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Properties for inverse analysis of sound propagation 
in simple oceanic waveguides 

by Carl Wunsch1 

ABSTRACT 
For a source and receiver on the axis of a deep sound channel we solve the two point bound-

ary value problem for the arriving sound pulse using the classical ray theory approximation. 
The procedure is a generalization of that of Munk (1974) and we emphasize the determination 
of parameter changes in the sound channel by inverse techniques. The 'canonical' profile of 
Munk is shown to give an arrival structure qualitatively different from an observed profile. The 
range of parameters for which the axial ray will appear last (as is conventional), and first , is 
found; we also show that it is possible to have two rays with the same identifiers appear. These 
and other possibilities must be understood for the inverse problem (tomography). 

1. Introduction 

Because the ocean is opaque to electromagnetic radiation the possible use of 
sound as an alternative method for remote measurement and monitoring has been 
a long discussed idea amongst oceanographers. In a recent paper, Munk and Wunsch 
(1979) outlined a complete system for remotely measuring the ocean by acoustic 
methods, which they call "acoustic tomography". Their procedure involves "invert-
ing" temporal perturbations in travel time between a multiplicity of sources and re-
ceivers to solve for temporal changes in sound speed (and by inference, density) in 
the regions through which the sound has travelled. But inverse problems as a class 
are deeply dependent for their solution upon a detailed understanding of the "for-
ward" problem (see for example, Parker, 1977). In the present context, the forward 
problem is the determination of the arrival of sound at a hydrophone when gen-
erated by an impulsive source at a distance of order 103 km. 

The acoustic properties of the ocean are complex and a solution to the complete 
forward problem is not available. As a framework for their discussion Munk and 
Wunsch (1978) (hereafter MW) used a model of the deep sound channel (SOF AR) 
channel proposed by Munk (1974). Munk (1974) refers to his model as the "canoni-
cal" sound channel; here we will call it the Munk profile. It is based upon the as-
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sumption that the buoyancy frequency in the ocean N(z), is a simple exponential. 
The predicted sound arrival structure from this model, is, as Munk (1974) points 
out, dissimilar in many ways to what is observed. Examination of Munk's results 
shows that many of the predicted features of the sound field are very sensitive to 
the particular numerical values he obtains. The exponential N(z) assumption is of 
course often a poor one, but it is difficult to understand the effects of deviations 
from the model because of the selection of specific numerical values. 

A number of investigators of sound propagation have resorted to numerical ray 
tracing techniques in order to determine the characteristics of sound propagation, 
and others have studied analytically a variety of special profile shapes (e.g. Hirsch 
and Carter, 1965, Pedersen and Gordon, 1967). But these results are difficult to 
apply toward ultimate use in the inverse problem. What one needs is an understand-
ing of the sound field as received at a fixed receiver when transmitted from a fixed 
source, and the dependence of the arriving signal upon the parameters of the ocean 
as they vary with oceanographic conditions. It is possible to use the numerical 
models for 'this purpose, but until one has an analytic understanding of simple 
models, the numerical ones are cumbersome, expensive to use, and possibly mis-
leading. The analytical models in the literature tend to be special ones, chosen for 
convenience rather than as models that can easily be varied as one needs in inverse 
theory. Numerical calculations (some are displayed in MW) often give surprisingly 
different results for sound speed profiles that appear very similar. 

There are a number of questions. Let a sound source and receiver of arbitrary 
depths be separated by a distance p' in an ocean of constant depth D. We suppose 
that the sound speed C' is a function of the vertical coordinate z only. The two 
point initial-boundary value problem we need to consider is to find all those angles 
(measured from the horizontal) at which an acoustic ray can leave the source and 
subsequently intersect the receiver. We need to know the depth z at which the rays 
"turn", the time at which each arrives at the receiver, and their intensity (see Fig. 1) 
assuming a transmitted signal which is a delta function in time. In the special case 
in which source and receiver are both located on the sound channel axis, some rays 
travel almost horizontally from source to receiver (axially). Others make a number 
of loops well away from the sound axis before arriving at the receiver (we ignore 
rays reflecting from ocean surface or bottom and consider only the purely refracted-
or SOFAR-rnys). Now it is characteristic of propagation in the observed SOFAR 
channel that the axial rays, despite having a shorter path to travel, arrive later than 
those travelling much further by looping away from the sound channel axis. The 
increased sound speed away from the channel axis compensates for the longer path. 
But what sound channels have this property, i.e. what particular characteristics 
makes the axial arrival come in last? Is it possible the real sound channel could 
change from one with a terminal axial arrival to one in which the axial arrival was 
first or intermediate? Precisely how would one have to change the channel to ar-
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Figure la. C'(z) represents Munk sound speed profile. The various coordinates are defined in 
the fi gure. z is the turning depth of a ray that leaves the source, s, at an angle 0. R is defined 
as the distance between which a given ray crosses the z = 0 axis. 
1 b. C'(z) computed from Atl antis Station 5453 at (21 • 58'N, 50°30'W) in the North Atlantic. 
le. Three types of paths connecting a source and receiver located on sound channel axis: 
equal number of upper and lower loops; one more upper loop than lower loop; one more 
lower loop than upper loop. Equal number of loops case is degenerate to sign of initial ray. 
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range this? A special case of the inverse problem would occur if one observed such 
a reversal-what would it tell one about the changes in the sound speed profile and 
their causes? It is also commonly observed that the arriving signal is such that as 
rays arrive from more nearly axial paths, that the difference in propagation times 
decreases, and the amplitude increases, ending in an abrupt cut-off. Why? 

