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The response of a linear baroclinic 
equatorial ocean to periodic forcing 

by Mark A. Cane' and E. S. Sarachik' 

ABSTRACT 
This paper examines the response of the linear invi scid shallow water equations on a 

meridionally infinite but zonall y bounded equatorial /l-plane to periodic zonal forcings at a 
low frequency "'· 

The solution is constructed out of the Kelvin mode and a finite sum of Rossby modes all of 
which have their turning points equatoiward of the turning latitude y,--(2w)-'. The number 
of modes required is modest: the method allows us to examine the response to forcing over a 
wide range of periods and basin lengths characterized by the single relevant parameter 
q, = wx,.c- 1

, where X ll is the zonal basin length, and c is the Kelvin wave speed. 
In order to study the effect of the meridional scale of the forcing, the responses to the 

simplest symmetric zonal forcing , exp[- 1/ 2 µ.y1 + iwt], and the simplest anti-symmetric zonal 
forcing, y exp[- 1/2 µy' + iwt], are examined in detail. To facilitate the analysis an approx-
imate evaluation of the sums is performed to give a complete, though approximate, closed form 
analytic solution in the simplest symmetri c and anti -symmetric cases. 

We find that for symmetric for ciogs, the amplitude of the response becomes relatively in-
sensitive to the meridional scales of the forcing for scales greater than about ten degrees of 
latitude. For both symmetric and anti-symmetric forcings at ,J, ;;, ,,-/ 4, we find the features 
predicted by Rossby ray theory (foci, caustics, and shadow zones) but we also find that the 
presence of the Kelvin mode in the symmetric case complicates the ray theoretic picture con-
siderably. In addition we find that the phase propagation due to sums of modes need bear little 
relation to that expected for individual Rossby waves. 

Some implications of this work for real oceans are discussed in the conclusion. 

1. Introduction 

The tropical oceans are so vast and our ability to observe them so limited that in 
lieu of the impossible goal of understanding the dynamics of equatorial oceans 
completely, we have been forced to focus our attention on a limited subset of 
approachable problems. We may categorize this subset temporally as follows: the 
steady circulation (e.g., the current-countercurrent-undercurrent system), the pe-
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riodic oscillations (annual, diurnal, etc.), and what we may call the spectacular 
anomalies (e.g., El Niiio). Even the study of this restricted set of problems offers 
grave difficulties, for despite the excellent work of many dedicated scientists over 
the years, neither the atmospheric forcing nor the oceanic response on any of these 
temporal scales can be said to be known to an adequate degree of accuracy. 

Of this subset of problems the seasonal oscillation of the oceans holds a rather 
unique position since the "steady" circulation is known to have major seasonal 
variations and El Nino is observed to be an enhancement of the normal seasonal 
warming off the coast of Peru. Attention has been focused still further on the 
seasonal variation of the thermocline since density data are taken with much greater 
frequency and coverage than current data. In particular, data have become avail-
able in the last few years on the seasonal response of the depth of the thermocline 
along the Equator. In the Atlantic, large swings of the equatorial thermocline nor-
mally in phase with the seasonal winds have been inferred (Katz et al., I 977; Merle, 
1980). Over much of the Pacific, however, seasonal variations in the depth of the 
thermocline are relatively minor (Meyers, 1979a, especially Fig. 7) with a possible 
in-phase response existing only at the eastern end (Tsuchiya, 1979). 

The theoretical approach to understanding low latitude seasonal thermocline 
response remains in its infancy. Inferences about linear seasonal response (e.g., 
Philander, 1979) have been drawn from the solution of an entirely different prob-
lem, namely, the linear response of an equatorial ocean to a forcing impulsively 
switched on in time (see Cane and Sarachik, 1976, 1977, 1979). The response in 
this impulsive case proceeds behind Kelvin wavefronts propagating eastward and 
Rossby wavefronts propagating westward. Much of the response of the ocean 
occurs after a single Kelvin and Rossby wavefront has crossed the basin. By 
analogy, therefore, it was concluded that seasonal response would be "adjusted," 
i.e., in phase with the forcing, if the basin was small enough for a Kelvin and 
Rossby wavefront to cross the basin during a single forcing period. We will see 
below that while there is some truth to this inference that small basin size implies 
a thermoc!ine response in phase with the wind, there are fundamental and profound 
diff erences between the dynamics of impulsive response and the dynamics of pe-
riodic response. 

Some hint of this difference may be glimpsed by comparing the periodic response 
of a single mid-latitude Rossby wave (e.g., Meyers, 1979b) with the response to 
packets of linear mid-latitude Rossby waves (Schopf et al. , 1981 ). The ability of 
many Rossby waves, all oscillating at the same frequency, to constructively and 
destructively interfere with each other is graphically pointed to Schopf et al. (1981). 
Constructive interference manifests itself in narrow regions of enhanced periodic 
response ("caustics") and destructive interference in broad regions of muted re-
sponse ("shadow zones"). The work of Schopf et al. (1981) is based on low 
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frequency, mid-latitude approximations that are not completely applicable to 
equatorial regions, but it is fundamental in illustrating the importance of dealing 
with all the modes that can oscillate at the forcing frequency-a single mode will 
not do. 

Work on equatorial periodic response has concentrated on linear and nonlinear 
numerical time-stepping models spun-up from rest. Kindle (1979) uses a two-layer 
model with nonlinear terms retained to examine the annual and semi-annual re-
sponse to some idealized winds in a square basin with the longitudinal size of the 
Pacific. Busalacchi and O'Brien (1980) force a linear two-layer model with the basin 
geometry of the Pacific with seasonal winds with no meridional dependence and 
with observed winds. Philander and Pacanowski (1980) force a small basin (5000 
km) with idealized winds and compare the computed linear and nonlinear response 
for various forcing frequencies. 

Finally, though not dealing explicitly with a forced problem, Moore (1968), in a 
thesis that laid much of the groundwork for theoretical equatorial oceanography, 
considered the modes of a bounded equatorial basin. In so doing, he had to con-
sider both high and low frequency planetary waves between meridians at the east 
and the west, and the means of satisfying correct boundary conditions at these 
meridians. Much of our work will be similar to that of Moore (1968) but in con-
fining ourselves to low frequency response, we will be able to make approximations 
at low frequency that considerably simplify the analysis. 

In this paper we will examine the linear periodic response of a single baroclinic 
mode to idealized zonal forcings on a meridionally unbounded equatorial ,B-plane. 
Thus we will solve the ( equatorially scaled) shallow water equations for the re-
sponse at the (low) frequency w equal to that of the forcing: 

iwu - yv = -h, + F (y) exp [iwt] 

iwv + yu = -h, 

iwh + u. + v, = 0 

(I) 

between x = O and x = XE. Our method of solution is approximate and involves 
su=ing meridional modes. This method is very efficient compared to time march-
ing and allows us to obtain linear periodic solutions over a wide range of fre-
quencies, basin lengths and forcings, thus inferring general properties of low 

frequency equatorial response. 
We will concentrate on periodic variations of the height field since, in this one 

layer model, currents have been vertically averaged. Thus while there are currents 
that go with the height field variations we will describe, these currents bear but 
faint resemblance to the currents that would exist were the single layer of fluid to 
be more precisely resolved. It is an item of experience that height field variations 
are adequately given by the shallow water equations even when the currents are not. 
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We will find that a crucial parameter in the response is cf,= wXBc-• where c is 
the Kelvin wave speed in the baroclinic mode of interest (Kindle, 1979): this 
parameter can be interpreted as the ratio of length of the basin to the distance a 
Kelvin wave travels in w-1• For orientation, the values of this parameter for sea-
sonal forcing for the first and second baroclinic modes for the Atlantic are .54 and 
.96; for the Pacific, 1.13 and 2.05, respectively. We will find that for extremely 
small values of cf, another parameter becomes important, viz. cf, times the ratio of the 
meridional scale of the forcing to the equatorial radius of deformation. Even for cf, 
of order unity, a sensitivity (mostly in the phase) to the meridional scale of the 
forcing remains. At higher values of cf,, various resonances and other quasi-singular 
behaviors occur ("foci") due to the constructive and destructive interference of 
many modes oscillating at the same frequency w. 

The plan of this paper is as follows: In Section 2 we will examine low frequency 
periodic response in the barotropic vorticity equation. Tbis model, which we have 
previously found helpful in our studies of impulsive response (Cane and Sarachik, 
1976, 1977), will be used to examine the role of friction in producing the non-
dispersive long-wave approximation used extensively later in the paper. Section 3 
will present a detailed derivation of the solutions to (1) in terms of sums of 
meridional modes for a general zonal forcing and Section 4 will not only present 
detailed solutions for a zonal forcing of form F = exp [-1 / 2 /LY'] but will also 
explicate and illuminate these results with a complete, though necessarily approx-
imate, analytic solution to this problem. Section 5 will present solutions for a zonal 
forcing anti-symmetric about the equator. In the final section, the general properties 
of linear, low frequency, low latitude response will be summarized and, on the basis 
of this summary, some points relevant to the ocean and to some numerical models 
of the ocean will be raised. Mathematical details and a review of notation employed 
in the body of the text are relegated to the Appendices. 

2. Periodic response in lhe barotropic vorticity equation 

Because the dispersive properties of the barotropic vorticity equation are quite 
similar to those of equatorial Rossby waves, the barotropic vorticity equation 
proves to be a particularly convenient theoretical laboratory for testing out approx-
imations (e.g., Section 3 of Cane and Sarachik, 1976). In this section we will 
examine the effects of friction on low frequency periodic response in the barotropic 
vorticity equation and show that friction kills the short Rossby waves thereby 
rendering valid the long-wave approximation. 

