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Forced baroclinic ocean motions, III: The linear
equatorial basin case

by Mark A. Cane’ and E. S. Sarachik?

ABSTRACT

Previous work on the linear spin-up of an equatorial ocean is extended to include the specific
effects of the north-south extent of the basin, thus allowing a detailed comparison of analytic
spin-up theory with numerical calculations.

North-south modes in a B-plane equatorial basin are solved for both numerically and analyti-
cally. Simple approximations are developed and the modes are classified by the location of the
turning points relative to the zonal walls. The modes are illustrated for three cases: A: a sym-
metric basin whose zonal walls are distant from the equator (compared to the equatorial radius
of deformation); B: a symmetric basin whose zonal walls are close to the equator; and C: an
asymmetric basin, one wall of which is close to the equator and one far.

Spin-up in response to x-independent winds in each of these basins is then calculated in terms
of four elements: the x-independent response to the wind; the eastern boundary response con-
sisting of Rossby and Rossby-Kelvin modes needed to bring the u field to zero; the western
boundary response consisting of Kelvin waves needed to bring the u field to zero; and the west-
ern boundary layer consisting of trapped short Rossby waves needed to bring u to zero and
meridionally redistribute mass. These elements are combined to describe how the steady (Sver-
drup) solutions are approached. Special attention is paid to the fast planetary response: the
equatorially confined Kelvin mode, the exponential anti-Kelvin mode with maximum amplitude
on the zonal walls, and the Rossby-Kelvin mode, the latter two being modes not present on a
meridionally open basin.

Finally, a numerical model is run to illustrate spin-up for various winds in each of the basins,
A, B and C.

1. Introduction

This paper is the third of a series describing the linear response to simple wind
stress patterns of an equatorial ocean described by the baroclinic shallow water
equations.

In the first paper (Cane and Sarachik, 1976, henceforth called I), we described
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the response of an unbounded equatorial ocean to zonal and meridional wind stresses
switched on in time and space. The dispersive properties of these forced wave mo-
tions were clarified by investigating the dispersive properties of a closely analogous
system: the barotropic vorticity equation forced by a switched on wind stress curl.
It was found that the asymptotic westward response occurred behind fronts propa-
gating with the long Rossby nondispersive wave speed; and that asymptotic east-
ward motions occurred only at forcing discontinuities or western boundaries and
consisted of short Rossby waves in the form of Bessel function “Gulf Streams”
rapidly thinning with time. These results extend directly to the planetary wave part
of the baroclinic case, this case being completed by the addition of eastward re-
sponses behind fronts travelling with the Kelvin wave speed. A method, based on
the one of Matsuno (1966), was then introduced for calculating the unbounded
baroclinic response, and this unbounded response was calculated for several un-
bounded zonal and meridional wind stresses. It was found that, in general, zonal
winds excite a local resonant response that has the » and 4 fields growing linearly
with time and the v field constant with time. By contrast, a meridional wind excites
local u and + fields constant in time with no steady v field at all. The role of the
equatorial inertia-gravity waves in setting up these unbounded responses was elu-
cidated.

In the second paper (Cane and Sarachik, 1977, henceforth called II), we con-
sidered the effects of meridional boundaries at x = 0 and x = X and described the
spin-up of this zonally bounded but meridionally unbounded equatorial ocean. The
method consisted of three basic steps: (i) the calculation of the fully unbounded
response, as given in I; (ii) the calculation of the boundary responses needed to
bring the zonal velocity of the unbounded response to zero on the boundaries; and
(iii) the calculation of the boundary reflections necessary to bring to zero the zonal
velocities of any of the wave responses calculated in step (ii) and any of their sub-
sequent reflections. These boundary reflections in steps (ii) and (iii) were calculated
by a method due to Moore (Moore and Philander, 1977). The method depends in
an essential way on the detailed properties of the Hermite functions, which are the
correct functions to use only when the basin is meridionally unbounded. The mo-
tions excited by switched on wind stresses were followed in time and the precise
manner in which the wave motions conspired to produce the steady (Sverdrup)
solution was studied. It was found that the approach to the steady solution is sig-
nificantly impeded when Kelvin waves are excited, for these Kelvin waves induce
a sloshing of mass back and forth across the basin with only slowly decreasing
amplitude. It was argued in this paper that despite the unrealistic unboundedness
of the basin in the meridional direction, the results obtained should be valid in the
vicinity of the equator.

It is the purpose of this paper to explicitly include the boundedness of the basin
in the meridional direction in the description of the spin-up process and in so doing
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to decide if any essential features are introduced by these boundaries at the north
and south. Thus we will solve the non-dimensional shallow water equations

u,—yv+ h,=F H®) (1a)

v+ yu+ h,=G H(®) (1b)

he+u, +v,=QH() (1c)
subject to the boundary conditions

u=0atx=0and Xp (2a)

v=0aty=Ygand Yy (2b)

where in general Yg will be taken to be south of the equator and Yy will be taken
to be north.

The imposition of meridional boundedness in condition (2b) means that the
meridional eigenmodes will no longer simply be related to the Hermite functions.
Hickie (1979) solved for the eigenvalues and eigenfunctions of a basin bounded in
one meridional direction and found that the deviation from the Hermite-like be-
havior increased as the boundary approached the equator. As we will see, Hickie’s
assumption of unboundedness in one direction eliminates some important solutions
(we will call them anti-Kelvin waves) that were previously noted by Moore (1968)
and Mofjeld and Rattray (1971) in their discussions of free modes of an equatorial
basin.

In what follows, the basic method of calculating the time dependent response is
essentially the same as the method of II and can be summarized by noting the
equivalent 3-step process: (i) the zonally unbounded, but meridionally bounded,
response is calculated; (ii) the eastern and western boundary response needed to
bring to zero the zonal velocity field of the zonally unbounded response of step (i)
is calculated; (iii) the eastern and western boundary response needed to bring to
zero the zonal velocity fields of any boundary responses emitted subsequently as
part of step (ii) is calculated. It should be noted that the inclusion of northern and
southern boundaries complicates the analytic problem significantly, yet resolution
of this complication is essential before analytic results can be compared to, say,
numerical simulations.

The plan of this paper is as follows: the second section will describe the eigen-
values and eigenfunctions of the v equation in a meridionally bounded domain.
Analytic approximations are compared in detail with numerically generated results.
Special emphasis is placed on modes not present in the meridionally unbounded
case, in particular the westward propagating Rossby-Kelvin, anti-Kelvin and inertia-
Kelvin modes, all of which have large amplitude at the zonal boundaries.

The third section reviews notation for the vector eigenfunctions, describes their
completeness and orthogonality properties, and uses them to implement step (i),
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Figure 1. The dispersion relation (Eq. (5)) drawn for the eigenvalues of the [—5,1.7] case. The
n = 0 low frequency branch is the Kelvin-Rossby mode; the n = 0 high frequency branch is
the inertia-Kelvin mode.

the calculation of the meridionally bounded but zonally unbounded response. The
fourth section shows how to calculate the eastern and western boundary response
and thus how to implement steps (ii) and (iii) described above.

Section 5 will describe in some detail the time dependent response of three equa-
torial basins to F = 1 and G = 1 wind stresses. This will be done by presenting a
linear numerical simulation of the spin-up process and comparing with the linear
analytic theory developed in the earlier sections. Finally, the applicability and limits
of this work to the baroclinic response of real equatorial oceans will be discussed in
the last section, and our conclusions will be given.

2. The free modes of the meridional velocity equation

The homogeneous set of equations (1) with F = G = Q@ = 0 and dependence
u, v, h ~ et®@e" can be reduced to a single equation for v:

Vv T Rp+1—y2lv=0 (3)
subject to the conditions at the northern and southern boundaries
V= 0 at Ys, YN - (4)

In terms of the eigenvalues u,, the nondimensional dispersion relation is

;> — k> — =2u, +1. (5)




1979] Cane & Sarachik: Forced baroclinic ocean motions 359

There are two linearly independent solutions to (3) so that the general solution of
(3) may be written, in the notation of Abramowitz and Stegun (1965):

V() = U(—p —1/2,\/2 ) + bV (—pu —1/2,\/2 y) (6)

where U(V) is the parabolic cylinder function that decays (blows up) exponentially
asy — + oo,

We will take Yy to be north of the equator and Y to be south so that applying
the boundary condition (4) at the northern boundary yields

V(—p—1/2,2Yx)

Applying the boundary condition at the southern boundary yields an eigenvalue
equation for the sequence of eigenvalues w,:

Ul —1/2,V/2 Y)
V(= —1/2,\/2 Yy)

V(—p, —1/2,—\/2 |Ys]) = 0.
(7b)

U(_,u'u _1/2, T \/E IYSI) e

Since Equation (3) with boundary conditions (4) is of standard Sturm-Liouiville
form, we may immediately conclude that the eigenvalues form a nonnegative in-
creasing sequence and that the eigenfunctions are complete and orthogonal on the
interval [Yg,Yy].

Equations (6), (7a) and (7b) give the general solution to the problem, but since
the content of these equations is at best opaque we will examine various approxima-
tions to the solutions with a view toward deriving analytic approximations for the
eigenvalues and eigenfunctions and thus understanding them in simpler terms.

