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On the movements of deep mesoscale eddies 
in the North Atlantic 

by Doron Nofl-• 2 

ABSTRACT 
A simplified three layer model is considered in order to examine the movements of deep 

mesoscale eddies such as the isolated Mediterranean eddies observed off the Bahamas. These 
anticyclonic eddies are found in the permanent thermocline more than 6000 km away from 
their parent water mass and are characterized by a lens-like cross section. 

The model consists of two main layers, representing the upper and lower layer of the ocean, 
and an intermediate lens-like layer representing the eddy. It incorporates zonal eddy movements 
resulting from advection by uniform flows in both the upper and lower layer, and a .B-induced 
westward translation. The movement of the eddy is assumed to be steady, frictionless and 
nondiffusive, but the motion is not constrained to be quasi-geostrophic. The combined .B-induced 
movement and advection by the flows in the upper and lower layers is calculated analytically 
using the nonlinear equations of motion in an integrated form and a simple perturbation 
scheme. 

It is found that the advection is a linear function of the different speeds within the two main 
layers, and is independent of the eddy's intensity, size and volume. The .B-induced westward 
movement depends on the eddy's intensity, size and volume, and is rather slow for most deep 
anticyclonic eddies. For the Mediterranean eddies, the calculated .B-induced movement is 
approximately 65 m per day. With such a slow self-propelled drift the eddies cannot cross the 
whole Atlantic Ocean because this would require a lifetime of over 250 years which is, 

obviously, impossible. 
The presence of an advective flow of a few centimeters per second in either the lower or the 

upper layer can reduce the required lifetime to about 5-10 years. On this basis, it is suggested 
that the Mediterranean eddies are advected during most of their journey from the eastern to 

the western Atlantic. 

1. Introduction 
This paper has been motivated by the observations of McDowell and Rossby 

(1978) who identified an eddy containing Mediterranean water about 6000 km to 
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Figure 1. Trajectories of three SOF AR floats embedded in the Meddy [reproduced from 
. McDowell and Rossby (1978)]. The floats were launched in October 1976 during RV Oceanus 

Cruise 15. Three-digit numbers adjacent to daily float positions denote the day of the year . 
. The rectangle within the small scale physiographic inset illustrates the location of the survey 
relative to the Bahamas. 

the west of its parent water mass. The Mediterranean eddy (hereafter, referred to as 
'!Meddy") consisted of an anticyclonic lens with a radius of~ 100 km and a max-
imum central depth of ~ 450 m (see Figs. 1 and 2). It had been observed in the 
permanent thermocline, and its orbital velocities reached a maximum of 30 cm/sec. 
' On the basis of water properties analysis, McDowell and Rossby (1978) con-
cluded that the Meddy originated from the eastern Atlantic and was not related to 
the western part of the Mediterranean tongue which extends to large distances from 
the Straits of Gibraltar. The fact that the eddy was found more than 6000 km to 
the west of its original water mass raises the fundamental question regarding the 
mechanisms responsible for its movement within the ocean. McDowell and Rossby 
(1978) [hereafter, referred to as MR] suggested the interesting possibility that the 
f3 effect, which usually causes westward movement of mesoscale eddies, could be 
responsible for the existence of the eddy off the Bahamas. Because of the impor-
tance of such a process to the large-scale salt transport, it is of interest to examine 
the movements of isolated lens-like eddies in the deep ocean. 
' To do this, we shall consider a simplified model of an isolated anticyclonic eddy 

embedded in the permanent thermocline. We shall focus our attention on move-
ments resulting from both advection and (3-induced translation and show that as 

' ' expected, the presence of (3 causes a westward drift of the entire eddy. We shall see, 
however, that the (3-induced drift alone is so slow that it cannot be responsible for 
the existence of the eddy off the Bahama Islands. It will be suggested that advection, 
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Figure 2. Temperature/ salinity curves through the Meddy and the main thermocline for 
selected stations occupied during RV Oceanus Cruise 15 [reproduced from McDowell and 
Rossby (1978)]. The distance of each profile from the center of the Meddy is denoted by 
/:;R. Each successive profile has been displaced by 0.25 per mil. 

rather than self-propulsion due to /3, is the probable mechanism responsible for 
large scale movements of isolated eddies in the deep ocean. 

