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On the dynamics of equatorial outflows 
with application to the Amazon's basin 

by Doron Nofl 

ABSTRACT 
A simplified model is considered in order to describe the dynamics of outflows of rivers or 

sea straits located at or near the equator. The model is steady, frictionless aod nondiffusive but 
the motions are not constrained to be quasigeostrophic. The geometry of the oceanic basin 
into which the outflow debouches is approximated by a wedge and the vertical structure of the 
flow is represented by two layers of different densities. Approximate solutions to the potential 
vorticity equation and the Bernoulli integral are obtained analytically. 

It is found that, due to the {3 effect, an equatorial outflow is deflected toward or away from 
the coasts depending on the basin geometry and the direction of its axis. The deflection is 
accompanied by separation and "blocking" which results in coastal or equatorial trapping. 
When the angle between the coastlines forming the basin is larger than 120' and the basin's 
axis of symmetry is directed toward the northeast, as is the case of the Amazon's basin, the 
outflow is deflected away from the coasts and separates from both walls. Consequently, the 
outflow penetrates into the ocean interior as an isolated current. 

A possible application of this theory to the processes responsible for the formation of iso-
lated lenses containing Amazonian water, such as those observed off the South American 
Coast, is discussed. It is shown that these isolated lenses may be related to the profound sea-
sonal variability of the Amazon's discharge and the subsequent variability of the separation 
points. Such a variability can lead to a seasonal formation of isolated segments containing 
Amazonian water which undergo geostropbic adjustment, close upon themselves, and form 

isolated lenses. 

1. Cooperative Institute for Marine and Atmospheric Studies (CIMAS) and the Division of Meteor-
ology and Physical Oceanography, Rosenstiel School of Marine and Atmospheric Science, 4600 Rick-
enbacker Causeway, Miami, Florida, 33149, U.S.A. 



2 Journal of Marine Research [39, 1 

1. Introduction 

The Amazon outflow represents a unique problem because of the geographical 
location of the mouth (at the equator) and the immense fresh water discharge 
[~200,000 m'/sec (Davis, 1964; Gibbs, 1970)]. The Amazon fresh water discharge 
is so great that in terms of its effect on the salinity budget of the ocean, the Amazon 
supplies a "salinity anomaly" (the discharge times the salinity difference between 
the ocean and the source) which is twice as large as the one supplied by the Medi-
terranean outflow. Furthermore, the water of the Amazon maintains its identity as 
a stream penetrating far into the Atlantic Ocean. 

During the last two decades interesting features related to this penetration have 
been observed. Ryther et al. (1967) and Gibbs (1970) have documented the pres-
ence of isolated low salinity lenses off the South American Coast, Froelich et al. 
(1978) observed similar lenses as far as the Caribbean Sea, and Landis (1971) 
described low salinity pockets east of Barbados. These low salinity lenses usually 
have a diameter of several hundred kilometers and a depth of ~20-40m; an ex-
ample of such a lens is shown in Figure 1. Since the presence of a thin fresh water 
layer in the upper ocean affects the structure of the mixed layer, it is reasonable to 
expect that such relatively large low density lenses will affect the interaction of the 
ocean and the atmosphere and might also influence the local climate. 

Because of these features, it is of interest to investigate the nature of the Amazon-
Ocean interaction. To do this we simplify the problem to that of a channel empty-
ing into an otherwise undisturbed equatorial ocean. As the river water spreads in 
the open ocean it experiences changes in the local planetary vorticity which must 
be offset by local changes in the structure of the flow. Our aim is to study the 
general characteristics of this process and to examine the mechanisms which may 
lead to a formation of isolated lenses. We do not intend to simulate the details of 
the real system; we merely hope to preserve enough analogy to the real system so 
that our results will give insight into natural phenomena. 

There have been a number of previous investigations of rivers outflows dynamics 
(e.g., Takano, 1954, 1955; Paul and Lick , 1974; Nof, 1978a, b) but none of these 
investigations examined the influence of a variable Coriolis parameter which plays 
a major role in the problem under consideration. To simplify the analysis we shall 
consider a two-layer inviscid nondiffusive model whose motions are driven solely by 
the river discharge (Fig. 2). In other words, the effects of wind and longshore cur-
rents, such as the Guiana Current, are not taken into account so that the basin 
would have been stagnant had the Amazon not been flowing into it. 

In contrast to most rivers, the Amazon estuary does not have a salt wedge ap-
parently due to its relatively shallow depth at the mouth ( ~ 12m) and its large dis-
charge (Gibbs, 1970). Therefore, we adopt a model which contains two sections; 
the flow in the feeding channel consists of one layer while the basin consists of two 
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Figure I. The Amazon's basin and the observed salinity structure of a typical low-salinity lens 
(adapted from Ryther et al., 1967). Salinity concentrations are given in parts per thousand 
(%0). The lowest salinity is in the lens' core and equals --24%11. 

layers (Fig. 2). The lower layer is assumed to be very deep and its velocity (but not 
necessarily the transport) is neglected. 

The geometry of the model has been chosen in such a way as to simplify the 
boundary conditions and to ensure that the problem is well posed. The hydrostatic 
assumption is invoked, but the motions are not constrained to be quasigeostrophic 
in the sense that the Rossby number characterizing the flow is not necessarily small. 
The flow is governed by two nonlinear equations, the potential vorticity and the 
Bernoulli equation. By using a power series expansion in E = b / /, the ratio of 
the width of the estuary to the length scale of the flow in the open ocean, the po-
tential vorticity equation is reduced to a second-order partial differential equation. 
This equation indicates that as the flow spreads in the basin and advances into the 
open ocean, the relative vorticity (f = av/ ax-au/ay) must decrease in order to 
compensate for the increase in planetary vorticity. With the aid of the same power 
series expansion, the Bernoulli integral is reduced to an algebraic equation relating 
the upper layer depth to the upstream depth. This relationship indicates that to 
zeroth-order the depth of the upper layer in the basin is uniform and does not 
vary with x or y. 

The reduced potential vorticity equation and the zeroth-order Bernoulli integral 
are then combined to a single linear second-order partial differential equation of 
the elliptic type, the so-called Poisson equation. Its solution is found by elementary 
methods and by means of third order polynomials. It shows that when the fluid 
reaches a "critical" distance from the mouth its relative negative vorticity becomes 
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so large that the flow cannot occupy the entire basin's width. Consequently, separa-
tion occurs and downstream, portions of the basin are "blocked" in the sense that 
no parcels which originated from the mouth can enter them. Much of the discussion 
is devoted to a detailed investigation of the phenomena of separation and blocking. 

The results of the mathematical model are then qualitatively compared to the 
salinity structure observed near the South American Coast. Such a comparison 
shows that the actual outflow possesses a separation as predicted by the mathemati-
cal model. The analysis is concluded with an examination of the seasonal variabili-
ty of the separation points which is caused by the seasonal variability of the fresh 
water discharge. This theoretical examination reveals that the seasonal variability 
may lead to a formation of isolated patches which undergo an adjustment toward 
geostrophic balance and form isolated lenses with anticyclonic vorticity. The de-
tailed theoretical structure of these lenses is found analytically by solving the 
equations of motion and continuity in cylindrical coordinates. 

This paper is organized as follows: The formulation of the problem is discussed 
in Section 2. Section 3 contains the general mathematical analysis and Section 4 
includes the zeroth-order solution. Sections 5 and 6 examine eastward and north-
ward outflows, and the applicability of the model to the Amazon's basin is discussed 
in Section 7. Section 8 examines the processes which may lead to isolated lenses and 
Section 9 summarizes this work. 