The barotropic vorticity equation in the presence of periodic forcing by an x-
independent wind stress curl can be written 

iw [,f,,.-m' ,f,] + /3,f,, = -r,f,,. + C exp [iwt] (2) 
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where r is a Rayleigh friction coefficient and m may be considered the meridional 
wavenumber. The forced solution can be written 

,f, (x, I)= { -iC (wm' )- 1 [ 1 -exp [-ik + (x-X,.)]] 

+ /L exp [-iLx] + /3+ exp [-ik+xl } exp [iwl) (3) 

where /3 + and /3- are determined by the boundary conditions ,f, (0) = ,f, (X 8 ) = 0, 
and k± are given by the dispersion relation 

k . = - /3 
- 2 (w -ir) ± f3 [ 1 _ 4wm' (w -ir)' J 11~ 

2 (w -ir) /3' 
(4) 

When the frequency is low enough and friction is absent, k + defines a Jong, nearly 
nondispersive Rossby wave with group velocity -{3m- 2 to the west, while k_ 

defines a short, highly dispersive Rossby wave with short zonal wavelength, west-
ward phase velocity, but very slow eastward group velocity w 2{3- 1 • 

We now define the length scale I = w/3-1 (which is of order 10 km for seasonal 
forcing) and define a parameter e = Im which we will assume to be much smaller 
than unity. We also assume that the frictional time scale is Jong compared to the 
period of the forcing:' r = 13w where 13 << 1. With these assumptions, (4) becomes 

k+ = -wm' f3- 1 + 0 (e' , 6e' ) - -Em 

(5) 
k_ = -(1 + i/3) 1-1 + 0 (e', 6e' ) - me-• (1 + i/3) 

The zonal scale of the Jong Rossby is, by assumption, much longer than the 
meridional scale in analogy to the equatorial case. Also the zonal scale of the long 
Rossby wave is clearly much greater than the scale I, i.e., k+I = e' so that the order-
ing is k + - 1 : m - 1 : I= 1: e: e'. Furthermore, it is clear from (5) and (3) that the 
friction causes a decay of the stream-function from the western boundary with a 
frictional decay scale D = 6em-1 = 113-1, which may be interpreted as the distance 
the slow Rossby waves traveling with group velocity w2{3- 1 travel in the frictional 
time scale r- 1• 

There are two interesting cases, namely, when friction is so small that D>> X,. 
and the converse case, when D<< X8 . 

The first case is essentially inviscid and both the amplitude and phase show 
modulation of scale I due to the short Rossby waves which propagate with small 

groul' velocity eastward into the basin. 
The second case is that the frictional decay scale is small compared to the basin 

size, so that exp [ik_X8 ) is negligible. The streamfunction in (3) can then be written 

3. This is not a necessary assumption-it simitlifies the algebra for the purposes of the discussion. 
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,f, (x, t) = iC (eum')-1 [exp [icf>fl -1] exp [ieut] 

+ iC (eum2) - 1 [1 -exp [icf>tll exp [-xme-1 (i + ll)J exp [ieut] (6) 

where cf> = euX8 m2/3-1 and the dimensionless parameter measuring distance from 
the eastern boundary is g = (x -XFJ)X FJ-'• The parameter cf> is the ratio of the time 
a nondispersive Jong Rossby wave (travelling at velocity -f3m-2

) takes to cross the 
basin to the forcing time scale 1 / eu. Alternately, cf> is the ratio of the basin size to 
the length scale of the Jong Rossby wave. As we shall see below, cf> is the crucial 
parameter describing the interior periodic response. 

The solution (6) has an obvious interpretation. The first term is the interior re-
sponse and could have been obtained by solving the nondispersive forced equation 

-ieum' ,f, + /3,f,, = C exp [ieut] 

with the single boundary condition at the east ,f, (XFJ) = 0. The second term is the 
boundary layer correction at the west. The crucial point is that, just as in the classic 
argument of Pedlosky (1965), friction prevents the short Rossby wave (with O(w') 

group velocity to the east) from penetrating into the interior. Even for friction so 
small that the decay time is as long as 10 years, D is only about 600 km (for annual 
waves); thus the vi scous case D< < XE is the one more relevant to the real oceans. 
In this case the interior response is totally determined by the Jong Rossby wave 
(with group velocity and phase velocity to the west). If we concentrate on the 
interior response therefore, we can ignore the short Rossby wave altogether; its only 
role is to satisfy the boundary condition at x = 0. We see that small amounts of 
friction are sufficient to eliminate the short Rossby waves-the interior solution 
given by the long Rossby wave is identical to the long wave approximation. 

The interior periodic response has its own intrinsic interest and provides the sort 
of intuition against which we can test the more complicated equatorial periodic 
response. We see immediately from the interior solution in (6) that if cf> << 1, the 
interior response is simply 

,f, (x, t) = 13- 1 C (x -X8 ) exp [ieut] 

and is therefore Sverdrup and in-phase with the forcing over the entire basin, i.e., 
for -1 < g < 0. Even if cf> is not small , there will still be a region near the eastern 
boundary for which lcf>gl < < 1 so that in this region the response will be in-phase 
and Sverdrup. Outside this region, the phase will vary monotonically across the 
basin. The interior solution can be rewritten as ,f, (x, t) = A exp [-ix] exp [iwt] 
where A is the (real) amplitude and x is the (real) phase lag of the response with 
respect to the forcing. For the interior solution in (6) 

A = 2C (eum')-1 I sin + cf>t I 
and 
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x=arctan [ l~~o;r] . 

We see that the phase decreases monotonically from zero to -21r as the [\bf[ goes 
from zero to 41r while the amplitude has zeroes at [ <,bf[ = 2n1r. Thus for f near the 
points [\bf [ = 4n1r the response would again be in phase with the forcing but for 
the fact that at these same points the amplitude of the oscillations vanish. 

As a final observation, we may note that for a given basin size X,,, <,b may not 
be small at frequency w but may be small at some lower frequency w'. Thus we 
have the possibility that the response may not be in phase with seasonal forcing, 
say, but may be in phase with interannual forcing of sufficiently Jong period. 

In this section we have considered the effect of friction on short Rossby waves 
and shown that in the presence of friction, these waves will not affect the interior, 
thereby rendering the long wave approximation valid. In the next section we will 
consider response on an equatorial fJ plane where the complications of many Rossby 
waves of different meridional mode numbers and of an equatorial Kelvin wave will 
be present. 

3. The general solution on an equatorial fJ-plane 

We wish to solve the periodic shallow water equations (1) between x = 0 and 
x = X,,. To do this we will construct the periodic solution in the absence of 
boundaries and then add sums of free Rossby and Kelvin waves oscillating at 
frequency w to satisfy the boundary conditions. The boundary condition at the east 
is straightforward; u = 0 at x = X". The western boundary condition is more 
subtle. We have seen in the previous section that friction traps the short Rossby 
waves and prevents them from reaching the interior; it is therefore clear that we 
need not consider them further. But by no longer considering the short Rossby 
waves, we are no longer able to satisfy the condition u = 0 on the western boundary 
for it is the combination of short and long Rossby waves and Kelvin waves that 
allow this boundary condition to be satisfied (Moore, 1968). We require a boundary 
condition that gives the correct long wave reflections at the western boundary. In 
Cane and Sarachik (1977, p. 404) we showed that the sum of short Rossby waves 
formed a boundary layer which was capable of transferring zonal mass flux merid-
ionally but which when integrated meridionally carried no net zonal mass flux. Since 
the meridional integral of the boundary condition u = 0 must necessarily vanish, 
and since the integral of u involving only the short Rossby waves also vanishes, the 
proper boundary condition for the subset of waves consisting of the Kelvin and 
Jong Rossby waves alone is: 

5~./y=O atx=O, (7) 
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which says that all the meridionally integrated zonal mass flux incident on the 
western boundary is returned by the Kelvin wave. 

The dispersion relation for the Kelvin wave needs no approximation since it is 
already nondispersive (kK = w). The dispersion relation for the Rossby wave with 
group velocity to the west is 

k. = -(2w)-1 + [(4w2
)-

1 + w' -(2n + 1)]112 
, (8) 

where, at low frequency, we may neglect w' with respect to (4w2
)-

1
• Only those 

meridional modes whose turning points (at y' = 2n + 1) lie equatorward of the 
turning point at frequency w (defined as YT'= (4w2

)-
1

) have real wave number-all 
higher ones decay westward into the basin. Since only propagating waves can reach 
the other side to produce Kelvin waves, all sums need only be summed to N (such 
that 2N + 1 = YT' ) to satisfy the boundary conditions. The solutions will then only 
be valid for IYI < IYTI; poleward of these points, only boundary trapped modes 
whose sum asymptototes to Kelvin waves exist (Moore, 1968). As a final approx-
imation, we will assume the waves are nondispersive even up to n = N so that 
k. = -(2n + l)w, n ,:;; N. As we will see, the amplitudes of the modes near n = N 
are small, and these modes have a very small effect on motions in the neighborhood 
0f the equator. 

In order to construct the periodic unbounded solution, we return to the general 
formulation of forced baroclinic response given in Section 4 of Cane and Sarachik 
(1976). The general forced response (not satisfying boundary conditions) can be 
constructed solely out of Kelvin and Rossby modes in the long wave approximation 
described above. Using (44) and (47) of Cane and Sarachik (1976) we can im-
mediately write 

N ., 

0
11

> (x,y,t) = L 2~i f k + ;2~1 l)w [ exp [-ik (x + (2n + 1)-11)] 
n-o -co 

-exp [-ikx + iwt] ] (2n + l)R,. 