The dynamics of mesoscale eddies received a considerable amount of attention 
during the last two decades. In particular, there have been a large number of both 
analytical and numerical investigations of the /3-induced movements and the decay 
of mesoscale eddies. Among these studies are those of Warren (1967), Stem (1975), 
Firing and Beardsley (1976), Larichev and Reznik (1976), and Flierl (1977). These 
investigations are informative, but they do not deal directly with the movement of 
deep isolated eddies which is addressed in this study. The same can be said of Flierl 
(1979), Mied and Lindemann (1979), McWilliams and Flierl (1979), Flierl et al. 
(1980), and Nof (1981). None of these investigations have dealt specifically with a 
deep lens-like eddy which is subject to both the influence of /3 and the influence of 
advective flows in the environment. 

To model the movements of the eddy, we shall consider a mean field consisting 
of two homogeneous layers with slightly different densities. Each layer contains a 
uniform flow which is directed eastward or westward. A third isolated layer which 
represents the eddy itself is embedded in the flow, underneath the upper layer and 
above the lower as shown in Figure 3. We shall assume that all motions are friction-
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Figure 3. Schematic diagram of the model under study. Each of the two main layers [whose 
densities are (p - 1::>p,) and (p + 6 p2)] contain uniform zonal flow and is infinitely deep. The 
vertical displacement of the main interface 7J(y) is measured downward from the origin 
[7)(0) = 0]. The vertical displacements of the eddy's upper and lower interfaces [{,( x,y) and 
g,(x,y)] are measured upward and downward from the main interface. 

less and nondiffusive and that the eddy translates at a constant speed without 
changing its shape and structure with time. The translation consists of two compo-
nents, /3-induced drift and advection by the ambient fluids. We shall see that 
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although the problem is nonlinear in nature, there is no nonlinear interaction 
between the advection and the /3-induced movement so that the total translation is 
simply given by the sum of the two movements. 

The governing equations are considered in a coordinate system moving with the 
eddy itself because it turns out that with such a coordinate system the translation 
speed can be easily calculated by integrating the governing equations over the whole 
eddy. These integrated equations relate the total translation of the eddy to the 
uniform flows in the upper and lower layers, and to the eddy's intensity, its size and 
volume. The structure of the integrated equations is simplified using a perturbation 
scheme in e = /3l / f0 , the ratio between the variation of the Coriolis parameter across 
the eddy to the Coriolis parameter in the center. Application of this perturbation 
scheme indicates that computation of the zonal movements does not require knowl-
edge of the exact eddy's structure on a /3 plane. Rather, it is sufficient to know the 
structure that the eddy would have on an / plane (/3 = 0). 

For simplicity, it will be assumed that the Meddy's orbital velocity corresponds 
approximately to a parabolic distribution. Using this velocity profile and the per-
turbed integrated equations, the total zonal movement (consisting of both advection 
and /3-induced movement) is expressed in terms of the eddy's orbital speed, the 
densities in the field, the eddy's depth and the speeds in the upper and lower layers. 

The results of the mathematical model are then combined with the data presented 
by MR to give the /3-induced drift, and the advection by the two environmental 
layers. The analysis is concluded with an examination of the calculated translation 
speeds and the corresponding eddy's lifetime. This analysis reveals that the /3-
induced drift is so slow that an eddy with a lifetime of several years cannot translate 
across the whole Atlantic Ocean unless it is advected by local currents. 

This paper is organized as follows: the formulation of the problem is presented 
in Section 2 and the perturbation analysis in Section 3. Section 4 contains the 
applicability of the model to the Meddy and Section 5 summarizes this study. 

2. Formulation 
As an idealized formulation of the problem, consider the three-layer model shown 

in Figure 3. The intermediate lens-like layer, whose density is p, represents the 
eddy itself and translates zonally at speed C (positive for eastward movement and 
negative for westward). The upper layer [whose density (p -l:::,.p1) is slightly lower 
than that of the eddy] moves zonally at a constant uniform speed U 1, and the lower 
layer (p -l:::,.p1) contains a uniform flow U2. These two layers are of infinite depth 
and represent the movements above and below the permanent thermocline. 