To begin with, we must recognize that the solutions U and V have Stokes lines
in the complex plane so that analytic continuation across these lines changes the
form of the representation. Since we will need only the representation of the solu-
tion for real positive and negative values of y, we will need only the auxiliary rela-
tions (Abramowitz and Stegun, 1965)

U(=p=1/2, )= ”V(—Ifz_—;)/?" D+ cos au U(—p —1/2,y) (8a)

and
V(—p—1/2,—y) = (1/7) sin*mu I'(—w) U(=p —1/2,y)
—cosmu V(= —1/2,) (8b)

both valid for y > 0. Using these relations in (7b), the eigenvalue equation can be
written in terms of U(y) and ¥ (y) with positive argument only:
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77 L UG —1/2,\2 |Ys))
[(—pn) cos V(—pn —1/2,\/2 |Ys))

in? —a—=1/2,72 %,
T COS TTfly V(—pn —1/2,/2 |Ys|)

where b, is given by (7a) when u takes on one of the eigenvalues w,. Simplifying

using the standard relation

I'(—w) T'(w + 1) sin mpu = —m )
yields

U—pn =1/2,\/2 |¥5])
V(= —1/2,\/2 |Ys))

cot iy U(—ptn—1/2,\/2 |Ysl) +1]:o.
T(pn + 1) V(—pn—1/2,V/2 |Ys))

I'(ws + 1) tan 7w, —

+ b,

(10)

In the limit that Yy — o, b, — 0, and using (8a), the eigenvalue equation re-
duces to that of Hickie (1979):

U(—pn—1/2,\/2Y5) =0 (11a)

recalling that Y is negative. In the opposite limit that Yg — —, (10) reduces to
b, + I'(w, + 1) tan 7w, = 0, or, again using (8a)

U(—p, —1/2,—\/2Yy) =0. (11b)

In the limit that both Yy — 4 and Yy — —, (10) reduces to I'(u, + 1) * tan mu,
=0, i.e., 4, = n where n is a nonnegative integer. This limit represents the merid-
ionally unbounded case treated in Papers I and II: the functions V' never appear and
U(—n —1/2, \/2 y) are simply the Hermite functions H,(y) exp [—y?/2] treated
previously.

For the meridionally bounded case, (10) represents the general eigenvalue equa-
tion and can be solved in various analytic approximations. These approximations
can be classified by the location with respect to the northern and southern boundaries
of the turning points of the nth eigenfunction at y = + \/2u,+1 .

There are four cases of interest:

(i) Both turning points lie well within the basin, i.e., 2u, + 1 << Yg? and Y2

Using the asymptotic forms valid for y> >>2u + 1,

U(—p—1/2,y) — y* exp [-y*/4]

V(—p—1/2,y) > \/2/7 (y)~*exp [+y?/4] (12)
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gives

by =—\/m/2 (\/2 Yy) 20F1 ¢ -Ys (13)

and the approximate eigenvalue equation
T(u, + 1) tan wp, =\/m/2 I:(\/—i |Yg|) 2Tl o Ys?

+ (V2 Yy) atl Yo :l : (14)

Since the right-hand side of (14) is small, the eigenvalues are approximately integer
and Eq. (14) can be solved approximately to yield

P ~ 0+ (2m) =12 ()2 [ (V2 |Yg))m+te¥s' 4 (/2 Yy)ntt e ¥ ] :
15)
The eigenfunctions are oscillatory between the turning points and decaying beyond.
(i) The northern turning point lies well within the basin but the southern one lies
well outside the basin, i.e., Yg* << 2u, + 1 << Y2

The asymptotic relations (12) are again used to give the same b, as in (13). But
for y* <<2u, +1

U—p.—1/2,)
where, to third order in y(2u, + 1)~/2,

D, () = (n + 1/2)2y — (/2) pn — (1/24) y* (o, + 1/2)=2/2,

— I'(u, + 1) cot D,(y) (16)

The eigenvalue Eq. (10) becomes, approximately,
tan 7, = cot &, /2 |Ys])
e /2 Xl e

~\/m/2 TRy [tan 77, cot @, (\/2 |Yg|) + 1].
an
An explicit solution to (17) is reached by first solving
tan s = cot [(2p,'? + 1)Y2 | Y| —(7/2) '
—(1/6) |Ys|* Q™ + 1)=1/7] (18)

for u,(®. (Note that w,(® is the eigenvalue when Yy — + «.)
The approximate solutions to (17) are then

V2 O L
M = F’ﬂ(.) -+ \/2/7T F(‘IL,,Z(VO) +1) e Y (19)
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YN 1 YN3 =1
o l: 1+@2/7) Cun® + 1)1/ S == Cpn® + 1)3/2]

The eigenfunctions are oscillatory from Y to the turning point and decaying further
northward.

(iii) The southern turning point lies well within the basin but the northern one lies

well outside the basin, i.e., Yy* << 2u, + 1 << Y2
Now
by =—T(uy + 1) cot &, (/2 Yy),
while
tan 7, = cot ®(\/2 Yy)

)26 el 1
(pn + 1)

+ a2l [tan 7y, cot Bu(v/2 Ya) + 1].
Again the equation
tan pu,© =cot [(2u, @ + 1)/2 Yy —(7/2) p,(®
= ({@/6) ¥ »* (2pa® 1) (202)

is solved and the approximate eigenvalues are

o OV g 2 L

Mn = 'un(O) + \/2/77 I..(lun(o) ¥ 1) (20b)
o g Y5 Y| &es 1 |Ysl® :| ol
e [ 14+ @2/m) Crn® + 1)1/ 37 Qpa® + 1)72

The eigenfunctions are decaying south of the turning point and oscillatory from the

turning point to Y.

(iv) Both turning points lie well outside the basin, i.e., Y* and Yy* << 2, + 1.
Only the asymptotic relation (16) need be used for this case. We find

b, =—T'(u, + 1) cot d, (/2 Yy) (21
and the eigenvalue Eq. (10) reduces simply to
sin [2ua + 1)V2 (Y| + Ya) — (1/6) R, + 1)—1/2
*([Ys]° + Y] =0 (22)

with solution, valid to 0(1/n2) ,

| n’m? ,Ys|3 + YN3
n—1 = (1 e — 2l SRS VA
o= 172 e + 0/ SR

Y.l3 + V.22
—Lﬂ—éy—“} A=1,2,3, 10 23)
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The solution (22) and (23), to order n? is identical to the solution of the equa-
tions of motions without any coriolis force at all in a meridionally bounded basin;
the corresponding eigenfunctions are just sines. The additional terms to O(1) and
0(1/n?) are significant corrections for the low order modes but lose their importance
for the higher modes.

Finally, we note that for 2u, + 1 large (it need be no smaller than 10), there is a
uniform approximation for the solutions of (3) (Abramowitz and Stegun, 1965)

1/
U(—;L—l/Z,y):Zu/ZT(“;1)(6211) " AN (24a)
and
1/4
r(;L-i-1)V(—,lL—1/2,y):2u/2F(p’_2}_1><§2t_1> Bi(t)  (24b)
where
E=yQu+ 1)V t= (4p + 2)2 7
and
2/
T=—<% 0, ) : £<1,
2/
r:(% 0. ) 5 £>1
with

0. = (1/4) arccos £ — (1/4) E\/1— &
0. =(1/4) E\/E—1— (1/4) arccosh &.
(7a) and (10) then become
Ailt,(\/2 Y¥)]

b,=—T(u, + 1) Bilt.( \/5 Yl (25)
and
[ Ailt,(/2 Y] Ailt.(\/2 |Ys]]
tanmn | 1= "t /2 Yol Biltun/2 | Y]]
Ailt,(\/2 |Ys)] ] [ Ailt,(/2 Y¥)]
. [ Bilt.(\/2 |Ys)] Bi[t,(\/2 Y )]
(26)

It can be checked, by using the appropriate asymptotics of the Airy functions, that
cases (i), (ii), (iii) and (iv) can be derived as the appropriate low order limits of (25)
and (26).

We will illustrate these results by comparing these analytic approximations with
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(a) i ¥ (a)

Figure 2. (left). Normalized eigenmodes of the v equation (3) for a [—3,3] basin. (a) Modes
n =0 to 3; (b) Modes n =4 to 7.

Figure 3. (right). Normalized eigenmodes of the v equation (3) for an asymmetric [-5,1.7]
basin. (a) Modes n = 0 to 3; (b) Modes n = 4 to 7.

results obtained by solving (3) and (4) by direct numerical means. We will con-
sider three separate basins, one basin symmetric about the equator whose walls are
relatively far from the equator, [—3,3], one asymmetric basin whose northern wall
is relatively close to the equator at approximately the same position as the Gulf of
Guinea, [-5,1.7], and a symmetric basin both of whose walls are close to the
equator, [—1.7,1.7].

a. Basin [—3,3]

The first eight eigenfunctions are shown in Figure 2. The first four have \/2u + 1
< 3 so their turning points are inside the basin. In each of these first four eigenfunc-
tions we see evidence of decay toward the northern and southern boundaries with
oscillatory behavior equatorward of this decay. Starting with the fifth eigenfunction,
the turning points are outside the basin and no evidence of decay toward the walls
is seen. In accordance with the properties of the Airy and Bairy functions in (24),
we notice that the envelope of the oscillatory part of the eigenfunctions decays
toward the equator.

We can compare the numerically obtained eigenvalue with the two approxima-
tions relevant to this case—(i) and (iv).

The approximation (15) for the lowest two eigenvalues is quite good because the
exponential decay of the eigenfunction toward the walls is quite rapid. The approxi-
mation (23) is less good because, while the turning points are reasonably far outside
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Numerical Eq. (15) Eq. (23)
Mo .00039 .00042 invalid
M 1.006 1.008 invalid
e 2.041 2.068 invalid
Ys 3.164 3.406 invalid
s 4.454 invalid 4.263
Ms 5.973 invalid 5.821
e 7.753 invalid 7.633
M 9.804 invalid 9.708
Ms 12.129 invalid 12.053

the basin, the eigenvalue is not yet very large compared to unity. The approximations
are least good when the turning point is near the wall.

b. Basin [—5,1.7]

The first eight eigenfunctions are shown in Figure 3. In this case, only the lowest
eigenfunction has both turning points inside the basin. Eigenfunctions 1 through 7
have the northern turning point outside the basin and the southern one inside the
basin. Figenfunction 8 (not shown) has its southern turning point right at the
boundary, and eigenfunctions 9 and above have both their turning points outside
the basin.