In one of the examples given by MW, some ray paths occur with the same num-
ber of loops between source and receiver, but turn at different depths (see Fig. 2), 
but in the other example this does not happen-what are the characteristic dif-
ferences between these two sound profiles that leads one to this multiple solution 
for the same number of loops, and the other having only one solution? One of the 
major assumptions in MW is that rays arriving along very different paths are re-
solvable in time and hence identifiable. For which paths will this be true? If two 
such paths are resolvable, will they remain so under realistic perturbations of the 
sound channels? MW considered travel time perturbations as their fundamental 
datum for the inverse problem. Can one use amplitude perturbations as well? 
Finally, is it the detailed arrivals in an incoming sound wave packet that are most 
useful, or are there gross characteristics that are more robust or easier to use? Fun-
damentally, we are seeking a comprehensive understanding of the qualitative be-
havior of a broad-band sound pulse transmitted betweeen a fixed source and fixed 
receiver. There is probably nothing in our results which is not implicitly known to 
most workers in the field, but in reviewing the literature, I could not find an ade-
quate qualitative discussion of what to expect (although the paper of Pedersen and 
White (1970) is close to the spirit of what is required). I hope that the result, which 
is somewhat pedagogical, will be accessible to oceanographers not normally con-
versant with sound propagation. 

2. Sound channels 

An actual sound speed profile from the Western North Atlantic is shown in 
Figure lb. The minimum in sound speed at 1025 m is the SOFAR channel dis-
covered by Ewing and Worzel (1948) and discussed in many textbooks (e.g. Clay 
and Medwin, 1977, Tolstoy and Clay, 1966, Officer, 1958). A minimum occurs be-
cause of the competing effects of decreasing temperature which lowers the sound 
speed, and of increasing pressure which tends to increase it. 

By Snell's law, an acoustic ray travelling from a region of low sound speed to 
one of high sound speed will be refracted toward the horizontal. Eventually, the ray 
will be turned horizontally and reverse its vertical motion, thus remaining trapped 
within some finite distance of the sound speed minimum (unless it first intersects the 
top or bottom boundaries). It is this property that leads to a waveguide effect and 
makes possible long-range SOF AR propagation. 

An enormous range of problems must be dealt with in fully understanding oceanic 
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Figure 2. Numerically computed travel time curves for Atlantic and Pacific profiles (taken 
from Munk and Wunsch, 1978). Notice that in Pacific profil e the travel time curve is double 

valued in C (i.e. in tJ,) for some rays having same ray identifier (m,n). SR and BR denote sur-
face reflected and bottom reflected rays which are not considered in the present paper. ± in 
front of ray identifier states whether ray is initi ally upward (+ ) or downward (-) at source; 
rays of form (p+l,p) always have+ sign; (p,p+l) takes - sign. (± p,p) cannot be distinguished 
for the pure axial case. For the numerical cases displayed, sources and receivers were not 

axial. 

sound propagation (Urick, 1975; Platte et al., 1978)-absorption, diffraction from 
bottom features, small scale inhomogeneities like internal waves and fine-structure, 
eddies, rings, ambient noise, failure of the ray approximation, etc. Here we will 
ignore most of these effects and confine ourselves to the classical geometrical optics 
limit of a smooth, one-dimensional nondissipative profile of sound speed C' (z). The 
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other classical approach to initial-boundary value problems, the normal mode ap-
proach is one that has many advantages, but it will not be examined here. Ultimately, 
we must put the neglected complications back in. Many of them, e.g. the eddies, 
are the signal we eventually need to determine. 

Our general procedure will follow that adopted by Munk (1974) (hereafter M) 
which is based upon a mathematical formalism apparently introduced by Pedersen 
(1969). Some of the details are different here. We define the sound speed profile as 

(1) 

The absence of a term proportional to z insures that dC / dz = 0 at z = 0. Thus z is 
measured positive upward from the sound channel minimum at z = 0. Profiles of 
the form of (1) are analytic at the origin. One can find in the literature special pro-
files which are not analytic and which lead to peculiar discontinuities in ray behavior 
(e.g. Pedersen, 1969). Because the applicability of the ray optics approximation it-
self is doubtful in those cases, we will confine ourselves to functions analytic at z = 
0, a plausible physical assumption in any case. Whether such complications as fine-
structure can be dealt with by assuming nonanalytic profiles is a separate question 
beyond the scope of the present paper. 