We shall consider a coordinate system moving with the eddy itself at speed C. 
The origin of this coordinate system is located at the center of the eddy. The x and 
y axes are directed eastward and northward (respectively), and the system rotates 
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with angular velocity ½f about the vertical axis. It is assumed that the translation is 
steady and that the eddy shape does not change much in time so that in our moving 
coordinate system the motion is steady. This assumption of negligible changes in 
time is plausible, but it is not a priori obvious under what conditions it is an ade-
quate approximation. Using scaling arguments it will be shown later that· the 
assumption is adequate as long as ((3l/ f 0)

2 < < R 0 , where R 0 is the Ross by number, 
f0 the Coriolis parameter at y = 0, f3 the linear variation of the Coriolis parameter 
with latitude and l is the eddy length scale defined as half the distance between the 
northernmost and southernmost edges. 

We shall focus our attention on frictionless and non diffusive movements and 
assume that all motions are hydrostatic. For hydrostatic motions the pressure in 
each layer is a linear function of z so that the horizontal pressure gradients depend 
on x and y alone. Therefore, the horizontal velocity components in each layer are 
also independent of z. 

The governing equations for our zonally moving coordinate system are obtained 
by applying the transformations x. x + Ct and Y• y to the time-dependent 
equations in a stationary coordinate system (x.,y.). For the conditions mentioned 
above, the equations governing the movements of the eddy are found to be: 

au au 1 aP 
u -- + v-- -Uo + {3y)v = - - - · (2.1) ax ay p ax 

av av 1 aP 
U ax + v ay + (f o + {3y) (u + C) = - p ay (2.2) 

a 
ax 

a 
(hu) +ay (hv) = 0 , (2.3) 

where u and v are the depth independent [u = u(x,y), v = v(x,y)] horizontal velocity 
components in the x and y direction, h(x,y) is the total eddy's depth and P is the 
deviation of the hydrostatic pressure from the hydrostatic pressure associated with 
a state of rest. Note that the term (f0 + f3y)C on the left-hand side of 2.2 results 
from the fact that in a moving coordinate system there is an additional force acting 
on all fluid parcels. 

It is further assumed that the eddy is thin and shallow (i.e., h < < l) so that the 
movement of the eddy through the environment has a negligible effect on the flow 
in both the upper and lower layer. This negligible effect results from the fact that 
the ratio between the eddy depth to the depth of the environmental layers vanishes. 
For these conditions, potential vorticity conservation for the upper and lower layer 
implies that the influence of the eddy movement is vanishingly small. In this respect, 
the behavior of the upper and lower layer is equivalent to the hydrostatic flow of a 
homogeneous infinitely deep fluid over a bump whose height is small; under such 
conditions the effect of the bump is negligible [see e.g., Ingersoll (1969), eq. (27) 
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with ho 0 since H oo ]. Thus, the shallow eddy moves through the environment 
as a "blade" leaving the flow in the upper and lower layer unaltered. It is important 
to note, however, that the situation would have been quite different had the upper 
and lower layers not been infinitely deep. With a finite upper and lower layer there 
will probably be important interactions between the eddy and its surroundings so 
that the subsequent analysis may not be applicable. 

Within the eddy, at z = 0, the deviation of the hydrostatic pressure from the 
hydrostatic pressure associated with a state of rest is: 

(2.4) 

where Pu is the pressure deviation in the upper layer, 71(y) is the vertical displace-
ment of the main interface [measured downward from the origin (i.e., 71(0) = 0)) 
and g1(x,y) is the vertical displacement of the eddy upper interface [measured up-
ward from the main interface (see Fig. 3)). The flow in both the upper and the 
lower layer is in geostrophic balance so that for a Boussinesq fluid: 

<Jo+ /3y)U1 = - -1
- a!., 

p uy 

and 

g ...!!]_ 
ay 

(2.5) 

(2.6) 

where U1 > 0 and U2 > 0 for an eastward flow in both layers, and U1 < 0 and 
U2 < 0 for a westward flow. Note that (2.6) was obtained by expressing the pressure 
in the lower layer in terms of 71(y) and the velocity in the upper layer, and that 
U

1 
and U2 are the absolute velocities (relative to a fixed coordinate system). Eqs. 

(2.5-2.6) do not involve the translation speed C because in a moving coordinate 
system its effect on a zonal flow is cancelled out. 