2. Formulation 

We consider a two-layer model as shown in Figure 2. As mentioned earlier, the 
flow in the feeding channel consists of one layer since the Amazon's estuary does 
not contain a salt wedge. The lower layer in the basin is taken to be deep and its 
velocity (but not necessarily the transport) is neglected. We shall focus our atten-
tion on the region up to a distance of ~ 500 km from the mouth. In this domain the 
coastline can be approximately represented by two straight lines as can be seen 
from Figure 1. The northern portion of the coast is directed approximately toward 
the NNW and the southern toward the ESE. The x axis is chosen such that it divides 
the basin into two equal parts and its direction coincides with that of the flow at the 
mouth. Under such conditions, the y axis is not directed toward the north but rather 
toward (360° - a ,) as shown in Figure 2. This choice of coordinates system slightly 
complicates the representation of the Coriolis parameter but because of the basin's 
geometry it simplifies considerably the mathematical analysis and is the most con-
venient coordinates system for the problem. 

The flow in the active layer is taken to be steady, inviscid and nondiffusive and 
the pressure is assumed to be hydrostatic. The effect of the earth's rotation is r~pre-
sented by the familiar equatorial ,8-plane approximation. For hydrostatic motions 
the horizontal pressure gradients depend on x and Y alone; therefore, the horizontal 
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Figure 2. Schematic diagram of the model under study. The straight lines forming the basin 
into which the outflow debouches represent sections OA and OB of the actual coastline (sec 
Fig. I). The free surface displacement 7/ is measured upward from the free surface above the 
origin [i.e. 71(0,Q) = OJ. The interface displacement { is measured downward from the channel 
depth at x = y = 0. H . is the river depth at the mouth. 

velocity components (u,v) are taken to be independent of depth. For such condi-
tions the potential vorticity equation and the Bernoulli integral are (see e.g., Gut-
man, 1972): 

and 
'vu· ('v,,'.Jt/ h) + f = hK('.J.I) 

½('111"1 / h)' + gTJ = G('.J.I) , 

(2.1) 

(2.2) 

where K('.J.I) = dG('.J.1)/ diJ.I , '7 11 is the horizontal <lei-operator, f the Coriolis param-
eter, h the total depth of the fluid column, g the acceleration of gravity, 'I) the free 
surface displacement and '.JI a transport function defined by: 
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-uh= a'lt / ay; vh = a'lt/ ax. 
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(2.3) 

The free surface vertical displacement 1J(x,y) is measured upward from the free 
surface directly above the origin [i .e., 1)(0,0) = OJ, and the transport function 'It is 
taken to be zero at the left2 feeding channel wall [i.e., 'lt(x,b) = O; x ,,;; 0, where b 
is half the feeding channel width] . Note that in our coordinate system the Coriolis 
parameter is given by: 

f = [x cos(a, - a ,) + y sin(a1 - a ,)]/3 , (2.4) 

where 2a, is the angle between the two coastlines forming the basin, a, the tilt of 
the northern coastline (see Fig. 2) and /3 is the linear variation of the Coriolis pa-
rameter with latitude. 

The functions K('lt ) and G('lt) are to be determined from the conditions at the 
outlet to the basin which must be specified. Following Takano (1954, 1955) and 
Nof (1978a, b) who considered river outflows on an / plane, we assume that when 
the river enters the ocean (-b ,,;; y ,,;; b; x = 0) its velocity is unidirectional (v = 0) 
and does not vary in a cross-stream direction (u = U0 ) . In other words, it is assum-
ed that the streamlines remain parallel to the channel walls until the outlet is 
reached; in reality some modification is expected a distance of O(b) upstream from 
the outlet. It will become clear later that this approximation has a minor effect on 
the fi eld although the initial details of the flow in the basin will be altered a distance 
of O(b) from the mouth. 

3. Analysis 

a. Governing equations. We shall first evaluate the functions K('lt) and G('lt) from 
the conditions at the outlet to the basin. Since the flow at the outlet to the basin 
(-b ,,;; y ,,;; b; x = 0) is taken to be unidirectional (v = 0) it follows from the y 
component of the momentum equation [u(ov/ ox) + v(ov/ oy) + fu = -g(81J/ 8y] 
that the horizontal pressure gradient across the feeding channel is balanced by the 
Coriolis force [i .e., fu = - g(a1] /ay)] . In view of this and (2.4), the free surface 
vertical displacement at the outlet (x = 0) is : 

1}u = -/3U0y 2sin(a1 - a 2)/2g, (3.1) 

where the subscript "u" indicates that the variable in question is associated with the 
upstream conditions. 

To simplify the upstream conditions we shall further assume that at the outlet 
the channel bottom is not flat but rather has a transversal slope of dZ 8 / dy = d1]J dy, 
where Z 8 is the bottom elevation. With such conditions the column depth H . at the 
outlet is independent of cross-stream direction y . It will become clear later that this 
assumption of a particular bottom slope at the outlet can be avoided because 1] .(y) 

2. Hereaft er, left and right are with reference to an observ er lookin g downstream. 
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is much smaller than H 0 [for the Amazon, 'l'/u ~ O(lcm) while H 0 ~ O(lOm)]. That 
is to say, the assumption is made merely for convenience and is not essential for 
the general analysis. 

Application of the assumed conditions at the mouth (u = U 0 ; v = 0) to (2.1) gives: 

K('I') = f('l')IH., 

where /('I') is the Coriolis parameter at the outlet (-b <:;; y <:;; b; x = 0) expressed as 
a function of 'I', and H0 is the uniform outlet depth. With the aid of (2.4) one finds 
that K('I') = [,By('l')sin(a1 - a ,)]!H0 , which by considering the relationship between 
'I' and y at the outlet ['I'= -U.H0 (y - b)] gives: 

K('I') = : . (b - '1'/ U.H0 ) sin(a1 - a,). (3.2) 

Similarly, the function G('I') is found, from the conditions at the outlet and (2.2) 
to be: 

,BU. 
G ('I') = ½ Vo' - -

2
- (b - 'I' / U.H0)

2sin(a1 - a ,), (3.3) 

which satisfies the condition dG('I') / d'JI = K('I') as required. 
In order to determine the general structure of the governing equations, it is 

necessary to find the relationship between the fr ee surface vertical displacement 'l'/ 
and the total depth of the upper layer in the basin (h). Since there is no pressure 
gradient in the lower layer, the free surface vertical displacement is given by: 

(3.4) 

where pis the density of the upper layer, tip ( < < p) the density difference between 
the layers and { is the interface vertical displacement [measured downward from the 
origin (i .e., {(0,0) = 0)]. Hence, ['l'/ [<< I{[ and h (= H . + 'l'} + {) can be approxi-
mated by (H0 + {) so that (3.4) takes the approximate form: 

'l'/ = (h-H0 ) . (3.5) 
p 

The general form of the governing equations is now found by inserting (3.2), 

(3.3) and (3.5) into (2.1) and (2.2) : 

'v H • ('v n'I' / h) + ,B[x cos(a 1 - a ,) + y sin(a, -a,)] 

,Bh . = H. (b- '11/ U0H0 ) sm(a1 - a ,) (3.6) 

U.' ,BU0 

½('711'1'/ h)' + g'(h-H.) = -
2

- + -
2
- (b - '11/ U.H.)'sin(a, - a ,), 

(3.7) 
where g' is the "reduced gravity" defined by g' = g(!ip/ p). 
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b. Boundary conditions. According to the basin geometry and the assumption of 
uniform flow at the mouth, the boundary conditions are: 

'1'=0 ; y = b + x tan a, 

'I'= -U,Jl0(y-b) ; -b y b 

'I'= 2U,Jl0b ; y = -(b + x tan a 1) 

x=O 

O~x<co. 