., 

+ 2~i f :_~ [ exp [-ik (x-t)] -exp [-ikx + iwt] ] MK dk (9) 
_., 

where R. and MK are the Rossby and Kelvin modes, dK (k) = 2-112 (F)0 and 
r. (k) = (F,). -(2n + 1)-1 (yF) •. (The notation for the Rossby and Kelvin waves 
and the projections ( ). are given in Appendix I.) The solution in (9) gives only 
the zonal velocity (u) and height field (h) components; all meridional velocity com-
ponents are small [O(w)]. 
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When the forcing is independent of x, r" (k) = 21rr. I> (k), and the forced solution 
in (9) becomes 

N 

u0
> (y,t) = (iw)- 1 exp [iwt] { dKMK + Lr . R, } . (JO) 

·-· 
The free (long-wave) solutions needed to satisfy the boundary conditions then 

can be written 

N 

b' KMK exp [-iwx] + ""' a'.R. exp [iwx (2n + 1)] ,:;;_, 

where k. = -w (2n + 1) in the long wave approximation. 
Redefining the constants b' Kand a'" and again defining the parameters 

cf,= wX., and g = (x-X.,)X.,- 1 
, 

the full solution can be written in the form 

N 

+ L, r .. R. (1 - exp [i (211 + I) cf,fl) 

•- • 

+ :± a.R. exp [i (211 + 1) cf,fl } 

·-· 

(11) 

(12) 

There are now N + 1 constants (bK and a.) to be determined by the two boundary 
conditions. The parameter cf, (dimensionally cf, = wX.,c-1 where c is the Kelvin 
wave speed) is analogous to the parameter introduced in the previous section and 
will similarly prove to play a major role in the baroclinic equatorial case (see 
Kindle, 1979). 

At the eastern boundary, u(X E) = 0, so that the height at the eastern boundary 
h8 is independent of y equatorward of the turning points, since yu + h, = 0 in the 
Jong wave approximation. 

Now a result used extensively in Cane and Sarachik (I 977), Eq. (23), and re-
derived in (A .13), says that 

[O,h,,]T = hi,1r11' [ MK+ 2 L a,.R. ] (13) 

where the a. are known (A.4). At x = X 8 , g = 0, so that the terms in (12) involving 
dK and,. are zero and comparing (12) and (13) gives 

(14) 
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We see that a single unknown parameter remains, namely the amplitude of the 
free Kelvin mode, bK, which by (14) sets the amplitude of the eastern boundary 
height oscillations. This single parameter b K must be determined by the western 
boundary condition (7) that the meridional integral of u vanish. From the defini-

tions (A.6) we find 

f =~ (R.). = -rr' l 'a. [2n (n + l)J-1 

and using these relations in (12) applied to the boundary condition (7) yields 

(15) 

bK = (1 -exp [-2i</>]SN (exp [2iq,])]- 1 
{ BN (i</>) + dK [exp [i</>] -I] } (16) 

where 

N 

S.v (exp [i</>J) = L [n (n + l)J-1 (a,,)' exp [-in</>] (17) 

and 

N 

BN (i</>) = L [2n (n + l)J-1 '•°'• (I -exp [-i</> (2n + I)]) . (18) 
n= O 

Finally, inserting the expressions for the a.'s and bK (given by (14) and (16), 
respectively) into (12) yields the final solution for the periodic response to a pe-

riodic zonal forcing: 

u = (iw)- 1 exp [iwl] { dKMK (1 -exp [-i</>fl} + ± ,.R. (1 -exp [i</>E (2n + 1))) 

+ dKpN (i</>) [ MK exp [-i</>fl + ± 2a,.+1 R,.+1 exp [i</>{ (4n + 3)] ]} (19) 
n=O 

where 

PN (i</>) = (1 -S.v (exp [2iq,J) exp[-2i<f,J]-1 

{ BN (iq,) exp [-i</>] + dK (1 -exp [-iq,J} } . (20) 

The solution (19) has a straightforward interpretation: the first two terms consist 
of the unbounded solution plus free modes directly excited at the eastern boundary. 
The term multiplying PN (i</>) may be considered the Kelvin wave plus all its Rossby 
reflections. For y in the general vicinity of the equator, it is an excellent approxima-
tion to take N - co in this term (the terms in the sum decrease at least as fast as 
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n-•12
)' and the infinite sum can be performed exactly using the results of Ap-

pendix 2: 

MK exp [-i,f>fl + 2 a 20+1 R20+ 1 exp [i,f>~ (4n + 3)) 

·-· 
= exp [i4>fl L (y, exp [2i,f>fl) 

where, by (A.9) and (A .12), 

exp [i,f>fl L (y, exp (2i<f>fl) = 1r- 1t • (cos 24>~-112 exp [ i tan 24>~ ] • 

[ 
-isin 24>~ ] 
cos 2cf,~ . 

(21a) 

(21b) 

This result was first derived by Cane and Moore (1981) and has the property 
that at cf, = m1r / 2, the sum by itself satisfies both boundary conditions at these 
values of cf, therefore constitutes a free quasi-mode of the basin (it is not a real mode 
because the sum is in reality finite) . The function PN (icf,) multiplying this sum can 
be interpreted by noting that at x = X,,, only the height field remains and 

(22) 

where the~= 0 form of (21), has been used. We see that p.v (icf,) sets the magnitude 
and phase of the periodic oscillations of the height field at the eastern boundary. 

Without specifying the forcing, no more can be said about the solution at this 
point. It is to be noted that the general solution (19) is in a form particularly suit-
able for computer evaluatios. For the fir st baroclinic mode, h-65 cm and c-2.5 
m sec-1 so that N = 180 for annual forcing. All the diagrams in the sequel are 
drawn directly from the computer evaluation of (19). 

In the next two sections, we will examine the response to particularly simple 
zonal forcings over a range of cf, and develop closed form analytic approximations 
to the solution. 

4. Response to a symmetric zonal forcing 

The symmetric zonal forcing F = exp [-1 / 2 JLY'] has a dimensional meridional 
scale given by (2JL-')''' L ,q, where L ,. = (c/3-1

)
112 is the equatorial radius of de-

formation. This forcing is simple enough to allow a complete, though necessarily 
approximate, analytic solution to be obtained but general enough to allow overall 
conclusions about low frequency symmetric zonal forcings to be drawn. In partic-
ular, we will examine the response over a wide range of the parameters cf, and /L · 

4. At the equator the sum reduces to S of Eq. (A.15). A detailed discussion of the convergence of 
S is given in Appendix 3. 
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Figure 1. a) Amplitude of p (icj,) / icj, for µ, = .2 (corresponding to a forcing scale of 10' of 

latitude) as a function of cj,. x and y are scaled by L,, = (cl {J)"'. 

1,) Phase of p (icj,) / icj, forµ,= .2 as a function of cj,. 

The function PN (icf,) defined in eq. (20) becomes, in the analytic approximations 
accomplished in Appendix 3, 

p (icf,) ea Lim PN (icf,) 

= (1 -µ,' )- ' '' [i sin 2cpJ-''' [ µ,''' -µ,q (µ,,-cf,)+ is: q (µ,, -<f,')dcf,'] (23) 

where 
q (µ,,cf,)=[µ, cos 2<f, -i sin 2<f,J'''. (24) 

Since, as we have pointed out in (22), the eastern boundary height response is 
given solely by p (icf,) and this function also sets the amplitude of the height re-
sponse everywhere, we note some salient properties of this function. 

Forµ, ea O and cf, small, p (icf,) = i 2/ 3 cf, so that 

hs = + X 8 exp [iwt] 

so that the eastern boundary response is in phase with the wind everywhere equator-
ward of the turning latitudes when the wind has no meridional scale. When the wind 
does have a finite meridional scale (2/ µ,)''', for small cf,, 

p (icf,) = -(1 + µ,)'' ' (1 -µ,•)-•µ,-1/2 (<f, / 2)'''i-1/2 

so that 

hs = (1 -µ,•)-• (8µ,)-•l •cp•l 2X 8 exp [ iwt + +] 
and the amplitude of the oscillations decreases as cf,''' and the phase leads by 'IT/ 4. 
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When bothµ, and cf, are small but in such a way that p = 2cf,µ,-1 is fixed, 

p (icf,) = (1 + µ,)''' (2icf,)- 1l• µ,3I' (1 -µ,' )-1 
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[ 1 -(1 + ip)' 1' + + [(l + ip)''' -1)] (25) 

so that 

h8 = 2p-•t • [ +-(1 + ip)'1' + +(I + ip)' 1' ] X8 exp [ iwt - 3: i ] . 

Figure 1 illustrates these behaviors by plotting the amplitude and phase of p (icf,) 
(icf,)- 1 for µ, = .2. The resonances occurring when cf, is a multiple of -rr/ 2 are 
readily apparent. The dependence of p on µ, is illustrated in Figure 2 where the 
amplitude of p (icf,) (icf,) - 1 is plotted as a function of µ,. The dependence is clearly 
weak for scales larger than 10° of latitude (µ,< .2), but the dependence is major for 
scales smaller than this. 