Since the presence of the eddy does not alter the flow in the upper and lower 
layers, it does not introduce any pressure deviations in the lower layer so that: 

- 6.p 1 g 2 - g 1 ---;;:-- > 
u p2 

(2.7) 

where gzex,y) is the vertical displacement of the eddy's lower interface [measured 
downward from the main interface (see Fig. 3)] . Substitution of (2.7), (2.6) and 
(2.5) into (2.4), and inserting the resulting equation into (2.1) and (2.2) give: 

au au ah 
u ax + v -(Jo+ f3y)v = -g* ax (2.8) 

u + v + <Jo+ f3y) ( u + C _ U16.P2 + U26.P1 ) = -g* ~(2.9) 
ax ay 6.p1 + 6.p2 ay 
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where h =ti+ t2 and g* corresponds to a "reduced gravity" defined by: 

g* = l::,.p lg 
p(l + t::,,p1/ t::,,p2) 

The set (2.8-2.9) is subject to the following boundary conditions: 

h = O ; cp(x,y) = O 

(iu + jv) • Vcf, = 0; cp(x,y) = 0 

[40, 1 

(2.10) 

(2.lla) 

(2.llb) 

where V is the horizontal (two-dimensional) del-operator and cf, denotes the eddy's 
outer edge. Condition (2.11 a) states that h = 0 along a curve which is not known in 
advance (cp) and (2.llb) requires that the edge will be a streamline. These condi-
tions correspond to the fact that the location and shape of the eddy's outer edge 
are not known a priori, but rather must be determined as part of the problem. 

Before concluding the present discussion, it is appropriate to comment on the 
class of solutions which are admittable by (2.8-2.11). By writing (2.8), (2.9) and 
(2.11) in polar coordinates, it is easy to show that if /3 = 0 and U1 = U2 = 0 the 
system always possesses solutions which are radially symmetric corresponding to 
purely tangential motion. This means that an eddy on an f plane which is not subject 
to any external forcing is always circular. It will be shown later (Section 3) that the 
presence of advection [U1 ¥= 0, U2 ¥= O] causes only translation and does not affect 
the eddy's structure in any way. Consequently, an eddy which is advected on an 
f plane will have the same circular structure that it would have in the absence of 
advection. 

On the other hand, once /3 is introduced to the problem, the system (2.8-2.11) no 
longer possesses radially symmetric solutions. Therefore, an eddy translating on a 
/3 plane cannot have an exact circular structure. However, since the perturbations 
imposed by /3 are small ({3l < < f o) it is expected that on a (3-plane the eddy's 
structure will not deviate much from that of an f plane so that its geometry will 
correspond to slightly distorted circles. The structure of (2.8-2.11) indicates that the 
small horizontal distortions (from an exact circle) are of O(el) at the eddy's outer 
edge. These theoretical considerations regarding the influence of (3 are supported by 
the observations of MR who state that the "nearly circular geometry" was evident 
as expected theoretically. 

3. Solution 

In this section, we shall derive an expression for the nonlinear translation speed 
and show that the translation can be calculated without finding the detailed eddy 
structure on a /3 plane. To do so, eq. (2.9) is multiplied by h and integrated over 
the whole eddy: 
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ff ( hu :: + hv :; ) dxdy + ff (10 + f3y)uhdxdy 
s 

B 

(3.1) 

+ ( C - U1
~;:: ) ff (f O + {3y)hdxdy = - g2* ff a~ (h2)dxdy 

B B 

where 8 denotes the entire area of the eddy. Using (2.3) and Stokes' theorem, (3.1) 
can be expressed as: 

-f hv2dx + f lmvdy +ff (10 + f3y)uhdxdy 

B 

+ ( C- U1
~;:: ~~~Pi) ff (10 + f3y)hdxdy = g2* f h2dx, (3.2) 

B 

where 4> denotes the eddy's outer edge (2.lla). Since h = O along 4>, the line 
integrals over the nonlinear terms and the pressure term vanish identically. With 
the aid of the transport function: 

=-uh -~=vh 
ay ' ax ' (3.3) 

the resulting equation can be written in the form: 

-ff { :y [ Uo + {3y) If, ]- /31f, } dxdy 
B 

(3.4) 

which by defining If, to be zero on the boundary [i.e., If, = 0 along f/,], and using 
Stokes' theorem gives: 

C = U16p2 + U26p1 
6p1 + 6p2 

f3 ff lf,dxdy 
B 

ff (10 + {3y)hdxdy 
B 

(3.5) 

The first term on the right-hand side represents the advection by the upper and 
lower layers (Ca) and the second is the /3-induced westward drift (C13). The former 
(Ca) results from the pressure which is directly transmitted from the environment 
to the eddy, whereas the latter (C13) represents a balance between the net southward 
force due to /3 and the northward force due to the westward translation and the 
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Coriolis force. Note that when the procedure outlined above is applied to eq. (2.8), 
one finds that all the integrals vanish identically indicating that the integrated forces 
in the x direction are in balance for any translation speed. 