Let x be the radial coordinate normal to z (Fig. la). Snell's law states that for 
any ray crossing the x axis at an angle 00 

C C' () 
_1_ = _z_=C'(t)=C' 
cos00 cos0 

(2) 

(see Fig. la) where 0 is the angle made with the horizontal at any other depth z on 

the ray trajectory, and C' (z) = (;' is the value of C' at the depth t where the ray 
turns horizontal (0 = 0). It follows from (2) that 

and we can write 
cot0 = C' (z) / (C12-C'2)1! 2 (3) 

x' = cot0 dz = -----'--'.c___-dz f z f z C' (z) 

0 0 (C'2-c,2)1/2 (4) 

where x' is the horizontal distance traversed by the ray measured from the point at 
which it crosses the sound channel axis z = 0. Then the distance between the points 
at which the ray crosses z = 0 is 

R' = 2 f z C' (z) dz 
0 (C'2-c,2)1;2 (5) 

Let the differential arc length along the ray be ds. The differential time of travel 
along the ray is 

dt'=~ 
C' (z) 

dz 
C' (z) sin0 

= (;' dz 
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and so the time of travel from the axis to depth z is 

f z C1 dz 
t' -

- 0 C' (z) (C'2-C'2)1/2 
(6) 

The time T' required for the ray to cross the axis and return is then 

T'= 2 52 C
1 

dz 
o C' (z) (C'2-C'2) 1! 2 

(7) 

It is convenient to nondimensionalize the variables. Let L be the distance from the 
axis of the sound channel to the ocean surface and let L' = L/ 2 ')2). We write R 
= R'/ L , x = x'/ L , 7J = z/L', T = T'L/ C1, C = C'/ C1. Notice Rand Tare scaled 
by L, but z is scaled by L'. This minor inconvenience suppresses many factors of 
2')2 in the results. The sound speed profile is then 

C(7]) = 1 + E(7J2+,87J3+'}17J4+87Js+,7Ja+ ... ); 
E = E'L' 2, /3 = f3'L' , y=y'L' 2

, ••• (8) 

We will make the convention that E, /3>0. The first condition assures that z = 7J = 
0 is a sound velocity minimum and is thus focussing, rather than a velocity maxi-
mum which is defocussing. The condition /3>0 reflects a general qualitative observa-
tion that real sound profiles have a greater curvature above the sound channel than 
below. This condition can be relaxed easily but doing so will add no insights to our 
eventual results. 

Following M, introduce the new variable 

( 
C-1 ) 112 </>2 = (C-1)/ e; </> = ± -E-

so 
1/12 = (C-1)/ E 

where the sign of</>, 1/J corresponds to sgn(7J). Then (5) is 

_±J_d</> 
d</> 

(9a,b) 

(9c) 

(10) 

We can, using the tables given by Abramowitz (1964), obtain the series square root 

for (9b), 

</> = 7J + A27J 2 + A37J3 + A47J4 + . .. 
A 2 =/3/2 
A3 = (y/ 2 - 132/8) (lla) 

A 4 = (8/ 2 - f3y/ 4 + /33/ 16) 
As= t/ 2 - /38/ 4 -y2/ 8 + 3/328/ 16 - 5{34/ 128 

and from the series reversion formula 
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TJ = <p + bcp2 + ccps + d<f,4 + ecps + . .. 

b = -{3/ 2, c = {2(/3/ 2)2 - (y/ 2 - /32/ 8)} (llb) 

d = (5A2A 3 -Ac5A23) , e = {6A 2A.+3A 3
2+l4A 24 -As-2lA/ A s} 

Computation of additional terms is tedious; Morse and Feshbach (1953) discuss it. 

We now have 

_ 1- 1 5"' (l +Ecp2) (l / 2+bcp+3ccp2/ 2+2dcp3+5e cp4/ 2+ . .. d,1,. R = V 2E-1 2 'I' 
O (l/J2-cp2)1/2(2+E(lp2+cp2))1/2 

= €_112 5"' (l / 2+bcp+3ccp2/ 2+ . . . ) 
-

0 
(l/12-cf,2)1/2 def, 

+ €112 5"' (3cp2/ 4 - l/12/ 4) (1 / 2 + bcp+3ccp2/ 2+ . . . ) def, 
O (l/12-cf,2)1/2 

The integrals can be obtained from formulas 3.248 of Gradshteyn and Ryzhik 
(1965) and we have 

R = c 1l 2[1r / 4+bl/J+31rclfJ2/ 8 + 4dl/J3/ 3 + l51rel/J4/32 + 0(l/15
)] 