The remainder of the manipulations leading to the analytic approximation to the 
general solution (19) is given in Appendix 3. The final result for response to the 
symmetric forcing is: 

. _ . { 1 p (icf,) [ y' ] [ q' (0, cf,0 ] 
u = (1w) 'exp [1wl] (1 + µ,)''' t (0, cf,0 exp 277 (0, cf,0 t' (0, cf,t) 

- _µ,_ exp [ - - 1 µ,y' ] [ µ,] 
1-~ 2 1 

1 [ 1 ] [ q' (µ,, cf,0 ] 
+ 1 '::.,_,,, t (µ,, cf,0 exp -2- y'77 (µ,, cf,0 t' (µ,, cf,0 

+ 1 ~µ,' f 1-1 (µ, , 0 exp [ + y'77 (µ,, 0 ] [ ~: :: ~] d{ f (26) 
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Figure 3. The low frequency (cf, = .01) narrow symmetric forcing case (p. = 4.5, corresponding 
to a forcing scale of 3 • of latitude). 
a) Amplitude of height field oscillations normalized by x •. Contour interval is .I. 
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foreing). Contour interval so·. 
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c) hlX. vs. time on the equator. Contour interval .2. Time is scaled by.,-•. 

where q has already been defined in (24), 

t (µ,, q,) = [cos 2¢ -µ,i sin 2q,]'I', 
and 
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(27) 

7/ (µ, q,) = _ q' (µ,, q,) i (1 -µ,' ) tan 2¢ - µ, sec' 2¢ (28) 
' t' (µ,, q,) 1 +µ,' tan' 2¢ 

We note immediately that t(µ,, 0) = 1, q(µ,, 0) = µ,1
/

2 and that 7)(µ,, 0) = - µ, 
so that at the eastern boundary of the basin cg = 0), u = 0, and h8 reduces to (22). 
We also note that u is singular when 2q,g is an odd multiple of TT/ 2 while his well 
behaved- we will discuss these points ("foci" in the ray theory language of Schopf, 
Anderson and Smith, 1981), in detail below. 

We proceed to examine the solution (19) and its analytic approximation (26) over 
the range of the parameters q, and µ,. We emphasize that all figures presented in the 
discussion are drawn by means of the mode summation given in (19)-the analytic 
form (26) will be used to explain the features shown therein. 

a. The small ,f, case. 

The first case of interest is q, < < 1, a case that corresponds either to extremely 
long periods or very small basins or both. For orientation, a baroclinic mode with 
equivalent depth 60 cm (Kelvin wave speed '.2.5 m sec-1) in a basin 5000 km long 
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would produce a cJ, of .1 for an oscillation period of five years; longer periodicities, 
of course, produce smaller values of cJ,. 

Figure 3 shows the amplitude (Fig. 3a) and phase (Fig. 3b) of the height field 
response for cJ, = .01 and µ, = 4.5. (This value of µ, corresponds to a zonal forcing 
tightly confined to the equator with half width 300 km.) The analytic form (26) for 
cJ, << 1 and for y' << cJ,-1 reduces to 

h = XEJ exp [iwt] { (icJ,)-1 (1 + µ,) - 1l 2 p (icJ,) + g (1 + µ,y' ) exp [ --} µ,y' ]} . 

(29) 

We note immediately that (29) is consistent with the steady "Sverdrup" solution 
h. = F-yFv (Cane and Sarachik, 1977; Eq. (25c)) so that the tilt of the height field 
is in phase with the forcing everywhere. This does not, however, imply that the 
height field itself is in equilibrium with the forcing since integration of the steady 
solution in x yields h! X EJ = he/X e + g (F - yFu) which is identical to (29). How-
ever, since hEJ is proportional to p (Eq. (22)) and p is complex, there will be a phase 
variation of the height field response with respect to the forcing as we move across 
the basin: equilibrium of the height field tilt does not therefore insure equilibrium 
of the height field in this symmetric forcing case. We will confine the usage of the 
term "equilibrium" to the more restrictive case where the height field is in equilib-
rium with the forcing. 

We see that far above the half-width of the forcing the height field oscillation 
asymptotes to 

h-> X e exp [iwt] (icJ,)-1 (1 + µ,)- 1I' p (icJ,) = + p1l 2Xe exp [iwt + 1r/4] 

(30) 

since in this case, p = 4.44 X 10-• is small. Even far above the forcing region, 
the amplitude of the oscillation is p 1l 2/ 2 = 3.3 X 10-2 and the response leads the 
forcing by 1r I 4. At the eastern boundary, equatorward of the turning points, the re-
sponse is also given by (30). 

On the equator 

h (y = 0) = ( + p'1' exp [i1r / 4] + g ) XEJ exp [iwt] (31) 

so that, on the equator, the amplitude of the height field oscillation is {[(p/8)1/2 
+ fl' + p/8} ' 1

' and ranges from 2-1p11
' at the eastern boundary to 1-2-1p1/ 2 at 

the west. Similarly, on the equator, the phase is given by arc tan [-(2t + 
p1 1

')-
1p112

] and ranges from -,,. / 4 at the eastern boundary to -,,. + 2-1p1/ 2 at the 
west, with most of the transition taking place in a region of width 0(p'l2 ) in g from 
the eastern boundary. These features, on the equator, are better illustrated in a 
time-height diagram, Figure 3c. 
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Off the equator, the amplitude is 

A = [(p / tl) 112 + g (1 + µ,y' ) exp [-1 / 2 µ,y' ]] ' + p/ 8 
{ } 

1/2 

(32) 

and has a maximum at y = µ,- 112 independent of g except within a region of order 
p'1' of the eastern boundary. For the parameter µ, = 4.5 of Figure 3a, this maxi-
mum occurs at y = .47. The amplitude increases westward and attains its maximum 
value at g = -1, y = .47: its value at this point is 1.19 obtained directly from (32). 
Finally, off the equator, we may compare the phase in Figure 3b with the analytic 
expression 

cf,= -arctan (p/ 8)1
'' [ (p/ 8)11 2 + f (1 + µ,y') exp [ -+µ,y' ]]-• f • 

Since this phase is relatively featureless beyond those aspects we have already 
explained, let us simply note that this analytic expression for the phase precisely 
describes the detailed behavior of the phase illustrated in Figure 3b. 

Figure 4 illu strates a case for cf, small(= .01) but now with the meridional scale 
wide enough (µ, = .006 corresponding to a half-width of about 60° of latitude for 
the fir st baroclinic mode) so that p = 2cf,/ µ, is no longer small; p = 3.133. Since cf, 
is so small, (29) still holds. It should be noted that since the diagrams in Figures 
4a and 4b are confined to five equatorial radii of deformation of the equator, very 
little y dependence is visible. The evaluation of p for this case using (25) yields the 
height field 

h = XE exp [iwt] { .592 exp [.266i] + g (I + µ,y' ) exp [-1 / 2 µ,y'] } • (33) 

If we ignore the barely perceptible y dependence the amplitude becomes [(.572 + 
0' + (.156)']1'' and the phase becomes x = -arctan [.156(.572 + 0-1

]. Thus 
the value of the amplitude minimum is .156 and the phase passes through -90° at 
the minimum. The phase ranges from -15° (leads) at the eastern boundary to 
about -160° at the western with slow variation across the basin. To get some feel 
for reading amplitude and phase diagrams when the amplitude has a minimum, we 
have included a time-height slice across the equator. We clearly see the minimum 
amplitude point at g = -.572. That the phase leads by 90° at this point means that 
the oscillation reaches zero (halfway between the maximum at +.156 on its way 
to the minimum at -.156) when the forcing is still at its maximum (say at t = 0). 
That the phase varies across the basin simply indicates that the height field oscilla-
tion is not taking place about the point f = .572 as a rigid seesaw about the pivot 
but rather as a writhing snake. To the extent that the phase variation is slow, we 
can define a local wave number ox/ax where we recall that the phase is defined by 
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c) h! X, vs. time on the equator. Contour interval . I. 

h = lhJ exp [-ix]. In terms of the local wavenumber there would be a zonal phase 
propagation speed Cv•ase = w/ (ax) / ax which, since the phase is increasing e.ast-
ward, would imply an eastward phase propagation. We thus have the circumstance 
that a few radii of deformation away from the equator, where the Kelvin wave 
amplitude is surely negligible and only westward propagating Rossby waves exist, 
the phase propagation is eastward. Since the essence of the problem involves waves 
oscillating at a single frequency, it should not be surprising that the sum of such 
oscillations can lead to interfering phase patterns having little relation to the 
individual waves comprising the sum. No phase propagation characteristic of an 
"annual Rossby wave" is seen in the sum nor in general should any be expected. 

When the forcing is so wide that p > > 1 (still for cf, << 1), then the height field 
variations are simply given by 

h = ( + + g ) X 8 exp [iwt] (34) 

for all y. Here the height field is oscillating like a rigid seesaw in phase with the 
wind to the east of the pivot point g = -2/ 3 and out of phase with the wind to. the 
west of this point: this is the limit that corresponds to "equilibrium." This limit has 
usually been attributed to low frequency (or small basin) only (e.g., Philander, 
1979) but as we see here the forcing must also be wide enough so that p is large. 
As we will see below, some not so small cf, cases will exhibit approximate equilib-
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Figure 5. The Atlantic Annual (c/> = .54) Symmetric Forcing Case (p. = .2, corresponding to a 
forcing scale of 10• of latitude). 
a) Amplitude of hl X •. Contour interval .I. Dashed lines indicate minima and solid lines 
maxima of oscillation amplitudes according to (39). 

rium response on the equator but almost nowhere else and so will not correspond 
to an equilibrium response. As a final point we may note that in the limit w 0, 

(2/3 + t)X8 • This may seem strange, since in the steady case of F = 1, the 
height field will balance the wind stress in Eq. (1) with h = (1 / 2 + t)X8 if mass is 
conserved. The point here, of course, is that in a meridionally infinite ,B-plane, mass 
need not be conserved since there will be interchange with the reservoir at infinity . 
The imposition of boundaries at the north and the south (using the methods of 
Cane and Sarachik, 1979) will change the pivot from g = -2/ 3 tog = -1/ 2 since 
mass will be conserved in the closed basin case. 

b. The cf,= 0 (1) case. 