Numerical Eq. (20a)  Eq. (20b) Eq. (15) Eq. (23)

Mo .046 invalid .053 invalid
TN 1.220 1.252 1.252 1.308 invalid
T 2.532 2.542 2.542 invalid invalid
s 3.943 3.947 3.947 invalid invalid
M 5.424 5.526 5.426 invalid invalid
s 6.957 6.956 6.963 invalid invalid
Mo 8.541 8.525 8.645 invalid invalid
M7 10.209 10.124 invalid invalid invalid
Ms 12.025 11.749 invalid invalid 11.343
Mo 14.047 invalid invalid invalid 13.487

We see that in all cases the eigenvalues are reasonably approximated (to no worse
than a few percent) by the expression (20), (15) or (23) in the appropriate regions
of validity. The one exception is the eigenvalue whose eigenfunction has a turning
point at the wall and this one is approximated to 10%.

¢. Basin[—1.7,1.7]
Only the lowest eigenfunction in this small basin case has both turning points in-
side the basin, all others having both turning points outside the basin. The lowest
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eigenfunction looks gaussian, all higher ones are indistinguishable from sines and
cosines.

Numerical Eq. (15) Eq. (23)
Mo .103 .107 invalid
A 1.603 invalid 1.655
e 3.793 invalid 3.808
s 6.797 invalid 6.803
s 10.645 invalid 10.648
s 15.344 invalid 15.346
M 20.895 invalid 20.896
M7 27.299 invalid 27.300
s 34.557 invalid 34.558

The approximations for the lowest eigenvalue given by (15) is quite good, while
the approximation (23), valid when both turning points are outside the basin, is
essentially exact for the higher eigenvalues.

We can summarize the solutions to the v equation by noting simply that those
low order modes whose turning points both lie within the basin resemble the un-
bounded solutions in the sense that the eigenvalues are exponentially close to in-
tegers and the eigenfunctions are very close to the unbounded solutions (Hermite
functions) except that they are brought to zero within a local Rossby radius of de-
formation of the boundaries. Those high order modes whose turning points both
lie outside the basin are oscillatory in structure, being quantized by the north and
south walls, and to lowest order (n*) resemble modes in a non-rotating system, the
effects of B entering only to order 1.

While the low order v modes resemble their unbounded counterparts, the enforced
vanishing at the boundaries leads to interesting behavior of the associated zonal
velocity and height fields.

Corresponding to each eigenfunction

Vo = U(—ptn =1/2,\/2 ) + b, V(—pta —1/2,N/2 y)
are u and h fields given by

i
U, = —sz_—kz [w, yv,.—k v,’]

AL mae ol b
h, = w0,k — k* [ky v, — @ v,/] (27)
where w, satisfies the dispersion relation (5).

Because the derivative of a series asymptotic to v,(y) need not be asymptotic to

d : : A
—dvT"‘ , it proves convenient to re-express (27) in terms of U and V only. This can
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be done using

—ddy— U(—p—=1/2,\/2y) = =y U~ —1/2,\/23) + /2 pU(~p +1/2,7/2 y)

(28)
and

i VER—L/2,VE9) = 5y Vu—1/2,V/23) +V Vp+1/2,V/2Y)

(Abramowitz and Stegun, 1965).

This yields
() = i(@,? — k)~ [(wn + )y vi(») — /2 k pn
s U(—py +1/2,\/29) —\/2 k b, V(—, +1/2,\/2 y)] (29a)
h() = i(@,* — k)= [(@n + K)Y va() — /2 @ pta
c U(—pn +1/2,7/29) —\/2 @, by V(—pn +1/2,\/2 )] (29b)

where w, and k must satisfy the dispersion relation (5).

We can illustrate the use of (29) by examining the behavior of the u and 4 fields
corresponding to the lowest eigenvalue u, << 1. Consider, for convenience, a sym-
metric basin extending from Yy = —L to Yy = L where L = 1. Then

po==27—*Lexp[-L*]  (using Eq. (15))

and
b= — (1/2)m o (using Eq. (13))
and
w,® — k* — i =14+2um (see Fig. 1).
(05
Consider the region near w, k ~ 0, where w, ~ —k(2u, + 1)~?*, so that we are on

the “Rossby-Kelvin” part of the dispersion curve (the reason for this nomenclature
will soon be apparent). The u, and A, fields can thus be written

= -L-lt Y vo () —(1/\/5)U(_I-Lo +1/2, \/—2-}’) + XZ_E_ V(—po +1/2, \/E}’):I

2w
(30a)
; _ _ - 3
by = ﬁ[ ¥ Ve ) +A/N2DU(—po +1/2,7/2 y) — 2z Vi(—po +1/2,/2 y)] :
(30b)
As y gets large compared to one, the V' term dominates and
o > —— \/m exp [y*/2]
y>>1 . (31a)

i = 2
hy > ———\/mexp y*/2]
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X t \ 3 T t 3 7

g ho o
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Figure 4. u, v, and h fields for the n = 0 Rossby-Kelvin wave. (a) In a basin [-3,3], @ = + .5,
k =—.501; (b) In a basin [-5,1.7], = .5, k = —.603.

For y large and negative, use of (8) with u, ~ 0 gives

g > ——— /7 exp /2]
: Y1 (31b)
ho = ——\/mexp [y*/2]

We see that the u and 4 field corresponding to the lowest eigenfunction corre-
spond to a westward propagating anti-symmetric Kelvin wave on the northern and
southern wall. Figure 4a shows the u, and A, field that belongs to the lowest eigen-
function in a [—3,3] basin. The amplitude of u, and A, is 0(1/w) with respect to
v, and so is increasingly dominant at low frequency.

Using the same sort of reasoning, we can easily show that even when the fre-
quency and wave number are not small, those parts of the n = 0 dispersion curve,
both Rossby-Kelvin and inertia-Kelvin, that lie near @ + k = 0 have their u and A
fields decay exponentially away from the walls and are thus “Kelvin-like.”

As we go to higher mode numbers n, b, in (29) stays exponentially small while
[, increases at least as n (and ultimately as n?) so that while neither u nor 4 goes
to zero on the boundaries, the ¥ term no longer dominates and the behavior is not
Kelvin-like near the boundaries. (Fig. 5 shows the n = 1 long Rossby mode in a
symmetric basin.)

The two solutions left out of our catalog are those with v = 0 and these corre-
spond to:

(a) An eastward propagating symmetric equatorial Kelvin wave

ug— = hg~ ~ exp [—y*/2], w=k

with maximum amplitude on the equator.
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Figure 5. u, v, and h fields for the n = 1 Rossby mode, in a basin [-3,3] o = + .2, k = —.690.

Because the basin is bounded, another solution exists, namely,
(b) A westward propagating symmetric “anti-"Kelvin wave

F=hyt ~exppR/2], a=<k (32)

with maximum amplitude at the northern and/or southern boundary.
As Moore (1968) has pointed out, the dimensional form of (32) near the northern
boundary, say, can be written

o[ 2] [ e[ 2] 09

where 7) is the distance from the northern wall and L, = is the Rossby radius

BYN
of deformation characteristic to the northern wall. Since "7_63 << 1, (33) shows

that the function exp [y?/2] does indeed behave, approximately, like our usual con-
cept of a coastal Kelvin wave, decaying exponentially away from the boundary with
scale L.

Sums and differences of the (anti-symmetric) Rossby-Kelvin wave (Eq. (31)) and
the (symmetric) anti-Kelvin wave (Eq. (32)) can be taken to produce isolated coastal
Kelvin waves on either the northern or the southern boundaries in this symmetric
case.

The situation is slightly different in the asymmetric case. If, say, the southern wall
is much further from the equator than the northern wall, i.e., |[Ys| >> Yy > 1, then
the relation between b, and p, changes to b, = —mu,. The northern wall behavior
in (30) is still dominated by the V term yielding

i = >
uo—>—7w—\/7TCXp [»%/2]
; . asy — Yy.
h, > i e /7 exp [y*/2]
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Now, however, analysis of (30) for y < 0, using (8), gives a cancellation in which ¥
no longer enters and the u, and /, fields south of the equator decay exponentially to
the southern wall. (This behavior is illustrated in Figure 4b for a [-5,1.7] basin.)

Isolated northern wall-trapped Kelvin waves can thus, in this asymmetric case,
be constructed out of the n = 0 Rossby-Kelvin mode alone. Isolated Kelvin waves
trapped to the southern boundary can be constructed out of an anti-Kelvin wave
(32), with the northern branch subtracted away by an equal amount of n = 0
Rossby-Kelvin mode.

3. Review and notation

a. Free modes

In the last section we have considered the eigenfunctions of the v equation (3)
subject to zero boundary conditions on the north and south boundaries. If we define
the normalized version of these eigenfunctions as

U(y) = vu(y) [ f ;:vng(y) dy:l —1/2

then the normalized vector of the Fourier components of the free solutions to (1)
subject to the boundary conditions (2a) (but not (2b)) can be written

[,v,h] = ®, (k. y) ¢'®¥ O (34)
where n labels the mode number 0, 1. ... « and j represents one of the 3 solutions

to the dispersion relation (5).
Let us introduce the auxiliary vectors, as in I and II;

W.00) = @ ¥, 0, — ') (352)
V() = (0, Yu(»), 0) (35b)

and
M. (») = (=9'(), 0, y.(»)) (35¢)

and the vector product
Yy
[AG)BG)] = f g, " Bit As* By o+ A Bl dy

8

in terms of which it is easy to derive the following properties of the auxiliary func-
tions directly from the defining Eq. (3):

[wﬂuwn] = (z,un I 1) 8mn [wrmMn] = Omn
[Mm;Mn] = (2[-’% S 1) an [Mm,Vn] =0
[Vm’Vn] == 8mn [Wm,V,.] == O & (36)
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The free solutions (34) then become
D, (k,y) = [wn ()W, + k M,(y) — (@, 2 — k2) V,(3)] N, ;~* (37)
forn=0,1...andj=1, 2, 3, where the normalization factor N, ;is given by
Nui? = Qun + 1) (0o 2 + k2) + 2k @, + (0,2 — k?)? .