To examine the role of the environmental flows, it is convenient to express the 
advection (Ca) in terms of the displacements { 1 and {2- Let {10 and {20 denote the 
displacements of the eddy upper and lower boundaries at the center [i.e., f10 = 
{ 1(0,0), { 20 = {l0,0), and {10 + {20 = ho]- By (2.7) one finds that in terms of these 
variables the advection by the upper and lower layer is: 

Ca = U1{10 + U2g20 (3_6) 
. {10 + {20 

indicating that the advection is simply a weighted average of the mean speeds. In 
other words, the effect of each layer on the eddy translation is proportional to its 
relative displacement (t0 /h 0 ) within the layer. Thus, an eddy may be advected in 
one direction even if the flow in one of the layers is directed in the opposite 
djx:ection. 

It is easy to show that the flow in the environmental layers causes only translation 
and does not introduce any changes in the structure of the eddy. To show this, (3.5) 
is substituted into (2.8) and (2.9) and {3 is set equal to zero (U1 #- 0, U2 -=fa. 0). This 
reduces the equations to the same form that they would have in the absence of 
advection <V1 = U2 = 0) indicating that the advection does not influence the in-
ternal structure of the eddy nor does it affect the eddy's shape. 

Eq. (3.5) shows that knowledge of tfi(x,y) and h(x,y) is required for calculating 
the {3-induced drift; to determine the specific necessary information regarding these 
functions, a perturbation scheme will be applied to (3.5). For this purpose, the 
following nondimensional variables are defined: 

x* = xll; y* = y / l; 

E = {31/ fo; Rd= (g*hoH/fo; 

Ro= V/ fol 

t/i* = t/J/ Vhol 

C13* = C13/ V (3.7) 

where Vis the velocity scale, l is the eddy length scale (defined earlier in Section 2), 
Rd is the internal deformation radius and R0 is the Rossby number. The parameter 
Eis small for most eddies of practical interest; for the Meddy, l ~ 100 km, {3 ~ 2 x 
I0- 11m- 1sec- 1, and fo ~ 10-4sec- 1 so that E ~ 0.02. 

In terms of these nondimensional variables, the {3-induced translation is: 

E ff tfi *dx* dy* 

Cfl* = - ---:::--::=-=-8 -· -------f f (l + ey* )h*dx* dy* 
s• 

(3.8) 
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where S* is the nondimensional area of the eddy (S/1rl2). It is further assumed that 
the dependent variables possess power series expansions in E: 

1/J*(x*,y*,e) = 1p<0 > + e1fJC1 > + 0(e2
) + .. . 

h*(x* ,y* ,e) = hC0 > + ehC1 > + 0(e2) + .. . (3.9) 

C13* = eCC1
> + E2CC2

> + ... 
where the zeroth-order state corresponds to the structure that the eddy would have 
in the abs.ence of /3. As pointed out earlier in Section 2, the zeroth-order state 
(1p<0 >, h<0 >) is always radially symmetric while the perturbations (e1fJC1 >, eh<1 >) cor-
respo~d to small distortions of the circular geometry. 

By substitution of (3.9) into (3.8) and collecting terms of 0(e) one finds: 

-€ ff 1p<o>dx*dy* 

8(0) 0( ) c/J• = ----=::------ + e2 ff h< 0 >dx*dy* 

(3.10) 

B<"> 

where sc0 > is the area of the eddy corresponding to the zeroth-order state (/3 = 0). 
We see that in order to compute the /3-induced translation it is sufficient to know the 
structure that the eddy would have on an f plane; it is not necessary to seek the de-
tailed structure on a /3 plane. This results from the fact that the influence of the 
distortions on the translation speed is of 0(e2

). 

