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A note on frictional effects in Taylor's problem 

by Michele M. Rienecker1 and Michael D. Teubner2 

ABSTRACT 
Taylor's tidal problem of the reflection of a Kelvin wave in a semi-infinite rotating channel 

is modified here by considering the effect of the inclusion of fri ction in the analysis. Results are 
obtained using G alerkin and Collocation methods to satisfy the end boundary condition, and 
these are compared with results given by other authors for the nonfriction case. 

1. Introduction 

The reflection of a Kelvin wave at the closed end of a semi-infinite rectangular 
channel has been studied by Taylor (1920) and Defant (1925: see Defant 1961, 
pp. 202-219) who solved the problem without considering any energy dissipation 
mechanism. Hendershott and Speranza (1971) generalized the model to include 
localized dissipation at the head of the channel, while Brown (1973) allowed for 
the presence of propagating Poincare waves but not for dissipation of energy. 

When the effect of bottom friction is included, all Poincare modes become propa-
gating modes though the amplitudes of all reflected waves decay exponentially away 
from the end barrier thus limiting the propagation of energy back up-channel. The 
effect of friction on water elevations and the position of amphidromic points in the 
channel is studied here. A comparison is also made between Galerkin and Colloca-
tion methods used to ensure that the end boundary condition is satisfied. 
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Australia. 

2. Tetra Tech. Inc., 630 North Rosemead Blvd., Pasadena, California 91107, U.S.A. 

183 



184 Journal of Marine Research [38, 2 

2. The problem and method of solution 

2.1 The equations and the end condition. Consider a rectangular semi-infinite chan-
nel of uniform depth h, occupying the region x 0, 0 y b, (x,y) being hori-
zontal coordinates. The response of the water in the channel to an inward travelling 
wave, of frequency w or period of oscillation T, is assumed to be governed by the 
linearized continuity and momentum equations (see, e.g. Heaps, 1969). Manipula-
tion of these equations yields 

iJ2 Z + iJ2 Z + k2 z = 0 ax2 &y2 > 

(U,V) = /2~~2 ([ /3 !: + f !~ ] , [ -/ !: + f3 :~ ]) , 

where Re{Z(x,y)e-1..it} is the elevation of the free surface above mean-sea-level, 
Re{Ue-w1}, Re{Ve-""1} denote the depth-averaged velocities in the x-

and y-directions respectively, 
f is the Coriolis parameter 
g is the acceleration due to gravity 
y is a frictional parameter 
(3 = y- iw 

and k2 = ~;h (}2 + /32
) • 

} assumed constant, 

These equations are solved subject to the conditions 

V(x,y) = 0 at y = 0 and y = b, for x 0, 

U(0,y) = 0 for 0 y b 

(1) 

(2) 

(3) 

(4) 

and the radiation condition that no other inward travelling waves are excited by the 
input wave. 

The solution to (1) which also satisfies condition (3) and the radiation condition 
is found to be 

Z(x,y) = e -iK,x + a.y + GoeiK,x - a.y 

"' eiK.x { n1ry } G --,--......,-:-::,:-:- /3 - JK · n1ry + 2' n (/3cx.n-if Kn) ex.,. COS -b- n. Sill b 
n = l 

(5) 

where cx.0 = - ifKol/3, Ko= {iw/3/gh}~ and ex.,.= in1r/b, K,. = {cx.,,2 + k2p, Re{K,.} 
> 0, Jm{K,.} > 0 for n e z+. 
The first term on the right-hand side of (5) represents the incident Kelvin wave 
the second term the reflected Kelvin wave and the last term the Poincare waves. Th; 
velocities may be found from (2) and so the remaining condition (4) is used to de-
termine the complex coefficients G,.. 
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Exact solutions for these coefficients cannot be obtained because of the infinite 
summation, but an approximate solution may be found for a finite number of the Gn 
by using a method of weighted residuals (see Finlayson, 1972) to satisfy (4). An 
approximation to U(x,y) is given by the truncated series 

Ur (x,y) = g ~o {-e -iK.x + aoy + GoeiK.x-a,y} 

N 

""' KnaneiK.x { mry . mry} 
- ig L.,; G,. (f3an-ifK,.) COS -b- - cp,. SID -b- ' 

n = l 

(6) 

where 'Pn = ifw/ghanKn, n E z+ . 