(3.8a) 

(3.8b) 

(3.8c) 

For reasons that will be addressed shortly, we also require that all streamlines 
originate from the mouth and that there are no other streamlines in the basin. This 
condition can be written as: 

0 '11(0,y) 2U,Jl0 b for all 'I', (3.8d) 

which states that all 'I' must possess a value between zero and 2U,Jl0 b for x = 0 so 
that all streamlines cross the y axis. Note that although this condition may appear 
to be similar to (3.8b), the two conditions are not identical. While the former (3.8b) 
gives the distribution of 'I' across the mouth, the latter (3.8d) states that there 
cannot be any streamline which does not originate at the mouth. Condition (3. 8d) 
is, in principle, equivalent to the "radiation condition" which allows the fluid to 
flow out in the basin but does not allow the fluid to flow in. It is arrived at by the 
following reasoning. 

One intuitively recognizes that a reverse flow extending from infinity to the 
mouth cannot exist because the outflow is defined as a source and not as a sink. 
Consequently, if reverse flow exists in the basin then it must have originated at in-
finity and must also return to infinity without reaching the mouth. Such a reverse 
flow, which does not correspond to parcels which originated upstream, must be 
separated from the main outflow by a free dividing streamline. Due to the absence 
of friction and time dependent motions, there is no mechanism by which lateral 
momentum can be transferred across such a free dividing streamline. Since there 
are no sources of momentum in the basin other than the outflow itself, it follows 
that even the smallest amount of vertical friction will bring those regions into which 
the outflow does not penetrate, quickly to rest. One concludes, therefore, that such 
regions must be motionless everywhere and cannot contain any flow positive or 
negative. This gives the condition that reverse flow from infinity is impossible so 
that there cannot be any streamlines which do not originate at the mouth. Note 
that while this condition (3.8d) excludes the possibility of reverse flow extending 
from infinity, it does not exclude the possibility of a reversal of the outflow itself. 

As we shall see, conditions (3.8a-d) are sufficient to determine a unique solution. 
It is important to note, however, that conditions (3.8a) and (3.8c) are valid as long 
as the flow occupies the whole basin and touches both walls. As we shall see later 
the flow cannot occupy the entire basin's width beyond a "critical" distance fro~ 
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the mouth. In such regions (3.8a-d) are no longer relevant and should be replaced 
by new conditions. 
c. ·Dimensional and perturbation analysis. We shall first determine the velocity and 
length scales appropriate to the problem. Since the flow in the basin is a discharge-
driven flow the velocity scale is: '1!0 I /H0 , where '110 is the fresh water discharge 
(2V.bH.) and I is the, as yet, unknown length scale. This velocity scale is also equal 
to l/({3[)- 1 because ({31) - 1 is the appropriate time scale for the problem. Hence, 
the length scale I is found to be: 

I= ('IF0 l f3H0 )
1 1

'. (3.9) 

For the Amazon outflow (3.9) gives I ~ 80 km, which is considerably larger 
than the mouth's width (~ 10km). Note that the equatorial deformation radius 
[(g'(H . )•1(31] is not a relevant length scale to our problem because the typical speed 
in the basin is externally imposed and is not related to the speed of an internal 
gravi ty wave. 

The small ratio between the mouth's width and the length scale in the open ocean 
suggests that geometrically the feeding channel can be approximately represented 
by a point source. Although it is clear that such a geometrical approximation can 
be made, it is necessary to use a detailed perturbation scheme in order to obtain 
the proper governing equations for a point source. For this purpose, the following 
nondimensional scaled variables are defined: 

x* = xi i 

h* = hl H 0 

v• = vl U0 (bl [) 

y* = yl l 

e =(bl [) << 1 

\1 = I've 

'IF*= 'IFl 2U0H0 b 

u• = ul U0 (bl [) 

F = U0l (g'H0)!, 

(3.10) 

where F denotes the Froude number. In terms of these nondimensional variables 
the governing equations (3. 6) and (3. 7) are: 

( 
'v'I' * ) . . \1 • + x* cos(a,- a,) + y* sm(a 1- a 2) - eh*(l-2'1'*) sm(a 1-a2) = 0 

(3.11) 

p[ ] (h* -1) - 2 l-4e' ('v'I' * l h*)' + 2e' (1-2'1'*)' sin(a,-a,) = 0. 

(3.12) 

The nondimensional boundary conditions and the "radiation condition" are found 

from (3.10) and (3.8) to be: 

'IF* = 0 

[ 
y* ] 'It *=½ 1--E- ; 

-q,,:, = 1 

y* = (x* tan a, + E) 

- E ,;;; y*,;;; + E 

y * = - (x* tan a , + E) 

0 ,;;; '11*(0 ,y*) ,;;; 1 for a/I 'IF * . 

;0 < x'' <"' 

; x* = 0 

; 0 x* < c.o 

(3.13a) 

(3.13b) 

(3.13c) 

(3.13d) 
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Note that the lefthand side of (3.13b) is well-behaved even if E 0 because y* is 
always smaller or equal to E. As previously, (3.13d) indicates that aJl 'I'* intersects 
the y* axis when x• = 0 ensuring that all streamlines originate from the mouth so 
that there is no reverse flow extending from infinity. 

It is further assumed that the two unknowns 'I' * and h* can be expanded in 
power series: 

'l'*(x* ,y• ,a.,a,,F,E) = q,Col (x* ,y* ,a.,a,,F) 
+ e'1'C1> (x*,y*,a.,a,,F) + ... (3.14a) 

h*(x* ,y* ,a.,a,,F,e) = h10> (x* ,y* ,a.,a,,F) 
+ ehC1 > (x*,y*,a, ,a,,F) + ... , (3.14b) 

where the Froude number is not necessarily small: F I. By substitution of (3.14) 
into (3.11) and (3.12), and collecting terms of order unity the following zeroth-
order equations are obtained: 

V • (V'1'<0 > / h<0 >) = -[x* cos(a1 - a ,) + y* sin(a1 - a,)] (3.15) 

h<0 > = 1 + F' / 2. (3.16) 

Similarly, the zeroth-order boundary conditions and the radiation conditions are 
found from (3.14) and (3.13) to be: 

,P(o) = 0 

,P(o) = 1 

y* = x* tan a 1 

y* = -x* tan a, 

0 <:;; Lim ,P<0 l (0,y*) <:;; 1 for all ,P(ol 

0 <:;; x* < oo 

0 <:;; x* < oo 

(3.17a) 

(3.17b) 

(3.17c) 

Note that (3.17) does not include any condition equivalent to (3.13b) since the 
channel width degenerates to a point when E 0. In a similar fashion to (3.13d) 
and (3.8d), condition (3.17c) states that all transport functions ('1'<0 >) must posses 
a value (between zero and unity) as x* 0 and y* O; this ensures that all stream-
lines originate from the mouth. 