Since 1p<0 > and h<0 > are always radially symmetric, it is convenient to express (3.10) 

in polar coordinates; for clarity we shall use these coordinates in dimensional var-
iables. In terms of these dimensional variables the total translation speed is: 

C = V16P2 + V 26P1 
6p1 + 6p2 

r. r 

/3 ff Ve(r)h(r)drrdr 

-
0 

,_; ,-. --+O [( /3!o°) 
2 

Ve] 

f (3.11) f , h(r)rdr 

0 

where V 6(r) and h(r) are the swirl velocity and depth corresponding to the basic 
state, and r

0 
is the eddy's radius corresponding to the same state [lz(ro) = O]. Eq. 

(3.11) includes the full nonlinear terms and hence allows calculation of the transla-

tion speed for any Rossby number. 
As pointed out earlier, our analysis is valid as long as the eddy translates steadily 

without changing its shape and structure with time. Since we have not found the 
complete first-order solution within the eddy nor have we shown that such a 
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solution exists, we cannot find the exact necessary conditions for such a dynamical 
behavior. However, using scaling arguments it will be demonstrated below that 
even if the structure of the translating eddy changes in time, the changes are small 
and can be neglected for the Meddy and for other mesoscale eddies. 

To illustrate this point, it is recalled that the ,B-induced distortion of the eddy's 
outer edge (from an exact circle) is of 0(el). If the eddy changes its shape due to ,B, 
then the associated time scale is 0(1/ ,Bl) which together with the above length scale 
(el) gives a velocity scale of 0(e,B/2). This velocity scale represents the velocity 
component which is associated with time-dependent movements if such movements 
exist. 

The governing equation (2.2) indicates that time dependent motions can be neg-

lected as long as: << f0C. When the scales mentioned above and C ~ o( f1 V) 
are substituted into this relationship, one finds that the neglect is justified as long 
as: Ro>> (,Bl/fo)2, This condition is satisfied by the Meddy because the parameter 
(,Bl//0) 2 is about 4 X 10-• whereas the Rossby number is about 0.1. We see, 
therefore, that the assumption of steady translation and an approximately steady 
shape is probably adequate for the Meddy. 

4. Analysis 

As a simplification of the Meddy structure, we shall consider an eddy whose 
f plane structure corresponds to a parabolic velocity distribution. The adopted 
velocity profile is shown in Figure 4 and is given by: 

Ve= 2R0f0r ( - 1 ) , (4.1) 

where R o is the Rossby number defined on the basis of the maximum velocity and 
its distance from the center of the eddy (ro/2). It is important to note that there is 
an upper bound to the degree of nonlinearity which can be associated with (4.1). 
The Rossby number (Ro) cannot assume values larger than 1/ 4 because otherwise 

h . l . . . [Id ] t e negauve re ative vorticity r dr (rV6) would be larger than /0 (as r 0) 

which is impossible. In addition, note that the ratio between the centrifugal ac-

celeration and the Coriolis force (Ve/ for) reaches a maximum at the eddy center 
(r = . 0) where it equals 2Ro: The depth of the eddy h(r) is found by integrating the 
nonlinear momentum equation: 

which gives: 

- dh 
+foVe=g* --

dr (4.2) 
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Figure 4. The assumed tangential velocity structure for the Meddy. 

h(r) =ho+ R0 f/r 2(2R0 - 1)/g* + 2R0f/r3(1 - 4R0 )/ 3g*r0 

(4.3) 

The corresponding eddy radius (ro) is obtained by setting h(r0) = 0 in (4.3) and 
solving for r0 : 

_ [ 3g*ho ] 1 
Yo - R o(l -Ro) /f o • (4.4) 

The ,8-induced translation and the associated total translation can now be cal-
culated by using (4.4), (4.3), (4.1) and (3.11). For the Meddy, the Rossby number 
is of 0(0.1) [see MR] so that one may keep terms of 0(R0 ) and neglect terms of 
0(R0 2) in calculating the ,8-induced drift. Under these conditions, (4.4), (4.3), (4.1) 
and (3.11) give: 

C= U16P2 + U26P1 ,8(0.285 + 0.306 R o)6p1gho 
6 p1 + 6p2 p(l + 6 p1/ 6p2)fo2 

+ O ( ,82r0 6 p1gho ) + O (R/ ,86p1gh0 ) 

pfa3 pfa2 ' 
(4.5) 

which enables one to compute the total translation on a ,8 plane. Because of the 

dependence of (3.11) on V9(r) , it is appropriate to examine the sensitivity of this 
result to the assumed orbital velocity structure (4.1). To do so, we shall calculate 
the ,8-induced translation for a different velocity distribution and compare the 
predicted translation speeds. For this purpose, consider the wedge-like velocity 
structure shown in Figure 5. The corresponding velocity distribution is: 