These functions are complete, as shown in the Appendix, and have the ortho-
normality property

[Din,i, Puil = Bum 8ij . (38)

In addition, it proves useful to introduce a vector which has v = 0 and whose u

and & components are proportional to the Rossby (o ~ —k(2u, + 1)) limits of
37):

R, = (4p, (u, + 1)1 [Cuy + 1) M, — W, ] 39

which has the following properties:
R, R.] = Q2pw + 1) (At (s + 1)) 72 8
[W.,R,] =0, [M,,R,]=0. (40)
The v = 0 modes discussed in Section 2 are written:

(4,0,h) = @, ...(y) exp [ik(x = 1)]
where
Or, 1 (y) = Mg™ =272 (Y *,0, = Yr*) 41)
and
Yr=(y) = a= exp [+ y*/2]

Y —1/2
is normalized by a* = [ f exp [+ yz/dy] . The My~ are normalized and mu-
Ys

tually orthogonal. The “minus” solution is the equatorial Kelvin wave while the
“plus” solution is the symmetric anti-Kelvin wave with maximum amplitude along
the northern and southern boundaries.

It is easily verified that [Mz=,W,] = [Mx*,M,] = 0 so that [Mz*,R,] = 0.

If either Y3 or Yy recedes to infinity the anti-Kelvin wave is no longer a solution.
If both Y5 and Yy recede to infinity then the anti-Kelvin mode @®x, . ,, the Rossby-
Kelvin mode @, ;, and the gravity Kelvin mode ®,, are no longer solutions. The
short wave part of ®,, and ®,. then merge to produce the “mixed” mode (cf.
Matsuno, 1966).

b. The x-independent forced response
The forced response to a vector of x-independent forcings F = (F,G,Q) switched

on at ¢ = 0 is, by the methods of I:
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Ve
(a) ﬁ

4 - -2 V 2
Figure 6. Zonally unbounded response to a meridional wind G = 1. (a) Basin [—5,5] (only the

part between —5 and 2 is shown—the remainder is known by symmetry); (b) Basin [—5,1.7];
(¢) Basin [—1.7,1.7].

u=@® o), v® ), kY ) + @ ), 0, A () + w(y.,7) 42)

where
(u(l)’v(l);h(l)) = dK_ MK—(y) + dK+ MK+ + In Rn = (2'[1'11 + 1)_1 dnvn(y)
(43)

@®,0h) = 3" Cuy + )72 2, W) (44)

and

u = z m—2 [:Wn(y) + V,.(») jt :l [m—d, sin mt + g, cos mt] (45)
n=0

where m = (2u, + 1)/2
The response (u™ ¢, v®), A7) is due to zonal wind and mass forcings with

dg* =272 (F + Q)x*
dy=(OF +d Q/dy),
r, = (dF/dy + YO — (2/~l'n +1)71d,
YA’
where the notation (4), = f v Ay, dy.

The response (u*, 0, A®) is due to meridional wind forcings, where g, = (G),.
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T=

Figure 7. Same as Figure 6 but for zonal wind F =1.

The response u; is the initial intertial gravity response needed to set up the x-inde-
pendent fields (see I and II for a thorough discussion).

d2
dy*
Yy and Yy, it is easy to see from (44) and (3) that

By applying the operator L = ( - y3> with zero boundary conditions at

L(—u®/y)=L (f; h® dy) =G (46)

Figure 6 shows the results of solving (46) numerically in the three basins of interest
for G =1.
Similarly, applying L to the v(*) part of (43) gives

Liv®V)) =yF (47a)

and in terms of this solution
h(l) = -—vy(l) (47b)
u® =F + yy@ 47c)

Figure 7 shows the results of solving (47a, b, ¢) in the three basins of interest for
F=1.

c. Examples
The modal decompositions of u*) and u® are given, for five different north-south

basins, in Tables 1 and 2 for the specific cases F = 1 and G = 1, respectively.
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Table 1. The modal decomposition of the zonally unbounded response u® to F = 1 and its re-
flection at the eastern boundary. The third column lists the coefficients entering the secularly
growing part of (42) and (43), and the fourth column lists the coefficients of the steady part
of this response. The fifth column lists the meridionally integrated zonal mass flux for each
mode entering u®, the sum of all modes summing up to the total in the eighth column. The
sixth column gives the coefficients of the eastern boundary reflection of u® in Eq. (54) and

the seventh the zonal mass flux of each component of the reflection.

Basin Mode dx*, dn u® = (g f YNu“’ dy
Y5
[—o0,00] 2.122
K(+) 0 — 0 0 0
K(-) 1.331 — IR 0 0
1 — .888 2.663 295 3.550 —1.181
3 — .466 3.261 .032 3.727 —1.253
5 — 331 3.646 .010 3.977 — 122
7 — .263 3.938 .005 4.200 — .074
[-5,5] 2.504
KH) .655 —_ 429 —1.310 — .858
K(-) 1.331 — 1.773 0 0
1 — .888 2.663 296 3.550 —1.182
3 — .466 3.259 .032 3.724 — .254
5 — .329 3.623 .010 3.951 —0.122
7 — 251 3.774 .004 4.035 — .073
[-3,3] 2.874
KH+) 931 — .867 —1.862 —1.733
K(-) 1.328 — 1.764 0 0
1 — .831 2.502 257 3.333 —1.033
3 — 315 2.311 .014 2.623 — .116
5 — 121 1.566 .001 1.687 — .015
7 — .051 1.502 ~10—* 1.104 — .022
[-1.7,1.7] 2.883
K(+) 1.175 — 1.381 —2.350 —2.761
K(-) 1.223 — 149 0 0
1 — 326 1.372 .027 1.698 — .139
3 — .052 .756 ~10—* .808 — .003
5 — .014 .487 0 502 0
7 — .006 358 0 .364 0
[=51.7] 2.660
k) 463 o 251 — 927 — 431
K(-) 1.277 — 1.631 0 0
0 — .353 384 .702 737 —1.468
1 — .629 2.163 .126 2.792 =558
2 — 225 1.362 .009 1.588 — .061
3 =TS 2.442 .009 2.718 — .086
4 — .166 1.964 .002 2.130 — .030
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Table 2. The modal decomposition of the zonally unbounded response u® to G = 1 and its reflec-
tion at the eastern boundary. The third column lists the coefficients gn = (1). in Eq. (44), the
fifth column lists the meridionally integrated zonal mass flux for each mode. The fourth col-
umn lists the coefficients of the eastern boundary reflection in Eq. (55), while the sixth gives
the reflected mass corresponding to it. The last column gives the constant %, in Eq. (55).

Basin Mode 8n c U2 yrert j‘ Y‘Vum dy ho
Yy
[e0,00] 0 0
0 1.883 0 0 0
2 1.331 6.390 0 0
4 1.153 10.249 0 0
6 1.053 13.602 0 0
[=3,51 0 0
0 1.883 5.91X10—* 0 0
2 1.331 6.390 0 0
4 1.153 10.249 0 0
6 1.041 13.457 0 0
[=3,3] 0 0
0 1.871 0975 0 0
2) 1.186 6.610 0 0
4 728 91353 0 0
6 440 10.905 0 0
1575171 0 0
0 1.623 1.750 0 0
2 .635 9.373 0 0
4 353 14.770 0 0
6 244 20.212 0 0
[=5,1:71 —1.596 .0986
K(+) — 2.167 — 1.004
0 1.762 241 —.620 —.480
1 .348 1.822 —.217 364
2 1.053 4.801 —.237 .183
3 466 5.352 —.128 .168
4 .836 7.898 —.139 111
5 .468 8.382 —.082 .099
6 .684 9.696 —.080 .063
7 352 8.660 —.037 .043

Table 1 (continued).

5 =175 2.611 .002 2.786 — .033
6 =117 2.109 .001 28925 — .014
7 — .106 2.263 .001 2.369 — .012
8 — .060 1.511 ~10— 1.562 — .003
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For the G = 1 case, g, = (1),, so that in basins symmetric with respect to the
equator, only even (symmetric) modes enter, while in the [—5,1.7] basin, all modes
enter. Since they are orthogonal to the forcing (0,G,0), note that neither the Kelvin
nor the anti-Kelvin waves can enter the sum for u(®. The meridionally integrated
zonal mass flux is defined for each mode u,(® of (44) as

Yy
U,» = f u, @ dy = (1)a(n(pn + 1)
Ys

where (44) and the definitions (35) have been used. Only in the asymmetric basin
[-5,1.7] does U® have any meridionally integrated zonal mass flux—in the sym-
metric basins (1),(y), = 0 for each mode by symmetry considerations; Figure 6
makes this clear.

For the F = 1 case, the coefficients of the part of (43) that varies as ¢ are dg—
=2"Y2(1)g—, dg* = 2=Y*(1)g ™, and r, = —(2u, +1)~* (»), and are listed in the
third column of Table 1. The meridionally integrated zonal mass flux correspond-
ing to these modes are Ux— = 2! [(1)g~ 13, Ugt = 2 [(1)x*]? and U, = [(y),]?
[4pa(itn + 1) 2, + 1)]~* and these fluxes are shown in the fifth column.®

It is of special interest to note that for those basins symmetric about the equator,
the anti-Kelvin part of u* carries more mass flux as the basin gets smaller. u® in
the infinite basin has no anti-Kelvin part (by the requirement of boundedness). As
we go to the [—5,5] basin, the lowest few modes are essentially unchanged from the
unbounded case because their turning points are still well within the basin. Essen-
tially the only difference between the unbounded case and the [—5,5] case is the
anti-Kelvin contribution, as can be seen graphically in Figure 7a. As the basin gets
smaller, the anti-Kelvin mode increases in importance until we get to the [—1.7,1.7]
basin where we see that essentially all the zonal mass flux in u® can be accounted
for solely by the Kelvin and anti-Kelvin modes.

4. The responses due to meridional boundaries

Our method, as in Papers I and II, consists of calculating the zonally unbounded
response and then finding the response at the meridional boundaries x = 0 and Xp
needed to bring the zonal velocity to zero. These boundary responses eventually
reach the other boundary where they generate additional boundary responses, again
those needed to bring the zonal velocity to zero. The detailed sequences of events
leading to spin-up will be described in the next section. This section will show how
to calculate all the needed boundary responses for use in the following section.