Then the (N+ 1) coefficients in (6) which approximately satisfy (4) are found by 
solving the (N+ 1) linear simultaneous equations 

f : Ur (0,y)wm(y)dy = 0, m = 0,1, .. . , N (7) 

where the wm(y) are chosen weighting functions. The solution obtained as N oo 
will be an exact solution if the {wm(y)} form a complete set. 

2.2 The method of Collocation. If the weighting functions are chosen such that 
wm(y) = 8(y-ym), where 8(y) is the Dirac delta function and the Ym are chosen points 
along the boundary x = 0, the method is referred to as Collocation. This is the 
treatment used by Brown (1973) and the system of equations to be solved is simply 

<Xo G -a,y. --
1
- oe 

N 

11 = 1 

<Xo 
-f-

iKna,. { n1rym ,1,. • n1TJ'm } 
({3a,.-if K ,.) COS --b- - 'l'n SID - -b-

ea,y .. , m=0,1, ... ,N. 

Two sets of Collocation points are used in section 2.4, viz. 

Ym = (m + ½ )b/(N + 1) 

and Ym = mb/ N. 

(8) 

(9) 

(10) 

2.3 The Galerkin technique. If the wm(y) are chosen from the series in equation (6), 

that is 

Wo(y) = e-aoy ' 

m1ry . m1ry _ 
w,,,(y) = cos -b- - 'Pm Sill -b-, m - 1, .. . , N, (11) 

then the method is called a Galerkin technique. Using these weighting functions in 
(7) yields the equations 



186 Journal of Marine Research [38, 2 

n = l 

= (12a) 

and 

CXo ( CXo - T </>m 

f (ao2 - am2 ) 

N 

( ao + ~1T <p,,. ) b 
=-~ ( 2 2) [1-(-l)mea' ],m=I , ... , N. 

f a o - am (12b) 

These equations have been solved numerically. 

N=4 
,.."',,,,...~, ..... ,,,,,,,.: ...... 

•0 5 

' ,,,,, ... , . 

N=8 

N =10 "t J I' • 
I \ .... ,. I e .. +.'e e <9.._, .-.,., , .-,, • 'f>, c..,, ... --.- ,< e' ¾ 

y=o y:b 

Figure I. The values (in m/ sec) of IUT(0,y) I for T = 12.4 hrs and 'Y = 0.0. • indicates the re-
sults from the Galerkin technique, --- indicates results from Collocation using equa-
ti on (9) and - - - - - results from Collocation using equation (10). 
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Figure 2. Co-amplitude (--- -) and co-tidal (- - - - -) lines for T = 12.4 hrs. The phases 
are shown in hours and the amplitudes in any units (with Z(2b,0) shown as 10 units). (a) y = 
0.0, (b) y = 0.00001, (c) y = 0.00005, (d) y = 0.0001. 

2.4 Comparison between the two methods. Figure 1 shows, for the case T = 12.4 
and 'Y = 0, a comparison of the values /Ur(0,y)/ calculated using the Galerkin and 
the Collocation techniques for increasing values of N. Both methods show satisfac-
tory convergence as N increases, the Galerkin method giving better results toward 
the side walls than the Collocation method which uses Ym as defined by (9). If the 
Ym are chosen according to (10), the solution is exact for the side walls, but the 
modulus of the error is much larger away from the corner positions. Hence, the 
Galerkin technique gives a better over-all result and is the method used to obtain 
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Figure 3. Co-amplitude (--- ) and co-tidal (- - - - -) lines for T == 9.0 hrs. (a) y == 0.0, 
(b) 'Y == 0.00001, (c) 'Y == 0.00005, (d) 'Y == 0.0001. 

the results presented in the next section. For the case y = 0, the resulting co-ampli -
tude and co-phase patterns coincide with those obtained by Brown. 

3. Results 

The solution determined in the previous section has been applied to a rectangular 
channel of width b = 500.5 km and depth h = 74 m; the value off was taken to be 
.000119 sec- 1, corresponding to the Coriolis parameter at latitude 54.46°N. These 
values coincide with those used by Taylor (1920) and Brown (1973). The results 
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Figure 4. Co-amplitude (---) and co-tidal (- - - - -) Jines for T = 8.3 hrs. (a) '/ = 0.0, 
(b) -y = 0.00001, (c) -y = 0.00005, (d) -y = 0.0001. 

were scaled so that Z (2b,0) = 1.0; this does not affect the relative amplitude and 
phase throughout the channel, nor does it affect the position of amphidromic points. 