When cf, is no longer small compared to unity, a glance at Figure 6 shows that 
some new and interesting features occur. In particular, when cf,> 1r/ 4 there will be 
at least one value of g for which 2cf,t = -1r /2. At such a point (a "focus"), the 
analytic result (26) indicates that u is singular, h has small amplitude and the phase 
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forcing scale of 10' of latitude). 
a) Amplitude of h /X,. Contour interval .I. Dashed lines indicate minima and solid lines 
maxima of oscillation amplitud es according to (39). 

variation of both u and h becomes very rapid in a parabolic zone ("shadow zone") 
expanding poleward away from the equator. This zone is bounded by large am-
plitude regions ("caustics") extending northeastward and northwestward from the 
focus. The words in quotes are the ray descriptions of these features, first given by 
Schopf, Anderson and Smith (1981) for the equatorial problem. They, however, 
did not solve a forced problem and derived only very general kinematic properties 
of periodic Rossby rays. As we will see in the remainder of this section, the 
situation for the forced problem is somewhat more complicated than that indicated 
by Schopf et al. (1981). 

The difficulty in interpreting (26) arises from the integral term. In general, the 
integral can be analyzed for large y' by using the method of steepest descent but in 
the particular case of /L = 0 we can give a particularly simple analysis that qual-
itatively describes most of the features of the cf, = 0 (1) case and, in addition, has a 
good degree of accuracy for /L less than unity, and y greater than unity. 
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In order to confine ourselves to the cases illustrated in Figures 6 and 7, we will 
choose <f, < TT / 2. The height field in this µ, = 0 case then becomes' 

h/ Xe = 4> - • { Po exp [ i tan 2<f,f ] (cos 2<f,f)11' 

+ f :E exp [ i + y' tan 2, ] (cos 2')'1'd'} exp [iwt] (35) 

where p0 is the real (for <f, < TT /2) number 

p0 = (sin 24>)-1l 2 f: (sin 24'')1l 2 dip' 

The integral term in (35) vanishes for large y' by the generalized Riemann-
Lebesgue Lemma (Bender and Orszag, 1978, Sec. 6.5), since the tangent in the 
exponent is continuously differentiable. The integral can in fact be asymptotically 
expanded in inverse powers of y' simply by a series of partial integrations. We will 
content ourselves with a single partial integration to write the height field, neglect-
ing terms of 0(1/y') as 

h/Xe = 4>-• { Po exp [ i + y' tan 2<f,f ] (cos 24'~1l 2 

+ (iy 2
)-

1 
[ (cos 2cf,~' 1' exp [ i + y' tan 2cf,f ] -1 ]} exp ([iwt] 

(36) 

In terms of the auxiliary phase function 

I 
of,= 2 Y' tan 2cf,f -(p0y2

)-1 (cos 2cf,~' 

we can then easily explicitly derive the amplitude lhl and phase, -x, of the height 
field variations for large y. 

For-'IT (4cf,)-1 < f 0, 

{ } 

0 
lhl/Xa = 4>-• P'• cos 2cf,f + 2y-'po sin of, (cos 24>~112 + 0 (y-') 

(37a) 
and 

tan X = -tan ,f,-(y2p0 cos ,i,)-1 (cos 2~-112. (37b) 

S. Strictly speaking, the µ. = 0 approximation breaks down for the integral in the shadow zone 
(sec tho discussion in Section S) but since tho tint term of (35) dominates in the shadow zone (JS) and 
(36) give good asymptotic approximations everywhere. ' 
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For -1 < {<-'TT (4cf,)-1, 

{ } 

1/ 2 

ihJ/X,, = cf,-, -p'o cos 2cf,{ + 2y-'po cos tJ, (-cos 2cf,fl 1/2 + 0 (y-•) 
(38a) 

and 

tan X = cot tJ, + (y'p0 sin tJ,)-1 (-cos 2cf,g)-112 • (38b) 

It is easily seen from (37a) and (37b) that the amplitude has extrema when 

2 sin tJ, -po sin 4cf,{ (cos 2cf,0'1' -y-' sin 4# sin tJ, = 0 (39a) 
or 

2 sin tJ, + Po sin 4cf,{ (-cos 2cf,{)' ' ' + y- 2 sin 4cf,{ cos tJ, = 0 (39b) 

east or west of the focus at g = -71' (4cf,)-1
, respectively. Figures Sa and 6a show 

the locations of the maxima and minima given by (39) drawn in for y > 2. In the 
shadow zone between the two large maxima in Figure 6a, the amplitude becomes 
highly oscillatory and small. 

The lines of constant phase are given by (37b) and (38b) and it can be verified 
that these reproduce the phase lines in Figures Sb and 6b for y ;:: 2. In fact, for 
y' large, the phase becomes, to a very good approximation, 

X = - tan 2cf,f + 0 (y- ' ) 
2 

(40) 

which itself illustrates most of the features of Figures Sb and 6b for y ;:: 2. In 
particular, the phase given by (40) shows the characteristic parabolic pattern 
radiating out from the focus and shows rapid oscillation as the focus { = -71' (4cf,)-1 

is approached, the zone of rapid oscillation expanding northward with the lines of 
constant phase in Figure 6b. Near the eastern boundary, { = 0, (40) fails but it is 
easily seen from (37b) that x ~ -(p0y 2

)-
1 so that the phase leads slightly on the 

eastern boundary, the lead approaching zero as y' increases as is illustrated in both 
Figures Sb and 6b. 

As long as µ, is small compared to unity, the µ, = 0 analysis presented above 
works quite well, quantitatively as well as qualitatively for both the amplitude and 
the phase, if y is large (y = 2 seems to be large enough). The amplitude also proves 
to be relatively independent of the precise value of µ, as long as µ, is small-an 
amplitude diagram generated for µ, = .006 proved to be almost indistinguishable 
from Figure 6a (this is also consistent with the weak µ, dependence of p in Figure 2, 
for small µ,). 
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Figure 7. Phase of/, for Pacific Annual(</> = 1.13) Symmetric Forcing Case but for wide forc-
ing (µ, = .006, corresponding to a scale of 60° of latitude). Contour interval 50°. 

The phase behavior for small µ,, however, does depend on th@ precise value of µ,, 
but only within one or two radii of deformation of the equator. Consideration of 
(35) on the equator shows that, for µ, = 0, h is in phase with the forcing to the east 
of the focus and gradually acquires a non-zero phase as we move to the west of the 
focus. Figure 7 shows this behavior for µ, = .006 and we may conclude that to 
the east of the focus the smaller the value of µ,, the closer is the zero phase line 
to the equator. As µ, increases from zero, the zero phase line moves off the equator 
and equatorward of the zero phase line, the phase leads with the lead increasing 
westward. To the extent that the phase varies slowly enough, we can use the 
argument given previously to conclude that equatorward of the zero phase line, the 
apparent phase propagation will be eastward while poleward of the zero phase line 
it will be westward. 

In both Figures 5b and 6b, the phase near the equator leads by something near 
zero at the east and something near 180° at the west. The effective wavenumber 
therefore is of order 1r/ XE, The eastward phase propagation speed is then ,inrlXB 
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"' 2Xs/T where T is the period of the forcing. For annual forcing in a basin 
5000 km long, the eastward phase propagation speed is 1r-1 m/sec.• We may note 
that an eastward phase propagation speed of 30 cm/sec for the seasonal ther-
mocline response along the equator in the Atlantic has recently been noted by 
Merle (1980). 

5. Response to an anti-symmetric zonal forcing 

The general solution for the periodic response to a zonal forcing anti-symmetric 
about the equator can be read off directly from (19) by simply noting that no Kelvin 
wave can be excited: 

u = (iw)- 1 exp [iwl] to r,.R,. [l -exp [iq,g (4n + l)]] f (41) 

We see immediately that the height field h as well as the zonal velocity u vanishes 
at the eastern boundary, for, as we have noted in the discussion following (22), it 
is the term involving the Kelvin wave plus its reflections which set the magnitude 
and phase of the height field oscillations at the eastern boundary. Alternately, we 
may note that the height field oscillates with uniform magnitude equatorward of the 
turning points and since the magnitude at the equator vanishes by anti-symmetry, 
it must vanish everywhere along the eastern boundary. 

As in the symmetric case, we can examine a wide range of properties of the response 
to anti-symmetric forcing by choosing the idealized form F = y exp [-1 /2 fLY ' l for 
which an approximate analytic solution may be obtained. This particular forcing 
has its maximum at y = fL-,12, its value at the maximum being (fLe)- 112

• 

The sum can again be extended to N -> oo using the same approximation as be-
fore and analytically summed (the details are given in Appendix 3) with the final 
result: 

{ [ 
1 ] [ q' (fL,q>t} ] 

u/ XE = 
1

11:}' , 1-3 (fL,q>t} exp -
2 

Y'"I (fL,q>t} 
I'· I ' (fL,q>t} 

6. The factor of ,,, arises because the year has 'TT X 1 OT sec. 

exp [iwt] 
iq, 

(42) 
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Figure 8. The low frequency(</>= .01) Anti-Symmetric Case withµ. = .02 amplitude of hlX .. 
Contour interval .2. (Phase is uniform across basin so is not shown-see text.) 