We should, at the outset, make clear the relation between the method used in the

3. Note that the total mass flux in the zonally unbounded solution listed in the eighth column of
Table 1 and the seventh of Table 2 is reached by numerically integrating u® and u®, respectively.

The failure of the modal sums to add to the total in the basin cases is a measure of the total incurred
error and nowhere exceeds half a percent.
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meridionally unbounded case in IT (Moore’s algorithm; Moore and Philander, 1977)
and the method used here. Moore’s algorithm depends on the detailed properties of
the Hermite functions whereby the u, and k4, field corresponding to meridional ve-
locity v, have components only involving Hermite functions n + 1 and » — 1. Thus
at each boundary u, is cancelled only by contributions from u,,, and u,_, and
Moore’s algorithm results. In the meridionally bounded case, however, the eigen-
values do not differ by integers so that while u, can be expressed as parabolic cylin-
der functions of order u, = 1, these same cylinder functions are not also parts of
u,1: Moore’s algorithm fails. The method we used instead is one of projections. In
the meridionally unbounded case, we have already demonstrated a unique corre-
spondence between projection coefficients and the coefficients of Moore’s algorithm
(Eq. (17) of II). In the meridionally bounded case only the projection method
survives.

a. Western boundary response

The zonally unbounded solution (Eq. (42)) has planetary wave parts varying only
as ## (s = 0 or 1). The western boundary response must consist of a Kelvin wave
plus a sum of terms composed of short wavelength Rossby waves: these are the only
planetary modes with group velocity to the east. This response may be written, as
in II:

“W(x:y:t) = bKH (t - x) (t - x)s MK_(y) + uB(ny:t) (48)

where, to the lowest order in z/x, u? is nondivergent with its meridional velocity
component in geostrophic balance with the height field:

. ) 9 g\ —
wewwm= - L Ly (£) nevmaxop @9

with
X(}’) = zbn-‘pn(y) .

Y¥
Because x = 0 at Yy and Yy it is clear that f u® (x,y,t) dy = 0. Thus, since u" +

8

u(y)t* = 0 at x = 0, we can integrate to yield

Yy
bg=—2Y2 [(D)z—]~* f u(y) dy (50)

8

Yy
(s = f v dy

is simply the projection of 1 on the Kelvin mode, and is known for each basin.
Thus, as in II, the Kelvin amplitude is determined by noting that all the incident
zonal mass flux onto the western boundary is returned by the Kelvin wave. An ob-

where
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vious corollary that will prove useful in what follows is that no Kelvin wave is ex-
cited off the western boundary when the incident integrated zonal mass flux vanishes.
With bx known,

XO) = f " ) + 2732 by Y= ()] dy 51)

8
and the b,’s can be obtained by projection from the now known function ().

Any Rossby, Rossby-Kelvin, or anti-Kelvin modes emitted as part of the eastern
boundary response (described below) produce a western boundary response that can
be calculated exactly as described above. In particular, all the meridionally integrated
zonal mass flux is returned by the Kelvin wave.

b. Eastern boundary response

We have to calculate the eastern boundary response needed to bring the un-
bounded zonal velocity to zero and to reflect any Kelvin waves emitted by the east-
ern boundary.

As in II, we can use (1b) and (2a) to conclude that, asymptotically, the effect of
the incident Kelvin mode and its reflections in the anti-Kelvin and Rossby modes
is simply to raise the height uniformly (in y) at the eastern boundary by an amount
Az

My~ + agt Mg+ + 2 a,R,= (0,0, 4). (52)
n=0
Taking projections successively with Mx—, Mg+ and R,, yields
A=272/(1)g— (53a)
aph ——d 25l — =) (1) ras (53b)
and
=AW =22 @)/~ . (53¢)

We can also see from (52) and (53) that the meridionally integrated mass flux
associated with the reflected anti-Kelvin wave is in the opposite direction to the
meridionally integrated mass flux associated with the incident Kelvin-wave. The
Rossby waves (including the n = 0 Rossby-Kelvin wave) must carry off the differ-
ence of the mass fluxes due to the Kelvin and anti-Kelvin waves.

The eastern boundary response needed to bring the zonally unbounded response
to a zonal current in (43) and (44), of form u(y)#* to zero will have the general form

W= cpt L H) Met + > e HG) {57 Ry + 5 Vi) (54)

where
Ln=t+ Qus + 1) (x — Xpg)
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and
§K=t+x—XE.

The response to the Rossby and anti-Kelvin mode in (43), for example, is the
corresponding free mode with the same structure. Thus ¢ r, R, generates an eastern
boundary response —r, &, H((,)R, and tdx+ Mg+ generates an eastern boundary
response —dix* {x H({x)Mg*. The eastern boundary response to the Kelvin part of
(42) is found in an obvious way using Eq. (53) to find the reflected coefficients.

The eastern boundary response to the unbounded response generated by a
meridional wind, (44), is a bit different. The bondary condition at x = X is that
u® + y? = 0. Since v® = 0 and s = 0 in (54) we have that v» + vZ = 0 and it
then follows from (2b) that 2, = G. A concise statement of the preceding argument
is that, at x = Xp,

@®,0,4) + ex* Mt + S ¢, R, = (0,0, f " Gdy+h) (55)
n=0 0

where A, is as yet an unknown constant. This constant can be determined by noting
that the Kelvin mode Mg~ is orthogonal to each term on the left-hand side of (55).

Projecting Mx— onto (55) and using the notation 1(y,G) = fy G(y')dy’ gives

0

ho=—MDx=/(Dx~ . (56a)
Once h, is known, the ¢’s can be found by projecting Mg+ and R, onto (55):
extti— =2 (D = 2 VE [(1) ] Ay (56b)
and
Cp = (yl)n — 8 (2#11 ek 1)_1 4 ho (y)n . (56C)

It should be emphasized that the results (48), (52) and (55) are asymptotic results
and cannot be expected to hold at all times. Thus, for example, if an anti-Kelvin
wave should hit the western boundary and reflect as boundary trapped modes u®
plus a Kelvin wave according to (48), it will take time for the Kelvin wave, whose
amplitude is localized about the equator, to be produced by the anti-Kelvin wave,
whose amplitude is localized near the (possibly distant) northern and southern
boundaries. The necessary communication cannot be accomplished at a speed faster
than the fastest wave in the problem, namely, unity. It in fact does seem to take
place at speed unity by northward and southward propagating waves; these may be
thought of as wall-Kelvin waves. Similarly, when a Kelvin wave hits the eastern
boundary, the height field is raised first at the equator and then, with speed unity,
to the north and south of the equator until the height is uniformly raised at the east-
ern boundary. The asymptotics of this process is analyzed in some detail by Ander-
son and Rowlands (1976).
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Table 3. The eastern boundary reflection of Mx—. The fourth column lists the coefficients ap-
pearing in Eq. (52), the fifth lists the amount of reflected meridionally integrated zonal mass
flux for each mode, and the sixth lists the quantity 4 in Eq. (52).

Basin Mode Eigenvalue a U/Ux— A
[—o0,00] 751
1 1 2.000 —.500
3 3 2.450 —.125
5 5 2.739 —.063
7 7 2.958 —.039
[=5,5] 751
K() —.492 —.242
1 1+3.92 X 10— 2.000 —.500
3 3+1.63 X 10—° 2.448 —.125
5 5+2.04 X 10— 2.721 —.062
7 7+1.22 X 10— 2.843 —.036
[=3:3] 753
K(H) —.701 —.491
1 1.006 1.884 —.440
3 3.164 1.741 —.058
5 5.973 1.179 —.008
7 9.804 .793 —.001
[-1.7,1.7] 818
K#) —.961 —.923
1 1.603 1.122 —.075
3 6.797 .618 —.002
5 15.344 .398 —2X 10—
7 27.299 .293 —3 X 10—°
[-5,1.7] .783
K(H+) —.363 —132
0 .046 .301 —.470
1 1.220 1.694 —.265
2 2.532 1.067 —.032
3 3.943 1.913 —.047
4 5.424 1.538 —.017
5 6.957 2.045 —.019
6 8.541 1.651 —.008
7 10.209 1.772 —.007
8 12.025 1.184 —.002

c. Examples

In this subsection we will examine the eastern boundary response to an incident
Kelvin wave in five basins of interest, and the boundary response to the unbounded
solutions forced by G = 1 and F = 1 in these same five basins.

Table 3 lists the low order terms in Eq. (52) for the response of a Kelvin mode of
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unit amplitude, M —, striking the eastern boundary of five basins of different north-
south extent. In the unbounded basin, the Kelvin wave reflects only in the odd n
modes (whose zonal velocity is symmetric) with half of the incident meridionally

integrated zonal mass flux, Ux—~ = 2-%/2 (1), being reflected in the n = 1 mode,
and slowly decreasing amounts in the higher modes. Since in the unbounded case
U, Ao a,? g, 21/2 ()n2
Uk~ 4n(n+1) =~ (g~ 4n@n+1)°

we can use the summation formula given in the Appendix of II to verify that

E U, = —Ug~—. We see from Table 3 that 27% of the zonal mass flux is returned

1
in modes n = 9 and higher. Again, using the summation formula in the Appendix
of II, we verify that

< U _  _a* _ N [(N—l ,]—2
£ U= 4WN+L) — 2V T (NHD) 5 (57)

so that

29 U,=— 27Uz .

When we move to the [—5,5] basin, we see that 24% of the incident Kelvin wave
zonal mass flux is now returned by the anti-Kelvin wave while the amount returned
by the first few Rossby waves hardly changes. In fact, we can easily verify that the
anti-Kelvin mode in a basin (—L,L) for L >> 1 reflects an amount of mass flux

Urt =—[Ux"1V2 L™

which in turn is equal to the sum of the mass fluxes that would have been returned
by all the unbounded modes whose turning point lies beyond L*. Thus in a bounded
basin [-L,L], only the modes whose turning points lie within the basin, 2u, + 1
< L? reflect any mass flux, while the purely oscillatory modes for which 2u, + 1
> L2 reflect none. Thus, for the narrow basin case, [—1.7,1.7], almost all the inci-
dent Kelvin mass flux is reflected by the anti-Kelvin mode.