(4.6) 
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Figure 5. A wedge-like velocity structure used for the sensitivity study. 

where the subscripts 1 and 2 indicate that the variable in question is associated with 
the inner portion of the eddy (r::;; r0 /2) and the outer portion (r r0 /2), respec-
tively. Since the Meddy's Rossby number is of 0(0.1) and we are interested now 
merely in examining the sensitivity of C/J to the assumed velocity profile, it is 
sufficient to consider the linear ,8-induced drift (Ro < < 1). For linear movements 
the depth distribution [corresponding to (4.6)] is: 

r:. Ro 
n1 = ho - - 2-f/r2/g* 

h2=ho+ R;!.02(+-ror+ r;,2) (4.7) 

and the eddy's radius [h 2(ro) = 0] is: 

_ ( 4g*h0 ) ! 
To- /fo• (4.8) 

In a similar fashion to previously, the ,8-induced translation (C13) is calculated with 
the aid of (4.8), (4.7), (4.6) and (3.11). By substituting (4.7), (4.6) and (4.8) into 
(3.11) and integrating in two steps (from r = 0 tor= r0 /2 and from r0 /2 to r0 ) one 
obtains: 

C13=-

(4.9) 

When this velocity is compared to the linear ,8-induced translation computed for 
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the parabolic eddy [(4.5) with R0 0 and U1 = U2 = 0] one finds that the differ-
ence is less than 15 % . We see that although the velocity profiles of the two eddies 
are quite different (Figs. 4 and 5), the difference between the predicted ,8-induced 
translation is relatively small indicating that the linear drift is not very sensitive to 
the assumed orbital velocity structure. This property is not very surprising because 
(3.10) shows that the ,8-induced translation is a function of the transport circulating 
within the eddy which is not very sensitive to the distribution of the orbital velocity. 

Before proceeding and calculating the Meddy's ,8-induced translation, it is ap-
propriate to comment on the applicability of our model to the Meddy's structure. 
The observations of MR indicate that the Meddy contained a quasi-homogeneous 
core with a thickness and diameter of approximately 200 m and 20 km respectively. 
Trajectories of neutrally buoyant (SOFAR) floats show, however, that the asso-
ciated dynamical structure was considerably larger than this central core and 
extended to about 80-100 km (see MR and Fig. 1). This suggests that active mixing 
occurred at the outer edges of the eddy. For the purpose of computing the advection 
and the ,8-induced drift we shall neglect this mixing along the edges and assume 
that the whole eddy consists of seawater whose properties are identical to those 
found in the central core. It will become clear shortly that this choice may cause an 
overestimate, but not an underestimate, of the translation speed. 

The data presented by MR suggest that the average density of the Meddy was 
p· = 1.02745 and that the densities above and below the Meddy were, (p -D.p1) ""' 

1.02680 and (p + t::,p 2 ) = 1.02790 (see Fig. 2 in MR). These values correspond 

to a g* [ = (l gt::,p> )] of about 0.27 cm/ sec2 which with the observed 
P + D.p1 D.p2 

maximum depth of h0 = 450 m gives an internal deformation radius [(g*hoHlfo] of 
approximately 11 km. Based on MR's direct measurement of the maximum velocity 
(0.3 m/sec at~ 50 km from the center), one finds that the corresponding Rossby 
number [as defined by (4.1)] is about 0.06. For the above deformation radius and 
Rossby number, the predicted eddy's radius (4.4) is approximately 80 km which is 
fairly close to the observed radius (~ 100 km). This agreement supports our as-
sumption that the velocity profile can be approximated by a parabolic distribution. 