The functions q (µ.,cf,), t (µ.,cf,) and "I (µ.,cf,) have been previously defined by (24), 
(27) and (28), respectively. 

a. The small cf, case. 

In the limit that cf,<< 1 and for y• << cf,-1, the solution (42) for the height 
field reduces simply to 

h/ X,, = ~ y' exp [ - + µ.y' ] exp [ieul] . (43) 

Again we may note that this is equivalent to the low frequency "Sverdrup" limit 
h, = F -yF, given in Cane and Sarachik (1977), Eq. (25c). We also note that the 
response is 180° out of phase (since g < 0) with the forcing with no phase variation 
across the basin, either zonally or meridionally. 

Figure 8 shows the solution, obtained by summing modes, forµ.= .2 and cf,= .01; 
it is almost identical (to O(cf,)) with the analytic solution (42). In particular, the 
amplitude increases westward as ltl and has a maximum at y = (3/ µ.)+112 (3.87 
for the parameters of Fig. 8). The phase (not shown) was verified to be within 
O(cp) of I 80° everywhere. 
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b. The cf,~ 0 (I) case. 

As in the symmetric case, the general solution (41) has the integral term which 
is not easily interpretable. We can gain a qualitative understanding of what is going 
on in this case by considering the shadow zone and the region exterior to the 
shadow zone separately. If we consider µ, small, the region for which µ,y' sec' 2</>t 
is small may be taken as a definition of the region outside the shadow zone. In this 
case the integral in (42) may be partially integrated as before to give the asymptotic 
result, outside the shadow zone, 

h/ X,, ~ µ,y 1 (cos 2cf,0-112 
[ exp [ 2 µ,y' sec' 2</>t ] 

+ i (2y2
)-

1 sin 4cf,f exp [ + iy' tan 2</>f ]] 

-exp [ - + µ,y' ]f (icf,)- 1 exp [iwl] . 

(44) 

As long as cf,< 1r/4, so that there will be no focus and no shadow zone, (44) 
provides a reasonable asymptotic approximation for y ;;, 2. Figure 9 shows the 
amplitude and phase of the height field oscillations for parameters characteristic of 
anti-symmetric zonal forcing with µ, = .2 in the Atlantic; cf, = .54 < 1T / 4. Super-
imposed on the amplitude diagram are the lines of relative maxima and minima 
given directly by Eq. (44)-we see that the qualitative behavior of the pattern is 
reproduced, for y;;, 2, by this asymptotic result. By plotting (44) directly for this 
case, we have verified that the asymptotic approximation is accurate to 10% for 
y ;;, 2 when compared to the modal sums, the accuracy improving with increasing 
distance from the equator. 

When cf, ;::;: 1T / 4, the characteristic focus-caustic-shadow zone structure exists also 
in the anti-symmetric forcing case, the focus again being at cf,f = -ir / 4. Figure 10 
shows the response to anti-symmetric forcing with µ, = .2 for parameters char-
acteristic of annual forcing in the Pacific, cf, = 1. 13. Since µ,y' sec' 2</>f is no longer 
small as the focus is approached, the approximation given by (44) breaks down: it 
only holds in the regions where µ,y' sec' 2</>f is small, namely, outside the shadow 
zone. The integral is asymptotically approximated, by partial integration, as 

I= - f :E sin 2{ (cos 21:)-''' exp [ --} µ,y' sec' 2{ ] exp [ i ~' tan 2{] d{ 

= -(iy' )-• (cos 2,f,f.)112 sin 2,f,fo exp [ i -f- tan 2,f,fo ] (45) 
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Figure 9. The Atlantic Annual (</> = .54) Anti-Symmetric Forcing Case for p. = .2. 
a) Amplitude of hi X, . Contour interval is . I. Solid lines indicate maxima and dashed line 

minima according to ( 44). 

where lo is defined arbitrarily by 

1 
2 µ,y' sec' 2cf,lo = C << 1 (46) 

and C is some small constant. The essence of the approximation ( 45) is that 
there will no longer be any contribution to the integral for lc/>ll > lc/>lo\ since the 
exp [-1 / 2 µ,y' sec' 2,1 is so small. If y' is so large that (46) can no longer be 
satisfied, it is clear that the integral now vanishes exponentially and 

h/ X,, ~ iµ,ycf,-1 exp [ - + µ,y' ] exp [iwl] . (47) 

Inside the shadow zone, ( 4 7) is also an excellent approximation and we see that the 
amplitude becomes smooth, independent of e, and the phase leads the forcing by 
1r/ 2, again independent of l, as illustrated in Figure 10. In Figure 10a, the relative 
maxima and minima given by the approximation (44) applied outside the shadow 
zone are shown while it is clear from both Figures 1 Oa and 1 Ob that ( 4 7) applies 
inside the shadow zone. 
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b) Phase of I, with respect to the forcing (negative phases lead). Contour interval so•. Hash 
on eastern boundary occurs where amplitude is zero so bas no significance. 

In both Figure 9b and Figure 10b we see that the phase decreases eastward and 
so corresponds to a westward zonal phase velocity. Since there is hardly any phase 
variation in the shadow zone in Figure 10b, the zonal phase velocity there would 
be effectively zero. 

6. Conclusion 

In this paper we have examined the periodic response of the linear inviscid 
shallow water equations in a meridionally unbounded basin to zonal forcings at a 
single low frequency w. A general solution in the long wave approximation and on 
an equatorial ,B-plane was obtained by summing the Kelvin mode and the finite sum 
of Rossby modes whose turning points lie equatorward of the turning latitude at 
frequency w. The character of the response was shown to depend on the parameter 
tp = wX8 where X 8 is the zonal extent of the basin. (In terms of dimensional var-
iables tp = wXlil/ c where c is the speed of the Kelvin wave.) For the simplest 
symmetric zonal forcing exp (-1/ 2µ.y' + iwt] and the simplest anti-symmetric zonal 
forcing y exp [-1 / 2µ.y' + iwt] , the sum was extended to infinity and performed 

analytically. 
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Figure 10. The Pacific Annual (cf,= 1.13) Anti-Symmetric Forcing Case forµ. = .2. 
a) Amplitude of hi X,. Contour interval is .05. Solid lines indicate maxima and dashed lines 
minima according to (44). 

It is especially illuminating to compare the symmetric and anti-symmetric cases; 
examination of the general solution (19) shows that the major difference between 
the two cases resides in a term which consists of the Kelvin mode plus its eastern 
boundary Rossby reflections (Cane and Moore, 1981). In the low frequency limit 
(cf,<< I) both the symmetric and anti-symmetric cases had the height field ti/J in 
phase with the forcing everywhere across the basin. For the anti-symmetric case, 
this was sufficient to insure that the height field itself was in phase with the forcing 
everywhere across the basin and thus be in equilibrium with the forcing. For the 
symmetric case, however, the presence of the aforementioned Kelvin wave term 
induces a phase variation of the height field with respect to the forcing so that the 
height field could no longer be said to be in equilibrium with the forcing. Only in 
the special case of forcings of large meridional scale (large values of the parameter 
p = 2</>1,.-•) was the height field itself in equilibrium with the forcing. Consequently, 
observations of the variations of dynamic topography per se are a more stringent 
test of theory than are observations of gradients. 

This Kelvin wave term also makes itself felt in comparing the symmetric and anti-
symmetric cases when cf, is of order unity. The anti-symmetric case for cf,> Tr/4 
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b) Phase of lz with respect to the forcing (negative phases lead). Contour interval 50'. Hash 
on ei,stem boundary has no significance. 

shows the characteristic focus-caustic-shadow zone structure predicted by Schopf 
et al. (1981) in their analysis of dispersion of Rossby waves. But a comparison of 
the symmetric vs. anti-symmetric case (e.g., Figs. 6a and 6b with Figs. 10a and 10b) 
shows considerably more structure in the symmetric case, with multiple maxima 
bounding the shadow zone and rapid phase variation within the shadow zone. 
Again, these additional complications can be traced to the term involving the Kelvin 
wave plus the boundary reflections, the first term in Eq. (35), which has the form 
of the third term but withµ,= 0. As Cane and Moore (1981) have shown, Rayleigh 
friction in this Kelvin term has the same effect as an x-dependent µ, so that as 
friction is added, we may expect some of the additional structure due to the Kelvin 
term to be smoothed away. 

The final consequence of the Kelvin term on the distinction between the sym-
metric and anti-symmetric cases is the effect on the phase. In all of the anti-
symmetric cases, the phase variation was in such a direction as to indicate westward 
zonal phase velocities. In the symmetric cases where the Kelvin term was present, 
there were eastward phase velocities present somewhere. It is to be emphasized that 
the term involving the Kelvin wave plus its reflection is not confined to the vicinity 
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of the equator where the Kelvin mode has amplitude, but rather extends merid-
ionally throughout the basin since the Kelvin mode excites all Rossby modes at 
the eastern boundary. Previous analyses of periodic response (e.g., White, 1977; 
Meyers, 1979; Schopf et al., 1981) have treated the response solely in terms of 
Rossby waves without including the Kelvin wave and its Rossby reflections and 
thus cannot be valid for forcings with symmetric components. (An exception is 
Kindle, 1979.) In general, the periodic response is a complex superposition of Ross-
by waves, Kelvin waves and the eastern boundary reflections of the Kelvin waves. 
The phase of this response varies with both latitude and longitude even when the 
forcing has no spatial structure; it cannot be analyzed solely in terms of "annual 
Rossby waves" (a result that is supported by the aforementioned data studies). 