The western boundary response to the unbounded solution u) and u®, in re-
sponse to F = 1 and G = 1, respectively, contains a Kelvin wave whose amplitude
is such as to reflect all the mass flux, according to Eq. (50). The total zonal mass
fluxes are listed in Tables 1 and 2; the bx’s are then gotten from (50).

The eastern boundary response to the unbounded solution u® and F = 1 is
given in Table 1, and to the unbounded solution u‘® for G = 1 in Table 2.

4. The first part of this result is obtained by asymptotically expanding the integrals in Ug*/Ug™ in
L while the second part is obtained by using (57) with 2N + 1 = L? and using Stirling’s formula to

expand for large N.
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5. Numerical simulations of time dependent response

In order to illustrate and make concrete the analytical results presented thus far,
we will in this section present numerical results for the linear time-dependent re-
sponse of three equatorial basins to the simple wind stress patterns F = 1 and G =
1. The first basin has its northern and southern boundaries relatively far from the
equator at =5; the second is relatively narrow and extends from —1.7 to +1.7; the
third is asymmetrical with its northern boundary at +1.7 and its southern boundary
at —5. All three basins will be taken to be 10 units long in the zonal direction with
the western boundary at x = 0 and the eastern boundary at x = 10. Since neither
of the simple wind stresses we have chosen has curl, the steady state to which each
basin will tend is simply the one in which the height field gradient balances the im-
posed wind stress. Thus in the F = 1 case, the height field in all three basins will be
tilted from —S5 to 5 with longitude; in the G = 1 case the height field will tilt uni-
formly with latitude from —5 to 5, —1.7 to 1.7, and —3.35 to 3.35 in the wide,
narrow and asymmetric basins, respectively.

The numerical model used to simulate these ocean responses has been described
elsewhere (Cane 1975, 1979). Because we ran three basins for each wind stress and
each unit of nondimensional time required 60 computer time steps, practical con-
siderations limited the total number of computer time steps to 3840 (64 nondimen-
sional time units) for each of the six cases.

a. The F =1 Case

We will begin discussion of the F = 1 case by reviewing the meridionally un-
bounded situation as discussed in II. As soon as the wind begins to blow, inertia-
gravity waves are excited in such a way that by one or two units of non-dimen-
sional time, the unbounded solution (uV¢, v(*), hV¢) has been fully developed. Also
at ¢t = 0 a full set of Rossby modes, n =1, 3, 5, . . . ., begin propagating into the
basin from the eastern boundary, and a Kelvin mode carrying the meridionally in-

0

tegrated zonal mass flux f ut dy propagates into the basin from the western
boundary. The initial solution is therefore:

0

u= t|: de— Mg~ + E T R,,:l + br(t—x)H({t—x)Myr— — z 2n+1)-4,V,
n=1

n=1

- zg (—ry +dg~ a,) (¢t +(2n+1) (x—10)) R, + (2n+1)—d,V,

e H(t+ 2n+1) (x—10)) (58)

where the coefficient of the propagating Rossby modes is partly the direct eastern
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boundary response to the Rossby part of u® and partly the eastern boundary re-
sponse to the Kelvin part of u®. If we note that by = —7—/* (7'/2 4 Uy), where
7'/* and Uy, are the total meridionally integrated zonal mass fluxes in the Kelvin and
Rossby parts of u® (U = +.350 in the unbounded case according to Table 1), and
if we assume that enough time has gone by for all the Rossby modes to reach the
point x, then (58) becomes, using (52):

u=(0,0,x) + Up Mg—(t—x) + 10 S r,(2n+1)R,
o 2 a,(t +(2n+1) (x—10)R, . (59)

The (0,0,x) part of (59) has the correct slope but not the correct level to be the final
steady state. The additional terms are those due to the initial Kelvin mode. The
second term in particular does not stay around longer than ¢ = 10—it then hits the
eastern boundary producing a new series of Rossby modes. The Rossby modes,
when they hit the western boundary, produce new Kelvin modes. We see therefore
that while the initial solution contains enough Rossby modes to bring the height
field to its correct tilt, it also initiates motions which continue to slosh mass back
and forth across the basin (see II for a more complete discussion).

The initial series of reflections for the unbounded case can be described as fol-
lows. At ¢t = 0 a Kelvin mode of negative amplitude carrying negative mass flux
leaves the western boundary while a Rossby mode leaves the eastern boundary. The
effect of these modes can be easily seen on the height field section across the equator
in Figure 8. (Since the meridionally unbounded case cannot be simulated numeri-
cally, these figures were generated by summing modes.) The initial Kelvin mode,
carrying negative mass flux, lowers the height field while the initial Rossby wave,
also carrying negative mass flux, raises it. The flat part of the height field at ¢t = 4 is
simply the secularly growing part 42(*)¢—it grows as if zonally unbounded because
the effects of the boundaries have not yet reached it. At ¢t = 7.5 the initial Kelvin
and first Rossby modes meet and no secularly growing flat part of the height field
remains. At ¢ = 10 the initial Kelvin mode hits the eastern boundary and reflects as
a Rossby mode of positive mass flux: this mode lowers the height field to its east as
it propagates westward with speed 1/3. Thus the height field at the eastern boundary
decreases uniformly with time until # = 40 when the Kelvin mode, due to the reflec-
tion of the first Rossby mode, hits and starts increasing the height field uniformly
with time. At the western boundary the height field decreases uniformly during
times O to 30 whereupon the second Rossby mode arrives producing a Kelvin mode
of negative mass flux; at £ = 40 the height field again begins to fall at the west.

The situation in the meridionally bounded basin is very different. Figure 9 shows
the reflection diagram for the [—5,5] basin, keeping track of only the Kelvin, anti-
Kelvin and n = 1 Rossby modes. The initial unbounded solution (u™t, v(*, h(*)7)
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Figure 8. An equatorial section for x = 0 to 10 of the height field in the meridiomally un-
bounded F = 1 case. (a) Times ¢ = 4 to 24; (b) Times ¢ = 28 to 48.
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Figure 10. Contour plot of height field at +t = 2 for F = 1 forcing in a [-5,5] basin bounded
zonally at x = 0 and x = 10.

taking place by means of equatorward travelling wall-Kelvin waves which do not
reach the vicinity of the equator until ¢ = 5—this is indicated in Figure 9 by an
arrow on the western boundary leading to the emission of a Kelvin mode at ¢ = 5.
Similarly, at the eastern boundary, the Rossby and anti-Kelvin response to the
Rossby and anti-Kelvin parts of u(®) are emitted almost immediately while the anti-
Kelvin response to the Kelvin part of u*) takes approximately 5 time units to de-
velop while wall-Kelvin waves travel toward the meridional boundaries to make the
connection. At later times, every anti-Kelvin mode hitting the western boundary
produces a wall-Kelvin wave that travels to the equator before producing the re-
flected Kelvin mode and every Kelvin mode hitting the eastern boundary produces a
wall-Kelvin wave that travels to the northern and southern boundaries before pro-
ducing the reflected anti-Kelvin mode. The amplitudes for the various modes and
reflections are given in Figure 9 until # = 70.

Figure 10 illustrates these initial features: it shows the height contours throughout
the basin at ¢+ = 2. The unbounded u®) solution (compare to Fig. 7a) is clearly
visible in the center of the basin where neither the Kelvin nor the first Rossby have
yet arrived. On the western boundary, the deepening effect of the first Kelvin wave
extending to x = 2 is seen, and near the northern and southern boundaries the anti-
Kelvin part of u® turning the corner as a wall-Kelvin is seen. At the eastern
boundary the Rossby mode should extend 2/3 of a unit into the basin but inevitably
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Figure 11. An equatorial section from x = 0 to 10 of the height field in the [—5,5] F = 1 case.
(a) Times 7 = 4 to 24; (b) Times ¢ = 28 to 48.

precursors travelling as fast as speed unity produce wiggles that extend a full 2 units
into the basin (see Section 3 of Paper I for a discussion of precursors and the disper-
sive modification of propagating Rossby fronts). The initial anti-Kelvin mode of
negative amplitude (therefore positive height field) is seen propagating westward and
cancelling the negative height (growing with ¢) anti-Kelvin mode of the unbounded
solution. Finally, the wall-Kelvin (of positive height) is seen propagating toward the
northern and southern boundaries. A similar contour plot 2 time units later would
show these trends continuing—the unbounded solution u‘*) continuing to grow as ¢,
the initial Kelvin mode continuing to lower the height field behind it as it propagates
eastward, and the initial Rossby mode continuing to raise the height field behind it
as it propagates westward, while the wall-Kelvin waves continue their journey along
the eastern and western boundaries.

We can follow the progress of the system in time by examining Figure 11a, an
equatorial slice of the height field from the eastern to western boundary. The deep-
ening at the western boundary behind the initial Kelvin front proceeds faster than
the comparable meridionally unbounded case in Figure 8a between times 4 and 16
because of the additional emission of the Kelvin mode of negative amplitude at ¢
= 5 due to the reflection of the anti-Kelvin part of u*) in the basin case.® This more
rapid deepening continues until # = 15 when the emission of a Kelvin mode of posi-
tive amplitude slows the deepening rate back to what it was in the meridionally un-
bounded case. At ¢t = 20 another Kelvin mode of positive amplitude is emitted and
the deepening slows even more. At the eastern boundary, the raising of the height
field behind the initial Rossby mode emitted at z = 10 proceeds as in the meridionally
unbounded case until £ = 15 when a Kelvin mode of negative amplitude arrives and
is reflected as a set of Rossby modes of negative amplitude. The lowering of the

5. The height field at ¢+ = 4 at the west is not as deep as in the meridionally unbounded Figure 8a
because the wind stress had to be turned on gradually over the first time period for numerical reasons.
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Figure 12. A meridional section of the height field at x = 1 from [—5,5] for the F = 1 case.
(a) Times ¢ = 4 to 24; (b) Times ¢ = 28 to 48; (c) Times ¢ = 52 to 64.

height field between ¢ = 10 and ¢ = 25 therefore proceeds faster than in the merid-
ionally unbounded case. Note in Figure 11a that despite the fact that the fronts
have been smoothed by dispersion relative to Figure 8a, it is still possible to trace
the Kelvin and the larger Rossby fronts across the basin.