For the nonfrictional case, for each rectangular channel there is a critical period 
Tc, such that if T > Tc, the incident wave is perfectly reflected, whereas if T < Tc, 
Poincare waves propagate back up the channel. For the channel described above, 
Brown found that T er = 8.46 hrs. 

(a) T > T er 

Solutions obtained for the case T > Tc,, using T = 12.4 hours are shown in 
Figure 2. When y = 0 (Fig. 2(a)), the co-amplitude lines are symmetric about the 
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central channel line; as y is increased through the values 0.00001, 0.00005, 0.0001 
(Figs. 2(b)-(d) respectively), this symmetry is lost as the amplitude of the reflected 
waves becomes smaller. For T = 12.4 hrs, the Poincare modes decay too quickly to 
be considered as propagating any reflected energy away from the end barrier; their 
presence is more obvious for the case T = 9.0 hrs (Fig. 3). 

As '}' is increased the long-channel spacing of amphidromic points is little changed 
but the amphidromes move toward the wall along which the reflected Kelvin wave 
travels. This result was also found by Hendershott and Speranza (1971); however 
with an energy-absorbing barrier the distance of the amphidromes from the wall is 
constant with x, while with bottom friction, as x increases the amphidrome moves 
closer to the wall (this effect is suggested in an Appendix of Hendershott and 
Speranza) until it actually becomes virtual (beyond the channel boundaries) and 
eventually lost completely (see Fig. 2(d)). This is because the presence of bottom 
friction causes the reflected Kelvin wave, as well as the Poincare waves, to decay 
up-channel. As y is increased, the distance in which any of the reflected waves de-
cays to e-1 of its amplitude at the closed end becomes smaller until there is little or 
no reflected energy at all. Of course, if y is too large, the input wave itself dies out 
before it reaches the end barrier. 

For the case of a perfectly-reflected Kelvin wave, the spacing between amphi-
dromic points is "J...0/ 2 (Ao being the Kelvin wavelength). Since Ao a: w- 1 or T, as T 
is decreased toward T er, the amphidrornic points should move closer together. This 
is borne out by a comparison of Figure 2(a) with Figure 3(a). 

(b) T < Tcr 
The co-amplitude and co-tidal lines are more complicated when the Poincare 

waves propagate back up the channel. This can be seen in Figure 4 which shows 
the amplitudes and phases for T = 8.3 hrs and different '}' values. When y = 0, 
there is no symmetry across the channel and the amphidromic points no longer lie 
along the central channel line. As well as the real amphidromes (situated inside the 
channel boundaries) there are virtual ones which were not present in the non-fric-
tional results for T > T er· However, the effect of increasing y is similar to the case 
T > T 0 , since, for'}' > 0 the reflected modes decay up-channel. As y increases the 
interference pattern tends to be governed more by y than by T. 

4. Conclusion 

This paper has shown the effect of including friction in Taylor's tidal problem for 
a rotating semi-infinite channel. The results presented coincide with those of Brown 
(1973) for the situation'}'= 0 and confirm a suggestion of Hendershott and Speranza 
(1971) regarding the effect of bottom friction on the position of amphidromic points. 
As friction increases, the amphidromes tend to move toward the wall along which 
the reflected Kelvin wave travels, until they are lost completely. For large values of 
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'Y, the co-amplitude and co-phase patterns tend to be independent of T, until 'Y 
becomes too large and the input wave dies out before reaching the end barrier. 

REFERENCES 
Brown, P. J. 1973. Kelvin wave refl ection in a semi-infinite canal, J. Mar. Res., 31, 1-10. 
Defant, A. 1961. Physical Oceanography, Vol. 2, Pergamon Press, Oxford, 598 pp. 
Finlayson, B. A. 1972. The Method of Weighted Residuals and Variation Principles, Aca-

demic Press, New York, 412 pp. 
Heaps, N . S. 1969. Some notes on tidal theory and its possible relevance to a program of deep-

sea tidal measurement, Dtsche Hydrograph. Zeit., 22, 11-25. 
Hendershott, M . C. and A. Speranza. 1971. Co-oscillating tides in long narrow bays; the Taylor 

problem revisited, Deep Sea Res., 18, 959-980. 
Taylor, G . I. 1920. Tidal oscillations in gulfs and rectangular basins, Proc. Lond. Math. Soc., 

(2), 20, 148-181. 

Received: 24 October, 1978; revised : 26 January, 1980. 