Eqs. (3.15)-(3.17) show that the perturbation scheme removed the nonlinearity 
from the problem and by giving an explicit expression for h<0 > [(3.16)], it reduced 
the number of unknowns from two ('I'* and h*) to one ['1'<0 >]. 

Since h< 0
> is now known, it is convenient to write (3.15) in the form: 

V 2'1'<0 > = -[x* cos(a, - a,)+ y* sin(a1 - a ,)] (1 + F'/2), (3.18) 

which states that to zeroth-order the relative vorticity [f = iJvC0 >/ax*-au< 0 >/ay• = 
V 2'1'C0 >/(1 + F'/ 2)] decreases linearly with x• and y* . That is, the farther a parcel 
of fluid advances, the larger will be its negative relative vorticity which is generated 
to compensate for the gain in planetary vorticity. 
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4. Zeroth-order solution 

The solution of the zeroth-order equation (3.18) consists of a homogeneous part 
('I' H 10l) which satisfies the Laplace equation, and a particular solution ('l'pl 0l) whose 
Laplacian gives the righthand side of (3.18). The boundary conditions for the homo-
geneous solution are identical to (3.17). The particular solution should vanish on 
both the southern and northern coasts and together with ('I' 8 l0 l ) should satisfy the 
condition (3.17c) everywhere if the solution is to be valid in the whole field. Under 
such conditions the sum of the homogeneous and the particular solution will satisfy 
the complete boundary conditions (3.17). 

The homogeneous solution '1'8 l 0 l satisfying 'v''l'8 l 0 l = 0 and (3.17a-c) is found 
by elementary methods, such as conformal mapping, to be: 

1 
'l'Hlol = [l ---tan-1(y*/x*) ]/2, (4.1) 

C<1 

which describes straight streamlines corresponding to a purely radial motion. 
It is important to note that this homogeneous solution corresponds to the total 

solution on a nonrotating plane (/3 = 0). This cannot be easily verified from (3.18) 
because the scaling that we have used involves (1//3). However, it can be verified 
from (3.6) and (3.7) by substituting {3 = 0 and neglecting terms which involve the 
square of the velocity in the field. 

The particular solution is found as follows. We take the general form of the 
particular solution to be a third order polynomial because the Laplacian of such a 
polynomial gives a linear function of x* and y* as required by (3.18). Hence we 
take: 

(4.2) 

k = O n = O 

The coefficients Ank are found by inserting (4.2) into (3.18), and by considering 
the two boundary conditions: 'I' p 10l = 0 at y* = ± x* tana,. Such considerations 

give: 

A 00 =A o1 = A 11 =A ,, =A 12 =A ,, = 0 } 
A 03 = (1 + F'/ 2) sin(a, - a,)/2(tan'a, - 3) 
A,,= (1 + F'/ 2)cos(a1 - a ,)/2(3 tan'a, - 1) 
A,,= -(1 + F'/2)tan'a, sin(a1 - a ,)/2(tan2a 1 - 3) 
A ,, = -(1 + F '/2)tan'a, cos(a1 - a ,)/2(3 tan'a, - 1) 

(4.3) 

From (4.1), (4.2) and (4.3) one finds that the total solution ['l'H<oJ + 'Yp10l ] is: 

q,lol = ½ [ 1- tan -1 (y* Ix*) ] + [(y*)' -(x*) 'tan'a,] 
a, 

+ x*cos(a,-a,) ] (! + F'/,)/ 2 . 
(3tan'a,-1) 

[ 
y*sin(a,- a ,) 

(tan' a,-3) 

(4.4) 
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This solution satisfies the governing equation (3.18) and the boundary conditions 
along the walls (3.17a and b) for all x* but, as we shall see, it satisfies the radiation 
condition (3.17c) only up to a certain distance from the mouth. Beyond this point 
(4.4) is not valid, and to satisfy the radiation condition and (3.17a-b) it is necessary 
to allow for separation or blocking to occur. We shall show that this results from 
the fact that the increase in relative vorticity (which a parcel experiences as it ad-
vances into the wedge) imposes a limit on the possible growth of the outflow width. 
This forces a separation from the walls or a formation of stagnant domains, in 
regions where the outflow width cannot grow as fast as the width of the wedge does. 

The solution (4.4) possesses two singularities; one occurs when a,= TT/3 (cor-
responding to tan2a1 = 3) and the other when a, = TT/ 6 (tan'a 1 = 1/3). It will be 
shown later that these singularities are a direct result of our perturbation analysis 
which breaks down when TT/ 3 or TT/ 6. 

To analyze the solution (4.4) and to investigate the nature of these singularities 
we shall consider first the relatively simple cases of outflows spreading in eastward 
basins (i.e., basins whose axes of symmetry coincide with the equator and their 
outlets are directed toward the east). These simple cases will shed light on the pro-
cesses involved. The next steps will be to analyze outflows spreading in northward 
basins and outflows whose basins' outlets are directed toward the northeast as is 
the case with the Amazon's basin. 

S. Eastward basins 

For eastward basins [(a, - a ,)= TT/2] (4.4) reduces to: 

,i, c0
> = ½ [ 1 - +, tan- •(y*/x*) ] + [ (y*)' - (x*)' tan'a, ] 

X y* (1 + F '/2)/ 2 tan'a - 3), (5.1) 

which does not involve the term (3 tan' a, - 1)-•. We shall first discuss the regions 
in the vicinity of the mouth where (5.1) satisfies both the conditions at the walls 
and the radiation condition. In these regions there is no separation or blocking and 
(5.1) is a valid solution to the problem. 

As pointed out earlier with regard to (4.1), the first term on the righthand side of 
(5.1) (the homogeneous solution) corresponds to the solution in the absence of ro-
tation (/3 = 0) and the second is the contribution of the f3 effect. The sign of the 
latter term depends on whether a, > TT/ 3 or a, < TT/ 3, which shows that the direc-
tion of the f3 effect crucially depends on the angle between the coastlines. Typical 
solutions corresponding to this behavior are shown in Figures 3a and 3b. These 
figures indicate that when a, < TT / 3 the flow tends to concentrate near the walls 
whereas when a, > TT/ 3 the flow is deflected away from the walls. ' 

We shall now show that this dependence of the direction of deflection on a, 
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Figure 3a. Equal transport lines of an outflow spreading in a narrow (a, < 1r/3) eastward basin 
(a, = 45 •; a, = -45 •; F = 0. I 5). The flow migrates from the center toward the walls be-
cause the changes of pl anetary vort icity , that a parcel experiences due to the spreading, are 
offset mainly by horizontal shear (see text). Farther downstream, the tendency of the flow 
to deflect toward the walls becomes so large that a motionless region is formed in the center 
of the basin (Fig. 7). 
3b. Equal transport lines of an outflow spreading in a wide eastward basin (a, = 75' > 1r/ 3; 
a, = -15 •; F = 0.15). In contrast to a narrow outflow (Fig. 3a), the flow migrates toward 
the center because the changes of planetary vorticity th at a parcel experiences are offset 
mainly by curvature vorticity (see text). Note that the tendency of the flow to deflect away 
from the walls increases with x•. Farther downstream the tendency of the flow to deflect 
away from the walls becomes so large that the fluid cannot cling to the coasts (Fig. 5). 

results from the fact that in a narrow wedge (a1 < 1r/ 3) the changes in planetary 
vorticity that a parcel experiences due to the spreading of the flow, are compensated 
mainly by shear (au1°l/ay* ), whereas in a wide wedge (a1 > 1r/ 3) the changes are 
compensated mainly by curvature vorticity (av 10l /ax*) . To show this we shall ex-
amine the velocity field. 

