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The response of an equatorial ocean to simple wind stress 
patterns: I. Model formulation and analytic results 

by Mark A. Cane1 

ABSTRACT 
A simple model is developed to study the wind-driven equatorial ocean circulation. It is a 

time dependent, primitive equation, beta plane model that is two-dimensional in the horizontal. 
The vertical structure consists of two layers above the thermocline with the same constant den-
sity. The ocean below the thermocline is taken to be of a higher constant density and to be ap-
proximately at rest. The surface layer is of constant depth and is acted upon directly by the 
wind. The depth of the lower active layer is dynamically determined. This is the simplest verti-
cal structure which allows a steady state undercurrent. 

The linear dynamics of the model are investigated analytically. The circulation evolves on 
two timescales: a frictional component is established in O (20 days) while the pressure gradients 
and interior flow have a longer, highly variable setup time. The steady transport consists of a 
Sverdrup part and a frictionally driven part in the vicinity of the equator. When forced with a 
uniform easterly wind, the flow at the equator in the lower layer is in the same direction as the 
undercurrent (eastward). However, the vertically integrated transport is westward. This differs 
from observations and suggests that inertial effects must be included to properly simulate the 
undercurrent. 

In a companion paper (Cane, 1979) both the linear and nonlinear dynamics of the model are 
investigated by numerical methods. 

1. Introduction 

Since the vertical component of the Coriolis force vanishes at the equator, the 
geostrophic balances which dominate the dynamics of the extra-equatorial oceans 
must break down. The most striking physical manifestation of this singularity is the 
Equatorial Undercurrent, a narrow (half width of 1 °), fast (speeds up to 170 cm/ 
sec), eastward flowing subsurface current in the thermocline of all the world's oceans. 
(While it is a permanent feature in the Atlantic and Pacific at most longitudes, it has 
been observed only intermittently in the Indian Ocean, Knox, 1976.) Many of the 
characteristics of the undercurrent are highly variable: e.g., the downstream veloci-
ties and transports may vary by a factor of two or more at different longitudes or at 
different times. Available observational data allow many of these variations to be 
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land, 20771, U.S.A. 
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related systematically to variations in the winds over the equatorial ocean. How-
ever, the evidence is, in general, too spotty to allow such correlations to be conclu-
sive. (Philander (1973b) presents a thorough review of the measurements of the un-

dercurrent made up to 1973.) 
A second important consequence of the vanishing of the Coriolis term is that 

equatorial motions have time scales which are very much shorter than those of 
midlatitude motions: the baroclinic time scale is weeks at the equator, as against 
years at midlatitudes. The most impressive instance of this short time scale is the 
reversal in direction of the Somali Current within a month of the onset of the South-
west Monsoon (e.g., Leetmaa, 1973). 

Because of the rapidity of the response to atmospheric forcings, equatorial oceans 
are rewarding areas for the study of motions with time scales of a month or longer. 
Until quite recently such motions received little theoretical attention. Much of the 
work in this area has followed Lighthill (1969) in focusing on the set-up of the 
Somali Current in response to the onset of the Southwest Monsoon. The time de-
pendent behavior of the undercurrent itself has received far less attention. Gill 
(1975) applied a Lighthill-like model to the undercurrent in the western Pacific. He 
associated the undercurrent with the second baroclinic mode Kelvin wave which 
propagates in from the western boundary. It is not clear how such a model explains 
the presence of the undercurrent as a more permanent feature. Philander (1976) 
explained the undercurrent meanders observed during GATE (Di.iing et al., 1975) 
as the result of a shear instability of the surface currents. 

In contrast to the situation for time varying equatorial currents, numerous theo-
retical models for the steady state undercurrent appear in the literature. These have 
been reviewed by both Gill (1975) and Philander (1973b). For this reason we shall 
forego a detailed review here; rather, we shall discuss them only to the extent 
needed to establish a theoretical context for the present work. On the basis of his 
observations in the Pacific, Knauss (1966) estimated that the only negligible terms 
in the momentum equation were those giving the time rate of change of momentum 
and the horizontal component of the Coriolis force due to vertical motion. (He did 
not consider horizontal eddy diffusion processes.) The upshot is that a great variety 
of processes are available to be used as explanations for the undercurrent. Since 
there is a certain amount of freedom in the choice of eddy coefficients, all of these 
can be expected to give agreement with at least some of the observed scales. In 
what follows, we seek to isolate those processes which are most significant. 

We shall immediately restrict ourselves to those models which idealize the thermo-
cline as a discontinuity between a shallow upper homogeneous layer and a deeper 
lower homogeneous layer of greater density. The lower layer is assumed to be so 
deep that its horizontal pressure forces and velocities vanish. Models with thermo-
haline components (Robinson, 1960; Philander, 1971, 1973a) are required to ex-
plain certain effects at depth; for example, the double celled structure often observed 
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in the Pacific (see Philander, 1973b). Homogeneous models appear to be sufficient 
for explaining observed features above the thermocline. 

