation equations. The initial field
represents, in effect, a weak 3D turbulence independent of molecular properties
of the fluid.

Unless otherwise noted we simulated the salt-heat case with P, = 7, o = 100
and h,/D = 0.1.

To simulate mechanical stirring we introduced virtual sources of kinetic energy
through virtual fluxes g?w placed in-between the neighboring grid levels. These
fluxes were Gaussian distributed around the mid-height of the convective layer and
on the order of w. . As the numerical experiment was running down due to ever-
increasing stability the virtual fluxes were switched on for a short time to stimulate
the convective turbulence without disturbing the formed salt-fingering layer.

Typical results of the simulations are shown in Figures 2 through 6 where the
lower half of a two-layer (symmetric) experiment is displayed. The evolution of the
anisotropy coefficient b;; in Figure 2 best illustrates the formation of salt fingers. The
numbers on each curve designate time in multiples of the SFI time scale 7,y = ho/We,.
We observe that after about ¢ = 6r7,, the initial, almost isotropic, layer evolves into
two distinct regions: a thin layer (symmetric about z = D) where the motion is
vertical (b;; = 2/3) and the deep underlying layer where anisotropy is fairly small
and corresponds to typical convective turbulence (b;; = 1/6). The thin 1D layer has
all the attributes of the salt-fingering process: the flux ratio r is smaller than unity
(typically 0.5-0.6), the salt flux sw is convective and scales on (sw). with the con-
stant A, = Bsw/(gKe)/*(BAS,)*/> = 0.28-0.05. Schmitt (1979b) observed A in the
range 0.04 to 0.16, decreasing with stability. The erratic behavior of sw in the vicin-
ity of the SFI shown in Figure 3 indicates that the flow is not near equilibrium. Salt,
and consequently also heat, are being redistributed as the SFI evolves. Large fluc-
tuations with height of sw are caused by a poor match between the prescribed
initial profiles of S (and ®) and those corresponding to the salt-fingering structure.
The way S and © are redistributed is displayed in Figures 5 and 6. We note that the
S profile develops an inflection point just below z = D. The gradient S, tends to de-
crease within SFI due to the double-diffusive convection; this necessitates a steeper
gradient just below the SFI and the inflection point. ™

Figure 3 shows the development of the kinetic energy g*. We note that the profile
of g7 has recognizable features of a convective structure with the overlying SFI. The
convective activity is not as intense as anticipated but this may be due to the absence
of a more realistic transport model. As mentioned earlier, off-diagonal terms in the
transport coefficient matrix (Zeman and Lumley, 1976) have been neglected in our
model. The increase of q— between times 97, and 127, is due to the enhancement
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Figure 2. Computed profiles of the anisotropy tensor component bz = w?/q* —1/3 during the

evolution of the two layer calculation. Numbers on the profiles mark time in multiples of
the SFI time scale 7.y = ho/ W

of convection by “stirring.” In the previous section we suggested the so-called
export mechanism: the need to export the excessive energy produced by the salt-
finger convection away from the SFI core. The local maximum of g at =D
indicates that this mechanism is at work.

6. Conclusions

Although our ultimate goal is to apply the present model to oceanic multilayer
flow structures, it was a necessary step to test the model on this simple two-layer
experiment. The fact that the model is capable of maintaining a quasi-equilibrium
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Figure 3. Computed profiles of the kinetic energy g°. The scale g*/we. is shown on the top;
same as Figure 2.

salt-fingering process not constrained by unphysical boundary conditions or by
small amplitude (linear) assumptions is, we feel, a major step in the direction of
modeling the real-world oceanic salt fingers. The model contains the physical
mechanisms that are essential to forming a salt-fingering regime.

As concerns future work it is desirable to determine experimentally the actual
Reynolds number dependence of the return-to-isotropy function. The presently used
transition function (Zeman and Lumley, 1981, 1982) reflects experimental evidence
that mechanisms characteristic for large Re turbulence arise suddenly (Chung and
Adrian, 1979). Conceivably this effect has to do with the criticality of the Reynolds
number. An analogy may be drawn between the viscous sublayer (in a turbulent
boundary layer) and the salt-fingering interface. The buffer zone may be likened to
the salt-finger-convective interface. The various functions that we use to switch off
and on the 1D or 3D modes (Zeman and Lumley, 1981, 1982) are not important
for the SFI itself; however, they do affect the buffer zone between the salt fingering
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Figure 4. Computed profiles of the salt flux sw; same as in Figure 2.

and convective layers. Not presently accessible to measurements, these functions
may have to be inferred from direct numerical simulations of the Navier-Stokes’
equations.
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Figure 5. Computed profiles of the mean temperature ®; same is in Figure 2.
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Figure 6. Computed profiles of the mean salt concentration §; same as in Figure 2:
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