The horizontal velocity component in the x direction is found from (5.1) to be: 

ul0 l = x* / 2a1 (1 + F'/2) [(x*)' + (y*)'] 
+ [(x *)' tan2a 1 - 3(y*) ' ]/ 2 (tan2a 1 - 3), (5.2) 

which for a very narrow wedge (a, < < 1r) reduces to: 

ul0 l = [2a,x* (1 + F'/,)J-1 - [( x*)'a,' - 3(y*)'] / 6. (5.3) 

This velocity distribution is shown schematically in Figure 4 which indicates that 
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Figure 4. Schematic diagram of the velocity distribution corresponding to an outflow spread-
ing in a very narrow (a,<< ,r) eastward wedge. Central blocking occurs farther downstream 
(see text). 

for a given x*, ul•> increases with IY*I and is parabolically distributed. That is, the 
flow deflects to the left (right) in the northern (southern) hemisphere. In view of 
this, and the fact that in a very narrow wedge shear dominates (i.e., au<•>/ay* >> 
av1°>/ax• since a1 << 1r, and y* << x*), one concludes that a deflection to the left 
(right) in the northern (southern) hemisphere is caused when changes in planetary 
vorticity are compensated mainly by shear. It is easy to show [with the aid of (5.1)] 
that shear dominates the outflow not only in a very narrow wedge but in all wedges 
whose angles (a1) are less than 1r/ 3. This indicates that an eastward outflow will 
migrate toward the coasts for any a 1 < 1r/3 [i.e., any outflow with a 1 < 1r/ 3 will 
behave in a similar fashion to that shown by our numerical example (Fig. 3a)]. 

It is clear, on the other hand, that if changes in planetary vorticity are compen-
sated mainly by curvature vorticity (i.e., av1•>/ax• > oul•>/ay*) then a parcel which 
is displaced northward (in the northern hemisphere) and has an anticyclonic vorti-
city will be deflected to the right (i.e., away from the walls). One can easily show, 
with the aid of (5.1), that this is the case when a1 > 1r/ 3. This demonstrates that 
the dependence of the direction of deflection on a 1 is directly related to the rela-
tive importance of shear and curvature vorticity. As a1 increases from, say, 20° 
[for which shear dominates (i .e., au10>/ay• > ovl0>/ax*)] the curvature vorticity 
(av1•>/ ax*) also increases until it overcomes the shear (at a1 > 1r/ 3) and causes a 
deflection in the opposite direction. Note that in view of this, it is expected that at 
a 1 = 1r/3 there will not be any deflection; this cannot, however, be demonstrated 
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because, as we shall see, the zeroth-order approximation breaks down when 

In the next subsection we shall investigate the possibility of separation and 
blocking (the term "blocking" is used, as mentioned earlier, with reference to re-
gions into which the outflow cannot penetrate). To do so we shall further examine 
the velocity field to see whether downstream the solution (5.1) allows for negative 
velocities which do not correspond to parcels that originated upstream, and are 
therefore incompatible with the radiation condition (3.17c). 

a. Separation from the walls. The horizontal velocity component in the x direction, 
along both the southern and northern wall [ [y*[ = x* tan a,] is found from (5.2) 
to be: 

u<•> = [2a1x*(l + F'/ 2) (1 + tan'a1)J- 1 

- (x*) 2tan2a1/(tan2a 1 - 3). (5.4) 

This relationship shows that when a 1 > -rr/3 the velocity along the walls decreases 
with x* and vanishes at: 

x* ""' = [(tan' a1 - 3)/2a1 (1 + F'/2) (1 + tan'a,) tan'a1]11S, (5.5) 

where the subscript " vw" denotes that the variable in question is associated with 
vanishing velocity at the wall. Note that, at the walls the total velocity vanishes 
when u<•> = 0 since u<•> = [v <•> [/tana1, and that elsewhere in the basin u<•> > 0 
for ally* and x* ,:;; x" • ..,. 

Along the walls the flow cannot advance farther than x* vw because for x• > 
x* vw the velocity becomes negative [according to (5.4)] corresponding to stream-
lines that do not originate upstream and are, therefore, impossible. It follows that 
at x* = x* "'° the flow must separate from the walls (i.e., for the radiation condition 
to be satisfied we must allow the flow to detach from the walls). Beyond the separa-
tion points the flow is bounded by two free streamlines one at each edge. A typical 
solution which includes the separation points is shown in Figure 5. We see that the 
separation is consistent with the general direction of deflection discussed earlier. 
We saw earlier that the farther a parcel of fluid advances the larger is its tendency 
to deflect away from walls (Fig. 3b). Consequently, a parcel advancing along the 
coast reaches a point [(C) or (D)] where it can no longer cling to the wall. 

The solution (5.1) is valid for all x*,:;; x* • ., (including the separation points) but 
is not valid for x* > x• • ..,; in such regions the boundary conditions that we used for 
the walls (3.17a, b) are no longer relevant and should be replaced by new condi-
tions which involve the unknown location of the free bounding streamlines. The 
solution for the separated outflow (i.e., for x* > x* .,.) is beyond the scope of this 
study, but we shall give the new boundary conditions in order to show that the 
problem is well defined in such regions. The new boundary conditions are: 
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Figure 5. Equal transport lines of an outflow spreading in a wide eastward basin (a,= 75• > 
w/ 3; a, = -is•; F = 0.15). The outflow separates from the walls at (C) and (DJ. To illus-
trate the separation process and the formation of blocked regions ( to the north and south 
of the separating streamlines), the solution (5.1) was extrapolated for a short distance be-

yond the separation points (dashed lines). 

'i'<•l = O; 
(y''i'C•> /h<•>)' = O; 

'i'<•> = 'i'<•> (y*); 

'i'<•> = 1; 
(v''i'<•> /h<•>)' = O; 

y* = y, (x*) ;x•.,., x* < oo 
y* = y, (x*) ;x•.,., x* < «> 

- x* vwtana1 y* x* v10tana1; x* = x* tJ10 
y* = y , (x*) ;x•.,., x* < oo 
y* = y , (x*) ;x• • ., x* < oo 

0 'i'<•> (x* . ,.,,y*) 1 for all 'i' <0> 

(5.6a) 
(5.6b) 
(5.6c) 
(5.6d) 
(5.6e) 
(5.6f) 

Conditions (5.6a) and (5.6d) state that the location and shape of the free bounding 
streamlines [y, (x*); y, (x*)] are not known in advance and must be determined as 
part of the flow. Conditions (5.6b) and (5.6e) state that the velocity is zero along 
the free bounding streamline; this condition compensates for the fact that the loca-
tion and shape of the free bounding streamlines are not given a priori . It results 
from an application of the Bernoulli principle along the free bounding streamlines 
and indicates that the free surface height does not vary along the bounding stream-
lines. This ensures that the "blocked" regions are motionless everywhere. Similar 
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Figure 6. The dependence of the distance between the mouth and the separation points <••• = 
x•,. cos a ,) on the opening angle (2a,) of a wide eastward basin (a, > ,r/ 3; F = 0.15). 

free streamline conditions are discussed by Stern (1975), Batchelor (1967), Inger-
soll (1969) and Garabedian (1964). For solutions which involve actual computa-
tion of a free streamline location and shape see, for example, Anderson and Moore 
(1979), and Nof (1980). 