+ c1l 2 [1rl/J2/ 32 + bl/13/ 4 + 151rcl/J4/ l28 + 0(l/15
)] 

+ 0(€3/2"14) (12) 

This is a double expansion in l/J and c; I have no proof of the convergence of the 
series except empirical calculation of additional terms. In general we should not 
retain in (12) terms in l/J which are 0(E) or smaller. When we examine real sound 
profiles below we will find that the solution sometimes will be valid only for un-
comfortably small values of l/J. Because of the slow convergence of the series for 
realistic sound profiles, the results of this paper are probably not a good way to 
carry out the numerical procedures actually involved in performing an inverse cal-
culation. But the analytical insight obtained nonetheless seems an important pro-
logue to the requisite numerical model. 

As a reference point, we will use the profile given in M to obtain initial numerical 
values. In our notation, Munk's profile is 

which, when expanded about TJ = 0 is 

Cm(TJ) = 1 + En,(TJ2+ /3mTJ3+YmTJ4+omTJ5+,mTJ6+ . . . ) 

<pm(T}) = TJ + A 2mT} 2 + A smT} 3 + .. . 

TJ = <p + bm<p 2 + Cm<p 3 + dm<p4 + em<p5 
• •• 

where 

(13) 

(14a) 

(14b) 

(14c) 
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Figure 3a. "Exact" Munk profile C(71) and its Taylor series approximation carried through 
terms of 0(71'). Approximation is clearly not valid for rays turning in very deep water. 
3b. cf,(71) for exact Munk profile and Taylor series approximation through terms of 0(71'). 

E,,, = 1.85 X l0 - 3 

fi ,,. = .235, Y·n, = .042, Om= .0059, ,,,, = 6.9 X 10- 4 

A ~.,,.= .12, A sm = .014, A ,.,n = .0013, A 5m = 9.4 X 10- s 

bm = -.12, C,,, = .014, dm = -.0013, em= l.0 X l0- 4 (14d) 

If the ocean is 5 km deep, and the sound channel at 1.3 km, the range of 'Y/ and cf, 
(from (14)) is 

-4.3 ~ cf, ~ 4.2, -8.05 YJ 2.82 

MW carried the expansion in (14) to 0(YJ 3). In Figure 3a is displayed Cm(n) and 
cf>m(YJ) from (13) and its approximation from (14) to 0(YJ5) . It can be seen from the 
figure that only rays that turn shallower than YJ="" - 3.5 (dimensionally z ="" - 1.6 km) 
will be properly computed by an expansion to this order. Evidently it takes many 
terms in the Taylor series to represent (13) over the full water depth. This limitation 
should be kept firmly in mind, and we can anticipate that our results will be valid 

strictly only for rays turning at small values of /YJ/ (small /cf, /). Let 'Y/c and 'Pc be the 
limits of validity. The domain of validity of our expansions in t/J is such that t/Jn tfJ 

t/J, where tfJ8 , t/Jn are the values of t/1 at the surface and bottom respectively, or, 

1"1/ 'Pc whichever range is smaller. 
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Consider now the value of R correct to 0(e-112,t/J2) or 

(15) 

For t/J = 0 the ray will travel a distance R 0 = e-1/ 27r / 4 or R 0 = 18.3 in our non-
dimensional units using the values of (14d) (dimensionally R o = 23.4 km if L = 
1.3 km). Thus if the source is on the axis TJ = 0, the axial ray crosses the axis a 
finite distance from the source; this is the ray which is defined to leave the source 
at 0 = 0 and it is slightly puzzling that the ray supposedly travelling right along the 
axis crosses at a finite distance. R 0 is, of course, obtained by taking the limit 
in (15) and is the value of R at the removable singularity in (10) as Rays 
that turn below the axis correspond to values of tfJ = t/J- :( 0 and those turning above 
the axis have t/J = t/J+ > 0. Thus with the convention f3 > o we have b < o and 
R(t/J+) < R(tfJ_) with t/J- = -t/J+, to this order of approximation if c>o. 

For both upper and lower loops R is a monotonically decreasing function of t/J 
for the particular values (14d) and small t/J (see Fig. 4). But it need not be so in 
general. The condition for a reversal is 

aR/ atfJ = c 1l 2(b + 37Tct/J/4) = 0 

or 

t/J = -4b /37TC 

and will occur above or below the axis depending upon the sign of c (note b < o). 
For sufficiently large values of /c/ this reversal will occur within the range of validity 
of our expansions. 