In principle, a sum of Rossby modes, each term of which propagates westward, 
could involve eastward phase propagation. But in our forced symmetric problem, 
eastward phase propagation can be traced to the term involving the Kelvin mode 
plus its reflections, i.e. the term multiplying p in eq. (26). Therefore, in this forced 
problem, eastward phase propagation is not possible without the Kelvin mode. As 
noted in Section 4, for a symmetric annual forcing in the Atlantic, the response in 

thermoc!ine depth variations showed a mean eastward phase speed of about 30 cm 
sec-1, in agreement with Merle's (1980) analysis of equatorial Atlantic data. Our 
solution shows that almost all of the phase variation occurs in a region occupying 
about one third of the zonal extent of the basin centered at the "pivot point" one 
third of the way from the western side (Fig. 5b). This feature also agrees with 
Merle's data (see his Fig. 6 and note the actual positions of the heat content 
minima). Further, the pivot point in our solutions resembles the data in not being 
at the central longitude of the basin and in moving somewhat in time (cf. our Fig. 
5a and Merle's Fig. 6b). The former characteristic has the consequence that the 
heat content of an equatorial band varies seasonally; not all heat is simply moved 
east-west; some is exchanged with higher latitudes. 

In both the symmetric and anti-symmetric cases we considered the effects of the 
meridional scale of the forcing, especially near the equator. Since there is no 
equatorial response in the anti-symmetric case, most of the near-equatorial sensitiv-
ity to meridional scale exists in the symmetric case and we found, essentially by 
trial and error, that the amplitude response becomes independent of scale for merid-
ional scales greater than ten degrees of latitude but that some phase variation 
persists for all meridional scales. A number of simulations of seasonal response 
have used realistic winds within a few degrees of the equator and then simply 
extended them uniformly in the meridional direction, a procedure that may give 
unrealistic results. (This may be the reason that Busalacchi and O'Brien (1980) 
obtain different results using a realistic wind field than when they duplicate Kindle's 
(1979) study.) This procedure has been justified by reference to McCreary's (1976) 
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El Ni.iio study. In that work experiments with various wind forcings showed that 
only the symmetric component of the winds within three degrees of the equator 
affected the eastern boundary response. This result is correct for the initial value 
problem McCreary studied and is easily understood on theoretical grounds. For 
short times, only the initial wind-forced Kelvin wave reaches the eastern boundary. 
The amplitude of this wave is given by projecting the zonal wind forcing onto the 
Kelvin mode, a gaussian centered at the equator with a half width of about three 
degrees (for the first baroclinic mode). The seasonal response is a long time 
equilibrium response (the case studied in this paper). It allows time for Rossby 
waves at all latitudes to reach the western boundary and generate additional Kelvin 
waves which then propagate to the eastern boundary. Most studies of seasonal 
response have focused on eastern boundary effects (upwelling in the Gulf of Guinea, 
eastern Pacific thermocline displacement), precisely the region we have found to be 
most sensitive to the meridional scale of the winds. 

Figure la shows that resonances exist for values of cf, that are multiples of 1r/2 and 
that the amplitude of the response is enhanced in the neighborhood of these values. 
Taken at face value the data of Katz et al. (1977) suggest such an enhanced re-
sponse: the amplitude of the annual component of the zonal wind is about half the 
mean while the variation of the zonal pressure gradient in the ocean is comparable 
to the mean. However, the values of cf, appropriate to annual forcing in the Atlantic 
(.54 and .96 for the first and second baroclinic modes) are not near resonance. We 
believe that the available oceanographic data is not representative of the climatic 
mean because the only observations in the spring were from the Equalant expedi-
tion in 1963. That year was one of the most anomolous ever in the Atlantic (e.g., 
Katz et al., 1977, Table 4) and the total absence of a zonal pressure gradient in 
that spring may be attributable to unusually weak zonal winds. 

Throughout the analyses in this paper we have been struck by the fact that such 
simple forcings at a single frequency give such complicated and varied patterns of 
response. While there is some doubt about how much of this type of single layer, 
linear, inviscid, theory will survive the real world complications of inhomogeneous 
stratification, nonlinearities, realistic basic geometry, friction, and mean currents, it 
is worth pointing out the enhancements of periodic response ("foci") and diminu-
tions of periodic response ("shadow zones") are present in linear theory and should 
be looked for in more realistic cases. 

The complexity of our results bas some disturbing implications for our prospects 
of understanding the low frequency deep jets observed in the equatorial oceans. The 
linear inviscid assumptions of our theory should hold for the deep ocean so that 
its low frequency response may be described by a linear superposition of vertical 
modes. Our results suggest that even if the low frequency forcing bas a simple 
structure one would expect considerable spatial inhomogeneity in the deep ocean 
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response. In reality the deep ocean is forced by a combination of direct wind 
forcing, pumping from the nonlinear upper ocean and boundary effects. The struc-
ture of this forcing is neither simple nor well known. 

On the basis of this linear inviscid theory we can draw some conclusions about 
the causes of the differences between equatorial thermocline response in the At-
lantic and Pacific mentioned in the Introduction. The Pacific exhibits little annual 
variation of the thermocline relative to the mean, with the only marked changes 
occurring at the eastern end while the Atlantic shows substantial variations at all 
longitudes. Comparison of the equatorial response to symmetric winds for the 
Atlantic annual (Fig. Sc) and Pacific annual (Fig. 6c) cases indicates that the annual 
equatorial thermocline response should be greater in the Pacific and roughly of 
similar form. Since we therefore cannot attribute the difference to the basin size, 
our conclusion, based on linear, inviscid theory, must be that the difference in 
annual response in the two basins is attributable to the wind forcing. It is in fact 
the case that the zonal winds in the Atlantic have a stronger annual signal than the 
Pacific winds, especially in the near equatorial symmetric component. In contrast, 
the interannual variations of the winds are larger in the Pacific. Both factors make 
the Atlantic a better laboratory for studying the seasonal response and the Pacific 
a better laboratory for studying the interannual response of equatorial oceans. 
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APPENDIX 1: REVIEW AND NOTATION 
The normalized scalar eigenfunctions on a meridionally unbounded equatorial ,B-plane are 

,P" (y) = [1T'"' 2" n!J-'" H" (y) exp [-y'/2] 

and satisfy the orthonormality condition 

(,P"). = (,P.)" = 6,. 

where scalar projections are defined by 

( ),= s: .. ( ),P"(y)dy . 

A projection that repeatedly occurs is that of y: 

(y),,,., = 21r'1' "'"•' = 21T'1' [2"11!]-' [(2n + !)!]' " , 

(A.I> 

(A.2)• 

(A.3)• 

(A.4)• 

where only odd projections exist by the symmetry properties of the eigenfunctions. Using: 
Stirling's formula in (A.4), the a:,i .. 1's are easily seen to go as n11• for large n. 

Along the equator Y = 0, only symmetric functions have non.zero values and these are re--
lated to the a's by 

"''" (0) = (-1)" [rr'" (2n + l)J-'" a~., . (A.5)1 
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Normalized Kelvin and Rossby vector functions are defined by (the upper component refers 
to u, lower to h and super T means transpose) 

and 
R. = [4n(n + l)J-' [-(2n + l),J,'. -y,J,., (2n + l)y,J,. + ,V. ]' 

l [ (n + 1)- 'l' ,J, •• , -n-'" ,J,~ , ] 

= 2 Y2 (n + 1)-'" ,J,.,, + n-u•,p0 _ , • 

(A.6a) 

(A.6b) 

(A.6c) 

Both the Kelvin and Rossby functions (A .6a) and (A.6b) have their u velocities in geostrophic 
balance with their height fields, i.e., yu + h, = 0. They are, in addition, mutually orthogonal, 

[R.,M.J = [M.)t.] = 0 

and satisfy the normalization conditions 

[Mr,M,] = l and [R.,R.] = (2n + I) (4n (n + 1))-'6 •• 
where 

[A,B] = s: .. [A.B. + A,B,] dy . 

APPENDIX 2: SOME EXACT SUMS 
Consider the vector sum 

L (y,c) = c-•Mr + 2 L a,..,R,..,c'-' . 

·-· 

(A.7a) 

(A.To) 

(A.8) 

By using the explicit forms of Mr and R,.,,, in (A.6) as in Cane and Moore (1981), the 
definition of"'"" in (A.4), and by rearranging the sum, (A.8) can be rewritten 

L (y ,c) = R (y,c) [1-c', I + c']' 

where 

R (y,c) = z- •l'c- • L (2n + l)-•1•a,. .. ,J,,. (y)c"' 

•~• 
The integral representation for the Hermite function 

H,. (y) = ,r-'1'2'"" exp [y'] s: (-l)"t"' exp [-t'] cos 2yl dt 

can now be used in (A. I 0) and interchanging the integral and the sum yields 

R (y,c) = 2,r_.,, exp [y'/2] f'" exp [-t'] cos 2yt ::£ [n!J-• (-l)"t"'c'" dt 
0 n = O 

The sum is simply exp [-c't'] and the integral can be performed using 

f: exp [-pt'] cos bt dt = (,r/ 4/1)'" exp [-b' / 4/3] 

(A.9) 

(A.10) 

(A.II) 
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(Gradshteyn and Rhyzhik, 1965; Eq. 3.896,4) to yield, finally , 

R (y,c) = c-' (21"1')_,,, (I + c)- '1' exp [y' (c'-1)/2 (c' + !)] (A.12) 

As a special case, c = I reduces to a sum used extensively in Cane and Sarachik (1977) 

L (y,1) =MK+ 2 L a,,,.,R, • ., = ,,,.-,,, [O,l] ' . (A.13) 

n=O 

Putting c = exp [2ict,fl produces the form used in the body of the text (e.g, Eq. (21)). 
An important scalar sum is derived by considering the h component of L (y,c) at y = 0. 