Condition (5.6c) reflects the known distribution 'l'<•l along y* at x* = x• "" [ob-
tained from the known solution (5.1)], and condition (5.6f) is the radiation condi-
tion [equivalent to (3.13d)]. As mentioned above, we shall not seek solutions for the 
separated outflows; we have presented the modified boundary conditions only to 
show that they are sufficient to determine a solution which will be valid for 
x* > x*'l)1D • 

We shall now discuss the nature of the singularity occuring when 1r/3 (i .e., 
tan'a, -> 3). The singularity corresponding to an angle approaching 1r/3 from 
above (i.e., 1r/ 3; a, > 1r/3) will be addressed first; the complementary sin-
gularity, corresponding to an angle approaching 1r/ 3 from below (i.e., a, 1r/3; 
a , < 1r/ 3), will be discussed in the next subsection. 

The nature of the singularity can be understood by examining the first-order 
equations and the sensitivity of the distance between the separation point and the 
mouth (s • .,, = x* .,./cos a,) to a,. The first-order equations are found [by substitu-
ting (3.14) into (3.11-3.12), collecting terms of order E, and considering (3.16)] 

to be: 
h(l) =O, 

and 
'v' 'l' <•> = (1 + F' / ,)' (l - 2'l'<•>)sin(a1 - a ,). 

These equations show that the first correction to the depth is zero and that the 
correction to the transport function (e'l'(ll ) is of O(e) since '!' <1> ~ O('l'<•>). In view 
of this, it is expected that the perturbation scheme will not be singular as long as 
e is small compared to unity. 
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The sensitivity of the distance between the separation point and the origin (s* • ..,) 

to a 1 is shown in Figure 6, which indicates that as a 1 approaches 'Tr / 3 from above, 
the distance between the separation point and the origin approaches zero. That is, 
as a1 7r/ 3 the width of the separated outflow becomes small so that I is no longer 
the proper scale for the flow in the basin and e is no longer small. Consequently, 
the first-order terms (e'1'< 1>) are of the same order as the zeroth-order terms and 
the pertubation scheme breaks down. 

This shows that the singularity is a direct result of our perturbation scheme which 
is incapable of giving the correct information about the flow in the immediate 
vicinity of the mouth where the length scale is of 0(b) rather than of 0(/). In other 
words, the singularity is merely an indication that the separation point is located 
within a distance of 0(b) from the mouth. 

To obtain the proper solution for a, 'lr/ 3 it is necessary to rescale the variables 
and take the length scale in the basin (/) to be equal to b. That is, e must be taken 
to be unity and the full nonlinear equations [(3.11)-(3.12) with e = l] should be 
solved. This is beyond the scope of the present study. 

b. Central blocking. In the previous subsection it has been demonstrated that for 
a, > 'lr/ 3 the outflow separates from both walls at a "critical" distance from the 
mouth. We shall now demonstrate that when a, < 'lr/3 the outflow splits into two 
branches and forms a blocked region in the center of the basin. 

Examination of (5.2) indicates that when a, < 'lr/ 3, the velocity along the basin's 
axis (y* = 0) decreases with x* and vanishes at: 

x* vc = [(3 - tan2a 1)/a1 (1 + F'/2)tan'a,]113 , (5.7) 

where the subscript "vc" indicates that the variable in question is associated with 
vanishing velocity at the center of the basin. The flow cannot advance farther along 
the axis, because a reverse velocity will be generated and such a reverse velocity 
does not correspond to parcels which have originated upstream. Hence, beyond the 
stagnation point the outflow must consist of two symmetrical branches each of 
which is bounded by a solid wall and a free streamline as indicated in Figure 7 
which shows a typical outflow spreading in a narrow basin (a1 < 'lr/ 3). Note that 
the radiation condition cannot be satisfied unless we allow the branching to occur. 
The solution (5.1) is valid for all x* <;; x••c but must be modified for x* > x*.,. In 
a similar fashion to the wide basin case, we shall not seek solutions for this region 
where the flow does not occupy the entire basin's width. However, it is easy to 
show that, as previously, the problem is well defined in such regions. 

Before concluding our present discussion it is appropriate to comment on the 
relationship between the singularity at 'lr/3 to the mechanism of branching 
discussed above. Eq. (5.7) shows that as a, approaches 'lr/ 3 from below (i.e., a,< 
'lr/ 3) the stagnation point (x* = x* vc) approaches the origin. Under such conditions, 
the width of the branched outflow is of the same order as the width of the mouth 
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(i.e., e is no longer small) so that the perturbation scheme breaks down. As in the 
wide basin case, the singularity is merely an indication that the stagnation point is 
located within a distance of 0( e) from the mouth. 

6 Northward basins 

For northward basins [(ex1 - ex,)= OJ (4.4) reduces to: 

[ 
tan-• (y* /x* )] [ ] 

,i, coJ = ½ 1 ex. + (y*)' - (x*) ' tan' ex, 

X x*(l + F'/2) 
2(3tan'ex, - 1) ' 

(6.1) 

which does not involve the term (tan2ex1 - 3)-1. Typical solutions for ex, < 1r/6 
(corresponding to tan' ex, < 1/3) and for ex1 > 1r/6 are shown in Figures Sa and b. 
We see that when ex. < 1r/ 6 the flow migrates toward the west (left) whereas when 
ex1 > 1r/ 6 the flow migrates toward the east (right). In a similar fashion to the east-
ward outflow case, this behavior results from the fact that when a1 < 1r/6, changes 
in planetary vorticity, that a parcel experience due to the spreading, are offset main-
ly by shear (i.e., au<0 >/ay* > avc0>/ax*), whereas when a,> 1r/ 6 the changes are 
compensated mainly by curvature vorticity (i.e., avC0 >/ax* > auc0 >/ay*). 

Examination of the velocity field indicates that central blocking is impossible for 
all ex. ; however, the flow separates from either the eastern or the western wall de-
pending on the magnitude of ex1 (Fig. 8). The locations at which the velocity van-
ishes (i.e., the separation points) are: 

x* ,, = [(3tan' ex1 - 1)/ 2ex1 (1 + F'/ 2)tanex1 (1 + tan'ex,)]1I'; ex,> 1r/ 6 (6.2) 

and 

x* .,. = [(l -3tan'a1)/ 2ex1 (1 +F'/2)tanex1 (1 + tan'ex,)]11' ; a, > 1r/6 (6.3) 

where the subscripts "sl" and "sr" denote that the variable in question is associated 
with a separation from the left and right walls respectively. 

The singularity at ex1 = 1r/6 represents, as previously, the condition at which the 
separation point is located within a distance of O(e) from the origin. When ex, 
approaches 1r/ 6 from above (i.e., ex, > 1r/ 6) the separation from the western wall 
approaches the origin, whereas when ex1 approaches 1r/6 from below (i .e., a, < 
1r/6) the separation from the eastern wall approaches the origin. Under both condi-
tions the perturbation scheme breaks down and the solution (6.1) is not valid. 