A complete double loop is obtained from 

(16) 

independent of b (a ray turning at t/J above the axis, turns at -t/1 below the axis. In 
R 2 we make the convention t/J > o). Notice that if c = o, all rays will be brought to 
a focus (to this order of approximation) at R 2 = 2R 0 • The condition that c = o is 

'Y = 5/4132 (17) 

We now compute the travel time in a fashion analogous to the computation of R. 
We have 

(18) 

as the time required for a ray to intersect the axis TJ = cp = o twice. (To obtain this 
result, one must compute R to 0(e112

), not order 0(e-1/ 2) as implied by M). Thus 
we have the very important result that the difference in time of arrival between a 
ray arriving axially and one arriving from off axis will differ by 0(e112) at most. It 
is the smallness of E which leads to the practical difficulties at sea. 

The time of travel for a double loop is 
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Figure 4a. Adapted fro m Munk ( I 974), showing ray trajectori es as a function of angle. Notice 

monotonic decrease in range R as tf, increases. 
4b. Two sound speed profil es, correct to 0(-71"), in which one has axial arri val last, and in 

other (dashed) axial arri val is firs t. 
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T 2 = T(t/J+ ) + T(tf,_) = R 2 + 21:1l 2(-31mf,4/16) 

t/J-=-t/J+ 

[38, 3 

(19) 

An off-axis arrival will always precede the axial arrival if c > o. But if c = o, all 
rays arrive together (at the focus 2R0 ) and if c < o, the axial arrival is first. (To this 
order in tf, the axial arrival is either first or last. If higher order terms are retained 
in the expansions, the axial arrival can be intermediate. The present results should 
be interpreted as the arrival structure of the axial ray relative to rays turning at small 
values of tf,). In Figure 4b are displayed two sound profiles correct to 0('1?5) one of 
which has the axial arrival first ; the other has it last. 

3. The restricted boundary value problem 

a. Range and timing. Consider now a restricted form of our boundary value prob-
lem. Let the source and receiver both be located at 7J = 0, separated by a non-
dimensional horizontal distance. Here we seek all ray paths between the source and 
receiver which have undergone p double loops which we label (p ,p) (notice that the 
more general solution, which we will examine below, contains three kinds of paths 
between source and receiver: 1) rays which have undergone p-upper loops and 
p-lower loops, i.e. p-double loops; 2) p+ 1-upper loops plus p-lower loops (p+ l,p); 
3) p-upper loops and p+ 1-lower loops (p,p+ 1) where p is an integer; see Figure le). 

There is a degeneracy in the (p ,p) case. With axial source and receiver there is 
nothing to distinguish a double loop in which the initial ray leaves the source up-
ward, written (+p,p), from one that leaves it downward (-p,p). 

The problem is thus to find those values tf, for which 

p = pR2(tf,) = 
(2p) e-1

/
2(1r/4 + 31rctf,2/8 + 151retf,4/32 + ... ) + O(e112tf, 2) (20) 

for integral values of p. Setting e =< 0, we have 

( 

e1/2p ) 1;2 
tp2p =' (8/ 31rc)112 - 1r/ 4 (21) 

where tp2p are the turning points of rays making 2p loops (p-upper, p-lower) be-
tween source and receiver. For c > o, there clearly will be a maximum number of 
double loops given by 

_ [ 2e
1

/
2
p] Pmax - ---

1T 
(22) 

As p ranges from Pmw to Pmax the ray paths change from near surface turning to 
near-axial at p = Pmax• If we restrict tf, to be less than tf,, where tf,, is the value at the 
surface, on the basis that surface scattered rays will be attenuated over long dis-
tances, then there is a minimum p given by 
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[ 
El /2p / ] P min ="' -

2
- (1r/ 4 + 31rcq1//8) (23) 

Still restricting c > o, we can compute the times of arrival as 

T 2p = p + r ~P = p + E1 l 2(2p) ( - ~; cq1' 2p) 
(24) 

( 
El /2p ) 2 

p - e1l 2(31rc/ l6) (2p) (8/ 31rc)2 
~-1r/ 4 

Pmin P Pma:r: 

Because p is a constant, the differences in time of arrival of successive rays decrease 
asp Pmax which is the classical rapid SOFAR cut-off burst. As Munk notes, all 
times are less than p(= p' / C1 in dimensional form) and thus all rays come in sooner 
than the axial. 

If we can now observe changes in the times of arrivals of the different rays in a 
SOFAR channel like this we are in a position to perform one example of an inver-
sion procedure on this "vertical slice". An equivalent inverse problem occurs at the 
"initializing" stage. One would normally have an initial estimate of the mean sound 
speed profile which will be used to compute estimates of the arrival times of the 
various rays. Observations will almost certainly differ from the calculations. One is 
then faced with the problem of modifying the initial estimate to bring it into con-
formity with the data. Schematically, the process is as follows. For an arrival, identi-
fied as corresponding top= p0 , we compute from (24) the partial derivatives 

(25) 
fJT2p0 = fJT2p 0 _!!.!!___ + fJT2p 0 fJqJ 

ay fJc fJy fJq1 fJy 

Then the changes in travel times (or differences from the initializing calculations) are 

A.To = fJT2Po AE + fJT2Po A/3 + fJT2Po Ay + . • . 
_po fJE f} /3 fJy 

(26) 

which, with measured values of AT2 for several Po, can be solved for AE, A/3, . . . 
and hence the parameters of the modified sound channel found as E + AE, /3 + 
A/3, .. . 