For the above numerical values, the computed ,8-induced translation [given by 
the second term on the right-hand side of (4.5)] is: 

C13 = -7.4 x 10-2 cm sec-1 = -64 m/ day 

and the corresponding total translation (C,. + C13) is: 

C = [0.41U1 + 0.59U2 -7.4 X 10-2
] cm sec-1 • (4.10) 

We see that the predicted ,8-induced translation (C13) is rather slow; with such a 
slow drift it would take the eddy over 250 years to cross the whole Atlantic Ocean 
(~ 6000 km). Since such a long lifetime is obviously impossible, it is reasonable to 
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suppose that the Meddy was advected from the eastern Atlantic to the west. This 
suggestion is consistent with the analysis presented by Sverdrup et al. (1942), and 
Worthington (1976) who require westward flow of a few centimeters per second in 
the subtropical Atlantic. If the flow in the upper and lower layer is taken to be, say, 
3 cm sec-1 and 2 cm sec-1 respectively, then the total translation speed (C) is 
about 2.4 cm sec-1 corresponding to a transit time of approximately 8 yrs. This 
time scale is somewhat long, but is more realistic for the Meddy lifetime than the 
previously predicted 250 years corresponding to a purely self-propelled movement. 

However, although these lifetime considerations are plausible, it is not entirely 
clear that in the western part of the subtropical gyre the flow is directed westward 
everywhere as required by Sverdrup et al. (1942) and Worthington (1976). In con-
trast to their requirement of a westward flow in the whole subtropical gyre, recent 
(SOF AR) float tracks (MR) and the calculations of Leetmaa et al. (1977) suggest 
that in the western part of the subtropical gyre, portions of the flow are directed 
eastward. There is no doubt that in most of the area between the Straits of Gibraltar 
and the Bahamas the mean flow is directed westward so that the Meddy could be 
advected during most of its journey but, in view of these recent studies, it is not 
entirely clear how the eddy crossed the western part of the subtropical gyre. 

With our present contradictory knowledge of the mean flow within the western 
part of the subtropical gyre it is impossible to determine the actual behavior of the 
Meddy in this region. We may speculate, however, that the Meddy could have 
crossed the western region by being advected around or underneath the area of 
eastward flow. This conjecture is supported by the behavior of the Meddy which 
according to MR moved during the survey to the southwest at a rate of~ 6 cm/sec. 
As pointed out earlier, such a relatively fast drift can only be a result of advection. 

5. Summary and conclusions 

Apart from demonstrating that the nonlinear translation of deep lens-like eddies 
can be calculated analytically, our results give important information on the move-
ments of Mediterranean eddies. Before listing our conclusions, it is appropriate to 
mention again the limitations involved in the analysis. The most important assump-
tions which have been made throughout the analysis are that the eddy is frictionless 
and nondiffusive, that it has a lens-like cross-section, that it translates steadily due 
to a combined effect of advection and ,B-induced movement and that its depth is 
small compared to the depth of both the upper and lower layers so that there is no 
induced movement underneath or above the eddy. Scaling arguments support the 
validity of these assumptions for the Meddy, but under different circumstances the 
assumptions may not be valid. The results of the study can be summarized as 
follows: 
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i) The translation of a lens-like eddy, embedded in the interface between two 
layers, consists of two independent components, advection by the flows in the 
two main layers and ,8-induced westward movement. 
ii) The advection component is a weighted average of the speed within the two 
layers. It is proportional to the relative displacement of the eddy in each layer so 
that an eddy may move in one direction even if one of the layers flows in an 
opposite direction. 

iii) The ,8-induced component is a function of the eddy intensity, size and vol-
ume. When the Rossby number (R 0 ) is of 0(0.1) or smaller and the swirl velocity 
profile is approximately parabolic, the westward ,8-induced translation is: 

C13 = - (0.285 + 0.306 Ro),8gho6.P1 
p(l + 6p1/ 6p2)fo2 

' 

where 6p1 and 6p2 are the differences between the density of the eddy and the 
densities of the upper and lower layer (respectively), and h0 is the maximum 
eddy depth. 
Application of (ii) and (iii) to the Mediterranean eddies observed off the Bahamas 

indicate that the ,8-induced westward drift is rather slow and amounts to no more 
than 7.4 X 10-2 cm/ sec. The complementary translation corresponding to advec-
tion by the two layers can be much larger and may amount to a few centimeters 
per second. The slow speed of the ,8-induced movement suggests that the Meddy 
could not have crossed the Atlantic Ocean due to its self-propulsion alone because 
this would require a lifetime of over 250 years. The presence of advection can 
reduce this required lifetime to about 8 years suggesting that the Meddy was ad-
vected across the ocean. 
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