7. The Amazon outflow 

The Amazon's basin corresponds to a wide wedge (a.> 1r/ 3) whose axis of 
symmetry is directed approximately toward the NE (Fig. 1). It therefore corresponds 
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Figure 7. Equal transport lines of an outflow spreading in a narrow (a, < 1r/ 3) eastward basin 
(a, = 45'; a,= -45'; F = 0.15). The stagnation point (C) represents the edge of the blocked 
region. To illu strate the central blocking effect, the solution was extrapolated for a short 
distance beyond the stagnation point ( dashed lines). 

to a combination of a wide eastward and northward outflow. For such a system one 
finds from (4.4) that there is no central or off axis blocking within a distance of 
0(1) from the origin. However, within this distance, there is a separation from both 
the left and right walls. The locations of the separation points [ as determined from 
(4.9)] are: 

x* ,1 = [ 2a, (1 + F'/2)tan a, (1 + tan'a,) [cos(a1 - a2)/(3tan'a, - 1) 

- sin(a1 - a,)tan a:1/ (3 - tan' a.)] ]
-1/3 

(7.1) 
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Figure Ba. Equal transport lines of an outflow spreading in a narrow (a,< ,r/6) northward 

basin (a,= a,= 20°; F = 0.15). In a similar fashion to the narrow eastward outflow (Figs. 
3a and 7), the flow is deflected toward the left wall because changes in planetary vorticity 
are offset mainly by horizontal shear. For clarity the solution (6.1) was extrapolated for a 
short distance beyond the separation point (dashed line). 
Bb. The same as (Ba) but for a wide (a,> ,r/ 6) northward basin (a,= a,= 40°; F = 0.15). 
The flow migrates toward the wall because the changes in planetary vorticity that a parcel 
experience due to the spreading are compensated mainly by curvature vorticity. 
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Figure 9. Equal transport lines of the simplified Amazon outflow (a,= 70"; a,= 30") during 
low discharge (F = 0. IO) . Dashed lines represent extrapolated streamlines. 

x*., = [ 2a1 (1 + F'/2)tan a, (tan2a1 + 1) [cos(a1 - a ,)/(1- 3tan2a1) 

- sin(a1 - a,)tan a 1/{3 - tan'a 1)] • 
]

-1/ 3 

(7.2) 

The separation points and the associated flow pattern for the Amazon's basin 
(a, - 70° ; a, - 30°), are shown in Figure 9. We see that as the flow advances 
into the basin it is deflected toward the center until it can no longer cling to the 
walls; subsequently, an isolated current bounded by two free streamlines is formed. 

The Amazon's discharge varies considerably from season to season [low and high 
river discharge are ~83,500 m'/sec and ~267,400 m'/sec, according to Gibbs 
(1970)] and we shall first compare our model predictions to the low discharge sea-
son [August-September]. The observed sea surface salinity during this season is 
shown in Figure 10. This figure indicates that, during the low-discharge period, the 
actual outflow separates from both the northern and southern coast as predicted by 
the theoretical model (Fig. 9). However, it is not entirely clear that the actual sepa-
ration from the coasts (indicated by Fig. 10) results from our proposed mechariism 
(Fig. 9). It seems that such a separation can also be caused by the Guiana Current 
{which advects the outflow toward the northwest) and the North Equatorial Coun-
ter-current which may carry the outflow toward the east. The salinity structure 
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Figure 10. The observed surface sali nity in the western tropical Atl antic during September 
(adapted fr om Neumann et al., 1975). The axis of the Amazon outflow is represented by the 
minimum salinity line (- - - ) . 

resulting from these two currents may be similar to that indicated by Figure 1 O so 
that it is impossible to distinguish between the effect of our theoretical separation 
and that of the local currents system. This question could, perhaps, be partially 
answered by a detailed, quantitative comparison between the predicted location of 
the separation points and the actual separation latitudes, but such a comparison is 
impossible due to our neglect of friction, diffusion and the irregularities of the 
coastline. 

Even though a detailed comparison is impossible, it should be pointed out that 
for low-discharge the theory predicts separation from both coasts at distances of 
~ 150km from the mouth. These are comparable to the actual separation distances 
(i.e., the distances between the mouth and the points of maximum horizontal densi-
ty gradient along the coast) indicated by Figure 10. The theoretical separation 
distances mentioned above have been determined using a modified upper layer 
transport ('l'T) which includes the effect of entrainment, because the main body of 
the outflow does not consist of water which is entirely fresh but rather of water with 
an average salinity of 32%0- Following Bowden (1967), the modified transport has 
been taken to be: 'l'T = '11.SBl(Sa - ST), where Sa is the salinity of the bottom 
layer (36%o) and ST is the salinity of the outflow as it leaves the coast (~ 32%0). 

We shall now discuss the relationship between the theoretical prediction for the 
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high discharge season and the salinity observations for this period. A detailed 
theoretical analysis of the high discharge season requires some new calculations, 
because our approximation of the actual basin by a wedge whose angle is 2a, == 
140° is not relevant for the cases corresponding to a separation point located far-
ther than point A (see Figs. 1 and 10). At this point, the coastline shape changes 
drastically as can be seen in Figure 1; therefore, a more realistic approximation for 
high discharge would be a basin whose angles are 2a1 == 150° and a,== 40°. Sub-
stitution of these new values into (7.1) and (7.2), and consideration of the relevant 
length scale show that the predicted distance of the high discharge separation from 
both coasts is about twice as large as the one corresponding to the low discharge 
season. It is important to note that this relatively large variability results from both 
the variability of the transport which affects the length scale I, and the drastic 
change of the coastline shape near point A. Without the latter the variability of the 
separation distances would have been considerably smaller. 

It is difficult to compare these high-discharge predictions to Neumann et al.'s 
(1975) analysis of the salinity structure during February since their analysis does 
not include the region where the separation from the northern coast is expected to 
take place. The salinity analysis presented by Neumann et al. shows, however, that 
during February there is no separation from the northern coast within a distance 
of ~ 1200km from the mouth. The southern separation point (i.e., the point of 
maximum horizontal density gradient along the coast) is located at a distance which 
is ~ 150km longer than the one associated with low-discharge. This supports the 
theoretical prediction of the southern separation variability, but does not give 
sufficient information about the northern separation variability for the comparison 
to be entirely satisfactory. 

8. Low salinity lenses 

In this section we shall discuss the relationship between the model results and the 
low salinity lenses which have been observed off the South American Coast. 

Before addressing the physical mechanisms related to these lenses it is appropri-
ate to comment on the question of their origin because, while it is plausible that the 
lenses have originated at the Amazon, it is not a priori obvious that they do not 
contain fresh water from other sources. In fact, Neumann (1969) has pointed out 
that in these regions local precipitation can affect the surface salinity to a noticeable 
degree. However, Ryther et al. (1967) showed a clear association of high silicate 
concentration and brownish-green water color with the low salinity patches; these 
facts strongly suggest that the lenses contain Amazonian water. In view of these 
investigations it is reasonable to suppose that, although the low salinity lenses have 
probably originated from the Amazon, they may be modified by local precipitation 
as well as run-off from adjacent areas. This possibl e modification of the fresh water 
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masses will not be taken into account in our theoretical analysis which assumes 
that the lenses contain Amazonian water only. 

Several authors have previously addressed themselves to the processes which 
could he responsible for the formation of low salinity lenses. Ryther et al. (1967) 
suggested that possibly the Guiana Current ceases to flow at times due to slacken-
ing or temporary reversal of the local wind system, allowing a bubble or bubbles of 
river water to cross the main axis of the Current and subsequently become isolated 
when the current resumes. Metcalf (1968) has suggested that low salinity lenses may 
be formed as the result of discontinuities in the current north of the Amazon 
River and near the origin of the Equatorial Undercurrent. He argues that: "The 
whole picture [of the Guiana Current] suggests a series of meanders and recurving 
of parts of the Coastal Current, with successive pools of Amazon outflow moving 
offshore amongst them." 