· But there are other possibilities too. Pmax depends directly upon e112
• A change in 

the number of received arrivals, if detectable, would immediately give a datum for 
determining a new value of e1

/
2

, etc. 
This procedure is a different one than described by MW for solving the vertical 

slice; there the perturbations in travel time were ascribed to perturbations in sound 
speed in a series of vertical layers. Obviously with a sound speed profile given as 



426 Journal of Marine Research [38, 3 

here in terms of a Taylor series in the vertical coordinate we could compute its 
mean over any set of vertical distances we chose. The two procedures are thus en-
tirely equivalent and one should use whichever is more convenient. As noted above 
however, the Taylor series approach is unlikely to work well in practice because of 
its slow convergence-unless one is willing to use only the near axial rays-a serious 
restriction. (Obtaining the partial derivatives in (25) is equivalent to finding the 
Frechet derivative in the Backus-Gilbert formulation of inverse theory). 

We have seen above that it is possible to have c < o. If that is the case, then the 
condition that a solution to (20) exists is now 

0 

= (_2_)1/2 ( €1/2p)l /2 
tf,_p 3 1r/4 - 2 

7TC p (27) 

where 

[ 
€1/22p] 

P;;;: Pmln;;:: 7T 

To prevent tf,2p from exceeding tf,., we obtain 

Pmax [ ( €~:p) (1r/ 4 + 31rc,tf,2/ 8)] 

and the axial arrivals correspond to small p rather than large p as in the prior case. 
The times of arrival for these rays at a distance p is 

= p + e1/2 -- /cl 2p -- 1r/ 4 - __ P ( 
3 ) ( 8 ) 2 ( €1/2 ) 2 
16 31r/cl 2p 

and as anticipated, the axial arrival is first, with an abrupt onset rather than termi-
nation. 

Clearly, if c = o all rays arrive together (assuming that the receiver is at a focus) 
and the only measureable parameter change would be in C1 which controls the over-
all timing and which bas been suppressed here by scaling it out. Should one be deal-
ing with an ocean in which c passed through zero, there would be great difficulty in 
ray identification (but it would not be hopeless because the characteristic spacing 
between arrivals could be used to identify the axial rays). 

If the sound channel is such that we should keep higher terms in tf, in our expan-
sions then the situation is even more complicated. Let us retain the quartic term in 
(20). We find for our restricted problem that 

{ ( 
25 ( €1/2p) )1/! }1 /2 tf, 2p = - (2/ 5)c/ e ± 2/ 5(c/ e) 1 - 4 e/ c2 1r/ 4 -2p (32/ 151r) 

(29) 
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There is now the possibility of obtaining two values of l/J2p for fixed p and p. Sup-
pose e/ c << l. Then 

l/121> == -2/ 5(c/ e) { 1 :;: [ 1-(25/ 8) (e/ c2) Q (32/ 151r) 

- --(25/ 4)2 Q2 (32/ 151r)2 + ... e
2 ]}1;2 

8c4 

Q = -€1
/

2 p/ 2p + 1T/ 4 
or 

l/12p == [-(5/ 4c) Q (32/ 151r)]1!2 + 0(e/ c3) 1/ 2 (30a) 
and 

l/Jzp""' [-4/5(c/ e) + (5/ 4c) Q (32/ 151r))1/ 2 + 0(e/ c3) (30b) 

The first root is to lowest order the same as (21). The second root is valid only if 
c/ e < o and if l/J2p < l/Jc- If both of these conditions are fulfilled, one can have two 
rays, with the same identifier (p,p) covering the vertical column in different ways. 
The travel time to this higher order is 

T 2p = p+e1122p [-31rci/J2,,' - 151rei/J2/ / 48] 

For the first root, the value is almost (24). For the second root, we haxe approxi-
mately 

T2P ==a! p+2pe1 l 2(-31rc/ 16(-31rc/ l6{4c/5e)¼ - (151re/ 48) (4c/ 5e)6)] (31) 

which is very different in value from (24). Evidently, this is one possible explana-
tion for the numerically computed double-valued arrivals in the Pacific displayed in 
Figure 2. 

b. Ray intensity. Thus far, we have discussed using changes in arrival time as data 
for the inverse problem. But each ray will arrive with a characteristic amplitude, 
which is also a function of the sound speed profile parameters. There is the possi-
bility of using changes in amplitude as an additional datum; in any event, knowl-
edge of the expected intensity of a particular ray is vital to experiment design. 