At t = 30 the first » = 1 Rossby mode hits the western boundary emitting a posi-
tive amplitude Kelvin mode and at ¢ = 40 the second negative amplitude Rossby
mode hits the boundary emitting a negative Kelvin mode. The height field at the
western boundary should then begin to increase at ¢t = 30 and decrease at ¢ = 40.
Figure 11b, however, shows that the height field increases very slowly from ¢ = 32
to 40 and continues to increase from ¢ = 40 to ¢ = 48 (it starts decreasing rapidly
only after ¢ = 48). What is happening is that wall-Kelvin waves hanging around from
previous reflections are contaminating the results at the equator.

We can remove this contamination and see more clearly the progress of the re-
sponse by examining a meridional slice of the height field at x = 1 (Fig. 12). As we
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5

Figure 13. Same as Figure 10 but at ¢ = 64.

have seen, the deepening proceeds rapidly from ¢ = 4 to 20 (Fig. 12a). The slowing
of the deepening at ¢+ = 20 and 24 due to the emission of the Kelvin modes at the
western boundary at ¢ = 15 and 20 is clearly seen as is the arrival of the anti-Kelvin
modes at ¢ = 9 and 14 which reverse the anti-Kelvin amplitude. The first Rossby
hits x = 1 at ¢ = 29.7 and by ¢ = 36 (Fig. 12b) the characteristic n = 1 Rossby
structure (compare to Fig. 5) has grown strong enough to be seen in the height field.
The arrival of the strong anti-Kelvin at # = 24 begins to lower the anti-Kelvin ampli-
tude as is clear in Figure 12b. The arrival of the second Rossby at ¢ = 39.7 and its
reflected negative amplitude Kelvin at z = 41 is most clear in the height field for
t = 52 (Fig. 12c) where the large Rossby amplitude from the first (positive) Rossby
mode has been effectively cancelled by the arrival of the second (negative) Rossby
mode—only a remnant is left by # = 52. The arrival of the positive Rossby at 1 =
59.7 is slightly evident in the ¢ = 64 curve.

A contour plot (Fig. 13) of the height field at ¢ = 64 (the last time computed)
shows that the height field is relatively well set up along the equatorial regions, less
well set up away from the equator, and still less well set up away from the equator
toward the west. This is understandable in terms of the large number of initial
Rossby modes, n = 1, 3, 5, etc., that have reached longitudes close to the eastern
boundary—at the other end of the basin, however, the » = 3 Rossby mode has not
yet reached the western boundary by ¢ = 64.

The gross energetics of the spin-up process are summarized by Figure 14a which
shows potential and kinetic energy as a function of time. The kinetic energy is in-
creasing rapidly with time until # = 7.5 when the initial Kelvin and Rossby modes
meet and the initial rapid acceleration stops. The potential energy continues to in-
crease as the initial Kelvin mode lowers the height at the west and the initial Rossby
raises it at the east. It reaches a peak (i.e., the height field is maximally tilted) be-
tween ¢ = 16 to 20 and then begins to decline as the emitted Kelvin modes in the
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Figure 14. Energy versus time for the F = 1 case. (a) Basin [—5,5]; (b) Basin [—1.7,1.7]; (c)
Basin [—5,1.7]. Units arbitrary.

west and the second Rossby mode in the east act to reduce the overall east-west
tilt. The subsequent periodicity is approximately 40 time units—the roundtrip time
of a Kelvin-Rossby mode transit.

The Rossby modes lose their importance in the [—1.7,1.7] case as can be seen
from Tables 2 and 3. We may thus understand this case almost entirely in terms of
the Kelvin and anti-Kelvin modes (since the northern and southern boundaries are
so close to the equator there is considerable overlap between the Kelvin and anti-
Kelvin modes and the delay due to the travel of the wall-Kelvin is substantially
absent). The initial Kelvin mode emitted from the east at # = 0 has an amplitude
of —2.36, carries all the mass flux of the meridionally unbounded solution (—2.88),
and lowers the height field behind it as it propagates toward the east. The initial
anti-Kelvin emitted from the east has amplitude —2.35, carries mass flux —2.76,
and raises the height field as it propagates westward. Since both the Kelvin and anti-
Kelvin work to increase the east-west tilt, the potential energy will increase mono-
tonically until # = 10 when the Kelvin mode hits the western boundary. Since the
anti-Kelvin mode carried almost all the mass flux, it reflects as a Kelvin mode of
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Figure 15. Same as Figure 10 but for a [—5,1.7] basin. (a) # = 2; (b) ¢ = 64.

amplitude +2.26 which tends to raise the height field behind it. Similarly, the Kelvin
mode reflects at the eastern boundary as an anti-Kelvin mode of amplitude +2.27,
which now tends to lower the height field behind it. By # = 20 almost all the tilt
induced by the initial Kelvin-anti-Kelvin pair is wiped out by the reflected anti-
Kelvin-Kelvin pair: the height field becomes almost flat. The potential energy there-
fore has a periodicity of 20 time units and it almost reaches zero at its minimum;
Figure 14b. The kinetic energy is largest when the height field is changing most
rapidly and so has a periodicity half that of the potential energy.

The asymmetric basin [—5,1.7] provides an intermediate case, containing some
features of both the wide basin and narrow basin case, as well as some features
uniquely its own. Because of the lack of symmetry with respect to the equator, all
modes will be excited. Tables 2 and 3 show that the n = 0 Rossby-Kelvin mode
(Fig. 4b) is especially important in this asymmetric basin. Figure 15a shows the
height field at ¢+ = 2. Now the amplitude on the northern wall is mostly Rossby-
Kelvin while the amplitude on the southern wall is predominately anti-Kelvin. The
dominant periodicity is now ¢ = 20, the Rossby-Kelvin-Kelvin roundtrip transit
time but, as can be seen in Figure 14c, the successive peaks are delayed because of
the transit time of the wall-Kelvins needed to communicate between the Kelvin and
anti-Kelvin modes. The state at the end of 64 time units, Fig. 15b, shows the height
field evenly tilted in the northern part of the basin but again less well spun up in
those parts of the southern region where the higher Rossby modes have yet to
reach. Even in the northern regions, however, the height field continues to undergo
oscillations as the Kelvin mode sloshes mass across the basin.

b. The G = I case
In the meridionally unbounded situation (discussed in Paper II), the G = 1 forc-
ing excites no Kelvin or anti-Kelvin modes; only even n Rossby modes. By sym-
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Figure 16. Energy versus time for the G = 1 case. (a) Basin [-5,5]; (b) Basin [—1.7,1.7]; (c)
Basin [—5,1.7].

metry considerations, none of these modes contains any net meridionally integrated
zonal mass flux, so that upon reaching the western boundary no Kelvin waves will
ever be excited. According to Eq. (55), the zonally unbounded solution plus all its
reflections sum simply to (0,0,y), the final steady state. The response therefore pro-
ceeds relatively straightforwardly: the more Rossby waves emitted from the eastern
boundary at ¢ = O that reach a given point, the closer is the height field at the point
to the final state. Thus points closer to the equator and to the eastern boundary spin
up faster. The spin-up is monotonic with time—no Kelvin waves exist to slosh mass
across the basin.

The response in the [—5,5] basin is very much the same as in the meridionally
unbounded case except that the lowest planetary mode excited at the eastern bound-
ary is now the n = 0 Rossby-Kelvin mode which does not exist in the meridionally
unbounded case. Figure 16a shows the energy diagram for the [—5,5] basin. The
wiggles, of period about 27, are the initial » = 0 inertia-gravity waves (at k = 0,
o = 1 in Fig. 1) which are excited initially to produce the zonally unbounded solu-
tion (u®, 0, h®) in Fig. 6a. Because the zonally unbounded state has a height field
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which is tilted near the equator some moderate fraction of the final height field tilt
and because this zonally unbounded state does not grow with time, the magnitude of
the intertia-gravity oscillations are moderate and remain of constant amplitude. The
initial K = 0, @ = 1 has a group velocity to the east and reflects as a k = —1,
o == 1 inertia-Kelvin wave—these reflections continue forever superimposed on the
monotonically spinning-up height field.

Meridional sections of the height field in the [—5,5] case taken toward the end of
the simulation (# = 64) indicate that the eastern part of the basin is almost com-
pletely spun up, as we expect, while the degree of spin-up at ¢t = 64 decreases as
we move westward across the basin. Because the n = 0 mode has its largest ampli-
tude at the northern and southern walls (Fig. 4a) and travels with speed near unity,
the regions near these walls are spun-up even at the west while substantial parts of
the region between these walls and the equator have not yet felt the influence of any
Rossby modes from the east and so are far from spun-up.

The energetics of the response in the [—1.7,1.7] case are shown in Figure 16b.
In this case the inertia-gravity waves needed to set up the zonally unbounded solu-
tion have extremely large amplitude because the height field of this zonally un-
bounded solution (Fig. 6¢c) has a very substantial part of the tilt of the final spun-up
height field. The envelope of the potential energy is modulated by the n = O inertia-
gravity wave roundtrip transit time (calculated from the group velocities) which in
the [—1.7,1.7] case is about 40 time units.