Both the process suggested by Ryther et al. (1967) and the one suggested by 
Metcalf (1968) are possible, but as we shall see, the present study suggests a mech-
anism which does not require the coastal currents system to have any special struc-
ture. In other words, we shall show that isolated low salinity lenses may be formed 
without any of the previously proposed mechanisms being active. 

The proposed mechanism is related to the profound seasonal variability of the 
outflow discussed earlier in Section 7. We have seen earlier that because of the 
large seasonal variability of the separation points, the region into which the out-
flow penetrates during the high discharge season is considerably different than the 
one occupied during the low discharge season. Consequently, segments of the out-
flow are left behind after each high discharge season. Such segments become isolat-
ed from the main outflow when the outflow returns to its low discharge position 
and as such, they are out of balance and, therefore, cannot maintain their initial 
structure. Whatever their shape is, they must undergo an adjustment toward geo-
strophic balance, close upon themselves and form lenses because the latter is the 
only possible balanced steady state. 

The approximate shape and structure of an Amazonian lens formed by this 
process can be easily calculated using an approach similar to that used by Flierl 
(1979) who examined the dynamics of Gulf Stream rings and determined their 
approximate structure numerically. The purpose of the analysis presented below is 
to obtain the general structure of an Amazonian lens and to determine the relation-
ship between the lens diameter and depth which can be qualitatively compared to 
the observations of Ryther et al. (1967). The analysis resembles the numerical 
analysis of Flierl (1979) except that we deal with a fluid which originated from the 
equator and bas zero potential vorticity. This enables us to obtain an exact analyti-
cal solution which includes the full nonlinear terms. 

The equation for conservation of momentum in the radial direction and the 
potential vorticity equation in cylindrical coordinates are (see e.g., Flierl , 1979): 
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Figure I I. Schematic diagram of an Amazonian Jens. 

av,. av,. Ve Ov,. va2 ah 
-+v,- + - - - --fve=-g'- (8.1) 
iJt Or r 08 r ar 

! [ [av.far+ vefr - (av,faO)fr + f] f h] = 0, (8.2) 

D 
Dt 

_a_+v,-a- + 
at ar 

Ve 
r 

a 
ao 

and v, and v8 are the radial and tangential velocity components respectively. Here, 
the origin of the coordinates system is taken at the center of the lens (see Fig. I I) . 

Since the fluid originated from the equator with both relative and planetary 
vorticity being approximately zero, the potential vorticity must be zero at all times 
including the ultimate balanced state. Hence, (8.2) gives for the final, balanced 
steady state: 

avefar + Vefr - - 1-(av,faO) + f = 0. 
r 

(8.3) 

To simplify the analysis, we shall assume that the volume of the isolated fresh water 
segment which became separated from the mean outflow [V(m' )], is not very large 
so that its length scale [O(V f H0)l] is small compared to its distance from the Ama-
zon's mouth. The validity of this assumption can be determined by examining the 
31%0 salinity contour (Fig. 1) which represents the boundary between the lens and 
the environment [since the average salinity in the core is ~27%o (determined from 
Ryther et al. , 1967) and the environment salinity is ~35%o]. The shape of this 
contour suggests that to zeroth-order the assumption is adequate because it cor-
responds to a lens' radius of ~200km, whereas the distance between the center of 
the lens and the equator is much larger, about 1000km. 
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Under such conditions the variation of the Coriolis parameter across the lens is 
small compared to the Coriolis parameter at the center of the lens (J.). The analysis 
is further simplified by assuming that the motion in the lens is purely tangential 

(i.e., v, = 0 and iJiJO = 0). For such conditions (8.3) and (8.1) reduce to: 

and 

1 d 
-r- --;F;- (rvo) = -f. 

vo'lr + f0 vo = g' .:!!!_. 
dr 

With the condition vo = 0 at r = 0, (8.4) yields: 

Vo= -f0 r/2, 

(8.4) 

(8.5) 

(8.6) 

which states that the velocity increases linearly with r. Substitution of (8.6) into 
(8.5) gives: 

h = h - f.' r' / 8g', (8.7) 

where his the lens depth at the origin. Eq. (8.7) shows that the interface shape is 
parabolic, and that the interface strikes the surface (h = 0) at: 

R = (8g'h)!/f •. (8.8) 

This theoretical prediction can be qualitatively compared to the observed horizon-
tal scale by substituting the observed depth of the 31%0 salinity surface at the 
center of the lens (~16m, according to Ryther et al., 1967) into (8.8). Such a sub-
stitution [together with g' = 0.08 m/sec' and /0 = 0.2 X 10-•sec-1] gives an inter-
section radius of ~ 150km, a distance comparable to the observed horizontal scale 
of the 31%o salinity contour (see Fig. 1). This qualitative agreement supports our 
conjecture that the lenses result from geostrophic adjustment. 

9. Summary 

Before listing our conclusions it is perhaps appropriate to stress once more the 
main limitations of the theoretical analysis. The analysis does not include the effects 
of friction, diffusion, coastline irregularities and the influence of the Guiana Cur-
rent which sweeps the actual outflow toward the north. In reality, these processes 
will, no doubt, influence the flow. Although much work remains to be done before 
we can adequately understand the behavior of the real system, our present findings 
give information about isolated processes related to the outflow. 

The results of the theory can be summarized as follows: 
i) As an equatorial outflow spreads in the basin, the fluid gains relative vorticity 

in order to compensate for the changes in planetary vorticity. Consequently, the 
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fluid does not spread uniformly in all directions, but rather is deflected toward or 
away from the coastlines depending on the basin's geometry. When the angle be-
tween the two coastlines forming the basin is small, changes in planetary vorticity 
which a parcel experiences due to the spreading are offset mainly by generation of 
horizontal shear; in contrast, when the angle is wide, changes in planetary vorticity 
are compensated mainly by curvature vorticity. In the latter case the outflow de-
flects to the right in the northern hemisphere, whereas in the former the outflow 
deflects to the left. 

ii) When the flow reaches a "critical" distance from the mouth the gain in rela-
tive vorticity is so large that the flow cannot fill the entire basin's width. Conse-
quently, separation occurs and portions of the basin are blocked in the sense that 
no parcels which originated upstream can enter them. 

iii) The Amazon outflow, whose basin is wide and contains sections of both the 
southern and the northern hemisphere, is deflected away from the coastlines as it 
spreads in the basin. At a "cri tical" distance from the mouth, the gain in curvature 
vorticity is so large that the fluid can no longer cling to the walls. Subsequently, the 
flow separates from both walls and penetrates into the ocean interior as an isolated 
current. 

iv) During the high-discharge season separation occurs at distances which are 
considerably larger than those associated with low discharge. As a result, the loca-
tion and width of the regions which contain Amazonian water vary considerably 
from season to season. 

Prediction (iii) was compared to the observed surface salinity structure in the 
western tropical Atlantic and qualitative agreement was noted. Based on conclu-
sion (iv), a mechanism which may be responsible for the formation of low salinity 
lenses is proposed. It is suggested that these lenses may result from segments of the 
Amazon outflow which become separated from the main outflow after each high 
discharge season. Such segments undergo an adjustment toward geostrophic balance 
to form isolated lenses with anticyclonic vorticity. 
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