We need to find the ray bundle intensity, as it spreads cylindrically, relative to 
the intensity emitted at the source. Officer (1958) and other texts provide the neces-
sary details which we will only summarize here. 

Let P be an arbitrary emission intensity / unit solid angle at the source and let 
80 be the angle, as before, of the ray emitted by the source on the channel axis 
measured relative to the horizontal. With the receiver also on the channel axis, the 
ray must be received at this same angle (or 7T - Oo)-

Then from Officer (1958) the received intensity is 

P cos80 I=------
psin80 dp/ d0o 

(32) 
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We use 

and 

from Snell's law and (9). We have approximately then 

( 
€1/2p )1/2 

4pp ---?T/ 4 
2p 

€1;2p 
I=---------

(33) 

In Figure Sa we plot the relative intensity from (33) (but carried through O(e)) 
as a function of p at a (dimensional) distance of 1000 km. Notice the rising ampli-
tude for increasing p until the axial cut-off-the classical SOFAR reception effect 
(Ewing and Worzel, 1948). Only rays turning at 1"11 < 4 have been included because 
the expansions are very doubtful at larger values. Rays turning at jl{lj > 4 would 
come in earlier than those displayed. To the extent that one can indeed measure 
changes in received intensities they provide another datum for channel inversion 
through {)Jfac, etc. 

If we choose to regard p as a continuous parameter (possibly by introducing 
some suitable interpolation procedure) then we can speak of the envelope of the 
arriving wave packet. Because this smooth curve is also a function of the sound 
speed profile parameters, we could contemplate using its gross shape as our descrip-
tion of the arriving signals. In practice, one could least-square fit a curve to the en-
velope and study its variation in time. This procedure could be a more robust one 
than attempting to resolve the individual arrivals in a situation of high noise level 
or inadequate bandwidth. 

4. Complete axial boundary value problem 

We now will complete the axial case by considermg those rays which have one 
more upper loop than lower, and vice versa. 

a. Additional upper loop. Suppose that there are p lower loops and p+ l upper 
loops denoted (p+l, p). Then 

p = 2p c 1
!

2 
( 1r/ 4 + 31rcl{l 2/ 8 + 

1
;; et/J4 + . . -) + e-112 (1r/ 4+bl{I + 31rct/J2/ 8 

+ 4dl{l 3/ 3 + 151rel{l4/ 32 + .. . ) + O(e1l 21{12) (34) 

Retaining terms to order 1{12 we have 

p = (2p+l) e-112 1r/ 4 + b c 1121{1+(2p+l) c 1! 2 31rcl{l 2/ 8 (35) 
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a) 

b) 

c) 

Figure Sa. Arriv al sequence of double loop rays in Munk profile from a source 10° km from 
the receiver. Both are axial. No rays turning at 1"11 4 are displayed as solutions are in-
creasingly doubtful for large Ii/JI, Upper number is i/J , lower pair is ray identifier. Units are 
all non-dimensional. Time axis can be dimensionalized by multiplying by L' I C, ~ 1. I is rela-
tive intensity. 
Sb. Same as 5a, except for rays with one more upper loop than lower. 
Sc. Same as 5a except for rays with one more lower loop than upper. 
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1/1 = __ -_4_b - ± 1/ 2 { (8/ 31rc)2 b2 
31rc(2p+ 1) (2p+ 1)2 

+ 
32 

(2p+1)37TC 

(2p+l) ( pEl/2 _ 
4 

7T ) r /2 

The travel time is 

T = p + e112 (2p+l) (-31rctfi'/l6) - e1l 2(btfl 3/3) (36) 

b. Additional lower loop. Now suppose there are p upper loops and p+ 1 lower 
loops (p, p+ 1). We obtain to this same order 

1/1 = 4b ± 1/ 2 { (8/ 31rc)2 b2 
31rc(2p+ 1) (2p+ 1)2 

+ 32 
(2p+ 1) (31rc) 

( El /2p- (2p: 1) ) 7T r /2 
(37) 

where 1/1 must be positive. The expressions (35, 37) differ only in the sign of b. 
The travel time for this case is 

T = p + e1! 2(2p+ 1) (-31rctfi'/ l6) + e1 l 2(btfi 3 /3) (38) 

Because b is always negative, for an additional upper loop and c > o we can 
have two solutions 1/1 for the same value of p. For the additional lower loop one can 
have only one solution, unless c < o. The number of possible solutions and hence 
the number of arrivals is clearly highly dependent upon c. Solutions still exist for 
these cases even if c = o. Because 1/1 must be positive, there will be a Pmtn for an 
extra upper loop and a Pmax for an additional lower loop. Because all double loops 
focus at fixed points for the case c = o, and if the receiver is not at one of these foci, 
we will see then only the odd number loop arrivals, determined by the appropriate 
value of p. Obviously, a complete description of arrival structure is a complex func-
tion of the parameters of the sound channel. 