Using the explicit expression for R,.., (y) in (A.6c) and evaluating it on the equator using (A.5) 

yields 

c- ' + L (-1)" [a, • .,]' (211 + n-' (211 + 2)-'c'"" = (I + c')'1'c- ' (A.14) 

n=O 

where the sum R (0,c) has been used for the right-hand side of (A. 13). Finally, noting that 
(-1)" = -i (I)""' , defining Y• = [a.]' n-' (n + n-', and redefining c ic yields the scalar sum 

(A.15) 

The special case S (I) = I was already noted in the Appendix to Cane and Sarachik (1977). 
An anti-symmetric scalar sum 

Q (y'c) = 2-'1' "' a •1• c"' " ,L,,,; 2•Hl 'f'!! H+1 (A.16) 
n-o 

can be summed by methods almost identical to those leading to the sum for R (y,c) with the 
result 

( 
2 )'I' Q(y,c) = y t + c' [ _L_j c'-1 )] 

exp - 2 -, c' + I (A.17) 

When c = I, (A.16) and (A .17) are just the expansion for y. 

APPENDIX 3: MATIIEMATICAL MANIPULATIONS 

For the symmetric forcing case, F = exp (-1/2µ.y'], discussed in Sec. 4 of the text, the 
necessary projections of the forcing may be taken analytically. Since the forcing is symmetric 
with respect to the equator, only odd values of 11 need be considered in the Rossby projection 
r,. so that 

r, • ., = - :;: :;:;; [ : ~:] • [ µ. + 4n 3] (A.!Sa) 

and the Kelvin projection is 

(A.18b) 
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Then, the functions needed in the general solution (I 9) and (20) become 

N 

Bs (i</>) = (I~:;,,, L ;,, .. , [ : ~: ] • [ µ + 4n 3 ] [I -exp [- i<f, (4n + 3)1] 

(A.19a) 

and 

N 

Ss (exp [-2i<f,]) = L y~., exp [-(2n + I) 2i</>] (A.19b) 
11 = 0 

where 
i'• = (a.)' [n(n + l)J-• . 

We wish to show now that it is a good approximation in (A .19a) and (A.19b) to take 
From the explicit expression for a,. in (A.4) it is seen that a,. for large n so th at y,. n-31~ 

for large n. Thus in the expression for S,· (exp [-2i<f,]), for example, as long as 2</> is not near 0 
or a multiple of "IT, the series for both the real and imaginary part will have converged well 
below N and little error is made by continuing to sum to infinity. When cf> is near zero, the 
terms in the imaginary part of S" are y,-., sin (2n + I)</> and will go as n_,,, for (2n + I) <<1>-• 
and n__,,, for (2n + I) 1-•. The condition that be a good approximation to S, is that 
the terms of the series be in the n--s112 region for n N. Since 2N + 1 ,..._, cf>-:\ this conditi on is 
simply that 1 < q,-1 so that for low frequencies Lim~ . SN is always a good approximation to 
SN. Another way of saying thi s is that as the frequency gets small, the number of terms needed 
for convergence increases as q,- 1, while the number of terms of the series (.N) increases as q,-1 

so that for small enough eu (or <J,) the sum of N terms will always include the convergent region 
and the sum can then safely be extended to infinity . The limit of S, (exp [-2i<f,]) can be 
summed using the sum (A.15) in the Appendix and is simply 

Lim S., (exp [-2i<f,J) = S (exp [-2i<f,]) 

= exp [2i</>] -(2i sin 2</>)'" exp [i</>] (A.20) 

The expression forB ., (i<f>) can similarly be extended to using arguments similar to those 
for S , . Again the scalar sum in (A.15) of Appendix 2 can be used to explicitly evaluate these 
infinite sums. Thus in B (i<f>) =Limr . B, (i</>) the sum 

N 

"' [!-µ]. L., y,-, I+µ [I -exp [-i</> (4n + 3)]) (A.21) 

·-· 
is evaluated in terms of the S function of Appendix 2 to be 

(~)'"l [(~) '" J- . [(~)''' J 
1 - µ S 1 + µ exp [1</>] S 1 + µ exp [-2i</>] 

= ( ! ~: ) [ I - ( I 
2:µ ) ,,, -exp (i</>] + ( I !µ ) .,, q (p. , -</>) ] 

where 
q (p. ,<f>) = [µ cos 2</> -i sin 2<f>]'1' • 

(A.22) 

(A.23) 
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Similarly, the sum 

( 
I -µ ) • 2 

4
; '".;_• 

3 
[I - exp [- i cf, (4n + 3)1] 1 + µ 

·-· 
= ; f i: ')'.,., ( : ~: ) • exp [-icf,' (4n + 3)) def,' 

0 n-o 

=i f :exp[-icf,'J ( ~: ) "' S [(: ~: ) ' ' ' exp[-2Wl] def,' 

= i ( : ~;) ,,, f : [ exp [WI -2'1' (I + µ)- ' " q (µ, -cf,') ] def,' . 

(A.24) 

Combining (A.20), (A.22), and (A.24) in the expression (A. I 9a) for B yields the explicit 

expression 

B (icf,) = Tr'1' (I + µ)-'" (I -exp [i cf,)) 

+ .,,,,, 1''' (I -µ')- ' [ µ"" -µq (µ,-cf,) + i f : q (µ, -cf,') def,' ] . (A.25) 

Combining (A.21) with (A .20) in the definiti on (20) for p fin ally yields 

dKp (icf,) = Lim .,,,,, (I + µJ-'" P• (icf,) 

= .,,,,,(I-µ')- • [i sin 2cf,J-'" [ µ" ' -µq (µ, -,P) + i s: q (µ, -cf,') def,' ] 

(A.26) 

Now, having obtained the scalar function p and having already summed (in Eq. (21)) the 
vector terms multiplying p in Eq. (19), we proceed to sum the Rossby terms in (19) in the limit 
that To do this we need the sum 

± a,.., ( : ~: ) • [I - exp [icf,f (4n + 3))]R,.., . 

·-· 
This can be written in terms of the vector sum L (y,c) defined in (A.8) of Appendix 2 as 

_I (--1..±t::.) ,,, l - (--1..±t::.) ,,, . ( (_!_::t:_) "' ) 
2 I -µ I - µ M , + L Y, I + µ 

( : ~; ) '" exp [-icf,flM K + exp [icf,fl L ( y, ( : ~:) "' exp [2icf,fl ) f 
(A.27) 

Similarly, 

1 
4n + 3- ll -exp [icf,f (4n + 3)1] R,.., 
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f
., 

= -i 
O 

2, "'"" ( : ~:) • exp [i{ (4n + 3)] R,.., d{ 
n = O 

= - _2i ( II +_µ,µ, ) ,,, f ·.· l ( I +µ, ) 'I' - 1 -µ, exp [-i{ ] M. 

+ exp [i{]L ( y, (: ~: r exp [2i{l )t d{ . (A.28) 

Finally, collecting all the terms in (19) together and using the form of L (y,c) given in (A.9) 
and (A.12) gives the explicit form for the response to the forcing exp [-1 / 2 µ,y' + iwt] . This 
is given in eq. (26) of the main body of the text. 

For the anti-symmetric forcing y exp [-1 /2 µ,y' + iwt] discussed in Sec. 5 of the text, the 
projections of this forcing may be taken explicitly as: 

8µ, ( 1 -µ,) • 
T2t1 = -21/~r.l /6 1 -µ! 1 +µ 

n (2n + 1)112 

4n + 1 
(A.29) 

If we extend the sum N to infinity in (41) using the same approximation as before, and use 
the explicit form for the Rossby mode given in (A.6b) then the solution can be written in terms 
of two infinite series: 

u = - expi~wt] 1 =:'µ,' (I + µ,)'I' l I , [ : ] + + ~: ~:; I , [ -..1 ] t (A.30) 

where 

11 = 2,,,.,..,, tf,,-., [1 -exp [ic/>s (4n + I)]] (A .3la) 

and 

2n + 3 ( 1 -µ, )" 
4n + 5 I + µ, tf,,-.,[l-exp[ic/>s(4n+5)]]. (A.Jib) 

Using the identities 

and 

n 
4n+ I 

_41[ 1 ] I - 4n+ I 

!~ ! = +[ I + 4n 5 ] 

both series can be written in terms of the single series 

p (µ, ,cf>) = 2,r'i' 2, ( 
1-µ, )" 

O t,,+1 I + µ. tf, .. ., exp [ic/>s (4n + 3)] (A.32) 

·-· as 

I,= 4-• J P (µ,,0)-P (µ, ,cf>!) exp [-2ic/>fl + i 5: 1 
P (µ,,C) exp [-2i0 d' f (A.33a) 

and 

I, = 2-• l P (µ,,O) -P (µ,,cf>!) exp [2i</>fl -i f :1 
P (µ,,0 exp [2i{l d{ f . (A.33b) 
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Toe series P (µ.,q,) can be summed explicitly in terms of the anti-symmetric scalar sum Q 

given in (A.17): 

P (µ.,</,) = exp [3iq,]Q y, ( 1 ~:) exp [2iq,] ( 
1 " ' ) 

= y (1 + µ.)"' r' (µ.,</>) exp [ + y'71 (µ. ,q,) ] • (A.34) 

Finally, combining (A.30), (A.33), and (A.34) yields the final result given in Eq. (42) in the 

main body of the text. 
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