The asymmetric basin case, [-5,1.7], is completely different from the symmetric
case in that the asymmetry of the basin modes now implies that all the modes carry
net meridionally integrated zonal mass flux. Thus, in accordance with our discussion
of western boundary response, Kelvin waves will be generated when any of the west-
ward propagating modes reach the western boundary. Examining Table 2, we see
that the zonally unbounded solution (u®, 0, A‘®)) plus the reflections at the eastern
boundary lead to a height field 7 = y + .0986 at the eastern boundary (by Eq. (55)),
and by extension, to any point in the interior to which all the Rossby modes pro-
duced by this reflection have reached. The final steady state height field, however,
is h = y + 1.65 so that even after all the Rossby modes due to the first reflection
have reached all points, the tilt would be correct but there would still be a height
deficit of 1.55 units throughout the basin. The additional mass, of course, is carried
by the Kelvin wave which must reflect the total mass flux of the unbounded solution,
—1.596. This Kelvin wave, of amplitude bx = 1.250, thus carries a mass flux +1.596
and when at ¢ = 10 (plus the wall-Kelvin travel time) this Kelvin mode hits the
eastern boundary, it, plus its reflections, uniformly raises the height everywhere along
the eastern boundary by an amount .979 according to Eq. (52) and Table 3. The
initial Kelvin wave alone thus fills two-thirds of the height deficit. The initial anti-
Kelvin, however, upon reflection at the western boundary, produces a Kelvin of
negative amplitude —.786 which, when it hits the eastern boundary, lowers the
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height field uniformly at the east by an amount .616, undoing some of the good
works of the first Kelvin. From this point on, most of the mass flux in the succeed-
ing reflections is sloshed around by the Kelvin mode reflecting into a Rossby-
Kelvin mode and vice versa with a periodicity of 20 time units. Figure 16c shows
the energy diagram for this case and we see that a plateau exists from ¢ = 20 to 40
but that the inertia-gravity waves tend to mask the effect.

In order to filter out these inertia-gravity waves, we reran the G = 1, [-5,1.7]
case starting, not from a flat ocean at rest, but rather from a state from which the
inertia-gravity waves had already been removed, namely, the (u®, 0, hA(®) state.
This filtering was largely successful and a comparable energy diagram shows that
the 20 unit Rossby-Kelvin-Kelvin periodicity is clearly apparent. As time goes on,
the height field would tilt closer to its final state, but contrary to the symmetric basin
G = 1 cases, mass would continue to be sloshed across the basin.

6. Conclusion

This paper has presented a straightforward analytic approach to the calculation
of the time-dependent response of equatorial basins to wind stresses varying slowly
in the zonal direction and in time.® This allows (to our knowledge, for the first time)
a rather detailed comparison of analytic theory with linear simulations, or equiva-
lently, with the early (linear) stages of nonlinear simulations. The method involves
first approximating and describing the free modes of a meridionally bounded basin;
next calculating the meridionally bounded but zonally unbounded solution which
gets set up by the emission of inertia-gravity waves within a single inertial period;
then calculating the eastern and western boundary responses to this zonally un-
bounded solution and to any subsequent responses; and finally, following in time the
series of reflections and responses that leads, or does not lead, to the steady state
solution. The power of the method to accurately describe linear spin-up was illus-
trated by a series of numerical simulations of the responses of three separate ocean
basins, [-5,5], [-5,1.7] and [—1.7,1.7], all 10 units long in the zonal direction, to
the simple wind stress forcings F = 1 and G = 1, and following the response out to
64 nondimensional time units for each case.

Compared to the meridionally unbounded case treated in Paper II, we saw that
the introduction of the northern and southern boundaries has in some ways simplified
the consideration of spin-up and in some ways complicated it. For example, the
problem is simpler in the F = 1 symmetric basin cases compared to the meridionally
unbounded case in that only those modes whose turning points lie within the basin
carry any meridionally integrated zonal mass flux, and all those modes whose turn-
ing points would have lain outside the basin in the meridionally unbounded case
and which would have been needed to account for the rearrangement of mass dur-

6. Only winds independent of x and switched on in ¢ were calculated explicitly but the extension to
winds slowly varying in x and ¢ is straightforward using the methods of Paper I.
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ing spin-up are, in the symmetric basin case, replaced by a single anti-Kelvin mode.
On the other hand, the problem is more complicated in these same cases in that the
additional reflections induced by this same anti-Kelvin mode lead to a much more
intricate reflection diagram (see Fig. 9). In the narrow basin case, [—1.7,1.7], the
description becomes simpler still: since all Rossby modes higher than n = 1 have
their turning points outside the basin, the complete system can be described by only
three modes—the Kelvin, the anti-Kelvin and the n = 1 Rossby mode.

The results of the theory presented in Sections 2, 3, and 4, and of the simulations
analyzed in Section 5, now allow us to address a question raised in the Introduction:
to what extent does the imposition of the northern and southern boundaries affect
the progress of the time-dependent response in the vicinity of the equator? The
answer, as we saw, varies from case to case. The case in which the boundaries pro-
duced the least effect was the G = 1, [—5,5], case. Here the spin-up in the region
of the equator was precisely the same as in the meridionally unbounded case. The
only difference was that the fast n = 0 Rossby-Kelvin mode, with large amplitude
at the northern and southern boundaries, spun up the regions near these boundaries
rapidly, whereas this mode is totally absent in the unbounded case. In the G = 1,
[-1.7,1.7], case, the boundaries are so close to the equator that the Rossby-Kelvin
mode has considerable amplitude even at the equator. The entire basin would there-
fore spin-up relatively completely after only 10 time units (one Rossby-Kelvin mode
traversal time) were it not for the large amplitude inertia-gravity waves set up during
the initial unit of time. We can conclude that for G = 1, in basins symmetric with
respect to the equator, the time-dependent response near the equator will proceed
essentially unaffected by the northern and southern boundaries as long as these
boundaries lie at least a few equatorial radii of deformation from the equator. For
the G = 1 case, in basins asymmetric with respect to the equator, or for the F = 1
case in any of the basins, the extra Kelvin modes induced by the western boundary
reflections of either anti-Kelvin or Rossby-Kelvin modes will change the details of
the time-dependent response near the equator—the closer a boundary is to the
equator the larger will be the change.

The role of the Kelvin mode in the spin-up process bears repeated comment. The
initial Kelvin mode, in all those cases in which it exists (G = 1, asymmetric basin,
and F = 1, all basins) helps to bring the height field closer to its spun-up (steady)
value. On the other hand, repeated production of Kelvin modes by reflection of any
of the westward propagating modes induces a sloshing of mass back and forth across
the basin which inhibits the attainment of the final spun-up state. In the absence of
friction, this sloshing would continue forever. Only in those cases in which the
Kelvin mode never appears (G = 1, symmetric basins) does the time-dependent re-
sponse truly proceed to a steady state.

It is clear that the method and results of this paper (and Papers I and II) are
directly useful in analyzing numerical simulations of time-dependent response. But
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in application to the real ocean we must offer a major caveat. We have assumed the
existence of a single baroclinic mode. While there is evidence that standing vertical
modes do exist (Wunsch and Gill, 1976), the question has recently been raised
(Philander, 1978) of whether or not standing vertical modes are regularly excited
by atmospheric forcing. Since the dynamics of baroclinic mode excitation is not at
all well understood, we would urge the greatest caution in applying this, or any
theory based on a single standing vertical mode, to the behavior of real oceans.

Acknowledgments. We would like to thank Brian Hickie for making available a copy of his
paper prior to publication; Moshe Israeli for valuable help with the numerical work; Richard
Lindzen for discussions of positive equivalent depth modes on S-planes; Dennis Moore and
George Philander for continued discussions about the dynamics of equatorial waves; and D. R.
Sadigur for careful preparation of the manuscript. This work was supported at Harvard Univer-
sity by NASA Grant NSG-5160.

APPENDIX: Orthogonality and completeness of the eigenfunctions
Fourier transforming the unforced (F = G = Q = 0) Egs. (1) from x to k and denoting trans-
pose by superscript T we may write (cf. I (36)ff):

":T W, B+ i A@,v,h)" =0
0 iy k
—iy 0 Ll

A= dy
k i—a—' 0 J

dy
then A @,,; = w,,; ®n,; and the following five lemmas follow easily:
Lemma 1 A = A* [Readily shown by direct calculation.]
Lemma 2 All the «’s are real. [Follows from the self-adjointness of A, that is, from Lemma 1.]
Lemma 3 For all n, u, > 0 [Since (1) and (2) form a standard Sturm-Liouville problem.]
Lemma 4 The w’s are distinct. [Follows from Lemma 3, the dispersion relation and a con-
sideration of the Kelvin roots w = *k.]
Lemma 5 The {®,,} is orthogonal. [Follows from Lemma 4 in the usual way, i.e.
®m,1 [¢n,,, 0.,.,;] = [®,,;,A ‘Dm,t] =[A Qn,j, ¢m,l] = Wn,j [¢n,,, d’m,l]
with the second equality a consequence of Lemma 1. Since the w’s are distinct, the
®@’s are orthogonal.]
Theorem: {®,,;} is complete.

where

Proof:
First rephrase the question of completeness as follows. Let R = {®, |n >0}, ie., all the
eigenvectors except the Kelvin waves ¢x,-.. We wish to show that if

[(U, — iV, H)*, ®,,]=0forall ®, ;e R
then
V=0;,yH+ U’'=0;and yU + H = 0. (A.1)

Since the only solutions to (A.1) are (multiples of) ®x,.: the theorem will follow.
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It is straightforward to show from the definition (37) of ®,,; that

[(U, = iV.H)*, ®.,,] = Na, ;7 [An, 5, Y]
where
An; =, QU+ H)+k(GGH+U) + (00, — k) V.
Now by assumption
0=1[A4nj, ¢alforalljn>0. (A.2)
Hence
0= [An,j i An,l, l[lu] = (wn,] _wn,l)[yU + H’ ar (mn,J F mﬂ,‘) V7 ‘l}"]
since
Wn,j 5 wn,1 forjs£1
(A.3)
QU+ H + [wn,j+ 00,1l V, ) =0foralln >0, j521.

Let I = 3. Then taking the difference of (A.3) with j = 1 and j = 2 and using wn,1 5 wy,2 yields
V,ya)=0foralln. (A.4)

Since the yu’s are complete, ¥ = 0. Then (A.3) implies that yU + H’ = 0 and, finally, (A.2)
yields yH + U’ = 0, completing the proof.

In the body of this paper we make particular use of the completeness when k = 0. In this
case the proof must be modified slightly. It is unchanged through (A.4) after which we must
use

[(U,iV,H)*, ®ns] = —Qu.+ 1) U+ H)+ (yH + U’)
to establish that
YH+U =0.
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