The intensity of arrivals may be obtained analogously to (33). These are graphed 
in Figures Sb, c. 

For the numerical values of (14d) we display in Figure 6 the complete arrival 
structure for all loops at a receiver at a horizontal distance of 103 km. The (p ,p) 
arrival dominates the sequence because as noted above, with the source and receiver 
both on the channel axis, there are two rays which arrive at the same time and 
reinforce each other. One ray leaves the source directed upward; the second ray 
leaves it directed downward. The detailed form of this solution is dependent in an 
intricate way upon the values of E, /3, ')' etc. But numerically, it is not difficult to 
vary the coefficients and build up a variational table from the resulting partial 
derivatives as is done in studying the free oscillations of the earth (e.g. Wiggins, 
1968). 
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Figure 6. Complete arrival sequence for axial source and receiver in Munk profile. This figure 
is the sum of 5a-c except (p ,p) arrivals are multipli ed by 2 and dominate, because up-down 
degeneracy gives 2 rays arriving simultaneously. 

S. Oceanic profiles 

If we do a polynomial fit (a hazardous procedure) to the observed profile dis-
played in Figure lb, we obtain the values: L = l.025, E = 4.7 x 10-3, /3 = 1.15, 
y = 0.239, a= -.409, { = -.195. The very large value of /3 which is the coefficient 
of the cubic term is the result of the marked asymmetry of the sound speed profile. 
Substituting these values into (l la,b) we obtain 

b = -.58, c = .72, d = -.93, e = 1.24, 

and the expansions will be poorly convergent except for very small 1/J. 
The final arrival structure is quite different from that of Munk's profile. It is dis-

played in Figure 7. The increased values of e112 and of /3 increase the value of Pmax 

at this range from 21 to 41; the final cut-off burst thus consists of many more ar-
rivals, extremely tightly spaced. The large value of /3 for this profile gives substantial 
differences between the arrival of (p+ 1, p) and (p,p+ l) even for small value of 1/J. 
The marked difference between this arrival structure and that of the Munk profile 
is encouraging for the inverse problem in that it suggests a qualitative sensitivity of 
observables-e.g. the number and spacing of arrivals-to comparatively small 
changes in sound channel parameters. Whether deep sound channels with c < o 
and an early axial arrival actually exist in nature is not clear. 

6. Some final remarks 

One can proceed to solve the more interesting case of off-axial sources and re-
ceivers by the same methods. The horizontal distance traveled by a ray traveling 



432 Journal of Marine Research [38, 3 

( 4 2,4 31 

'\"'1 .JJJJiJ~ 
- OLl.2---~~ - 0. 1 

T - p 

Figure 7. Complete axial arrival sequence for profile of Figure lb in North Atlantic at range 
10' km. There are many more arrivals here than in Munk profile and they are very tightly 
bunched near termination (some earlier arrivals are not displayed). 

an arbitrary vertical distance from the axis 7/ = 0 may be obtained from equation 
(10) (replacing the upper limit of integration by an arbitrary value of cf,) and the 
formulas of Gradshteyn and Ryzhik (1965). The results are not displayed here; a 
referee has suggested (rightfully) that the analytical complexity is so great that no 
insight over-and-above that obtained from an ordinary numerical ray-trace is likely 
to be obtained. We will thus leave the problem restricted as it is to the purely axial 
source and receiver. It is possible that some expansion procedure more powerful 
than the Taylor series used here would permit a truely analytical approach to the 
general case. But that is something for another time. 

From the point of view of the inverse analysis required of the tomographic sys-
tem, the present exercise is of limited value even for the axial case: the series ex-
pansions required to solve the direct problem with sufficient accuracy are cumber-
some to compute and slowly convergent. 

Observational evidence suggests that major perturbations of the acoustic struc-
ture of the ocean can be described by the lowest dynamical baroclinic mode-or, in 
other words that the ocean tends to change by shifting the entire thermocline up 
and down. For a source and receiver initially on the sound channel axis, the major 
result of the perturbation will be to shift them off. To deal with this case we must 
discuss the acoustic propagation between an off-axis source and receiver. Distance 
from the axis must then be treated as a variable in the inverse calculation. 

Perhaps the chief virtue of what bas been accomplished here is that we obtain 
some understanding of the complexity of the two-point boundary value problem. 
The expressions for turning depths, number of arriving rays, and their intensity 
permit one to anticipate potential difficulties in an operational tomographic system 
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and to understand their cause. Specifically, we can anticipate the possibility of rays 
arriving too close together to be resolved (although they may have very different 
intensities); rays with the same identifiers having very different paths, changes in 
the number of arriving paths, etc. The quasi-analytical expressions also permit one 
to contemplate inversion schemes as outlined in equations (25, 26). 
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