The most basic physical notion about the undercurrent is the idea of flow down 
a pressure gradient (Charney, 1960). The prevailing easterly winds pile up water 
at the western side of the ocean basin, thus establishing an eastward pressure gradi-
ent. Stommel (1960) exploited this idea to obtain an eastward flowing subsurface 
current in a linear model with vertical friction. He assumed free slip boundary con-
dition at the bottom and that the vertically integrated transport vanishes at the 
equator. In a similar model without the latter two assumptions, Charney (1960) and 
Philander (1971) found that the current at the equator did not reverse with depth. 
In any case, one would wish any theory to account for the substantial eastward 
transports observed at the equator. In the linear theory of Gill (1971), the pressure 
gradient force is balanced by the horizontal mixing of momentum. By using an un-
realistically large value for the coefficient of horizontal eddy viscosity (108 cm2 

sec-1), Gill obtains the observed latitudinal scale for the undercurrent, but the trans-
port is too low by a factor of at least four. 

Nonlinear theories have ignored the downstream inertial terms. The (suspect) as-
sumption is made that the zonal and meridional velocities have the same scale. Then, 
since the meridional length scale (an equatorial boundary layer scale) is so much 
shorter than the zonal one (the length of the basin), it follows that in the momentum 
equation the downstream inertial term is negligible relative to the cross-stream in-
ertial term. Attention is then directed to the meridional circulation. For an easterly 
wind, the Elcman drift in the surface layers will be poleward. Continuity then re-
quires a compensatory equatorward mass flux at depth, producing an upwelling 
region at the equator to complete the fluid circuit. Fofonoff and Montgomery (1955) 
considered the subsurface flow in the light of the barotropic vorticity equation. If it 
is assumed that a parcel approximately conserves the vertical component of its ab-
solute vorticity, it must change its relative vorticity to make up for the loss of plane-
tary vorticity as it moves equatorward. This results in an eastward flow at the 
equator. It may also be shown that the meridional circulation near the equator en-
hances the eastward transport at the equator regardless of whether the wind is 
easterly or westerly. (See Robinson (1966) for an analytic demonstration; Gill 
(1975) gives a more physical argument.) 

The models of Charney (1960), Charney and Spiegel (1971), Robinson (1966), 
and McKee (1973) all incorporate the nonlinear effects due to the circulation in the 
meridional plane. The first three include momentum mixing in only the vertical 
direction. McKee's model is an extension of Gill's (1971) model into the nonlinear 
regime; horizontal eddy viscosity is the important frictional force here. A more 
realistic value for the zonal velocity is obtained compared to the linear model, but 
an unreasonably large value for the eddy coefficient is again used (108 cm2 sec-1) 

to obtain the observed undercurrent width. The models of Charney (1960) and 
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Charney and Spiegel (1971) (the first calculates the flow only at the equator by 
assuming it is an axis of symmetry; the second paper extends the first model to a 
meridional plane) give the observed undercurrent velocity and width using a value 
for the vertical eddy viscosity coefficient (15 cm2 sec-1) in agreement with existing 
observational evidence (See Sec. 2). This model also gives good agreement with the 
observed vertical profile of the undercurrent. Vertical viscosity must be of some 
importance at depth in order to obtain a nonconstant profile below the boundary 
layer. Most importantly, a mechanism for the vertical exchange of momentum is 
needed to introduce the wind stress into the water. There is no similar logical neces-
sity for introducing a significant amount of horizontal mixing. Further, there is no 
evidence that modeling such mixing gives better agreement with observations. 

Previous work thus shows that it is necessary to consider vertical eddy viscosity 
and inertial effects but not lateral eddy viscosity in order to model the undercurrent 
effectively. As noted above, all of these models neglect any variation in the zonal 
direction (except that the zonal pressure gradient is taken as constant). This makes 
it impossible to ask a number of interesting questions; for example, one cannot in-
vestigate the undercurrent meanders observed during GATE. More generally, the 
issue of the relation of the undercurrent to the entire equatorial current system can-
not be explored without considering the whole ocean basin. Since there is a substan-
tial eastward transport at the equator, there must be compensating westward flow 
elsewhere in the ocean basin. Further, many time varying effects are inseparable 
from zonal variations. For example, the length of time it takes for the sea surface 
to set up from rest in response to a wind stress is determined by the speed of waves 
which propagate in from the boundaries of the basin. 

In order to investigate questions of this sort, our model will be time dependent 
and two dimensional in the horizontal. Since the phenomena of interest are con-
fined to an area near the equator, the basin need not have a great latitudinal extent; 
15S to 15N has proven to be sufficient. The model equations are solved numerically 
because it is imperative that they be fully nonlinear. 

In order to make it practical to perform many numerical integrations, the vertical 
structure is drastically simplified. It consists of two layers above the thermocline 
with the same constant density. The ocean below the thermocline is taken to be of 
a higher constant density and to be approximately at rest. The upper of the two 
active layers is a constant depth surface layer which is acted upon directly by the 
wind stress. The lower active layer is not directly affected by the wind. Its depth is 
variable, with the variations being dynamically determined. The two layers com-
municate via the vertical velocity at their interface as well as being frictionally 
coupled. This is the simplest vertical structure that allows a steady undercurrent. 

Of course, this simplification prevents the simulation of the detailed vertical struc-
ture of the undercurrent. It is not our intention to do such numerical simulations. 
Previous work (especially Charney and Spiegel, 1971) provides a bridge for relating 



1979] Cane: Equatorial ocean response to wind stress: I. Model 237 

Z0 (x,y ) 

Z1 (x,y) 

!!, N-1 PN- 1 
h N- 1( x,yl 

Z N-2 ( x,y ) 

!!_N•o PN 
hN(x, y) ZN-1( x, Y ) 

l 
ZN 

Figure 1. Multi- layer model. 

the results of our simple model to the real world. Our philosophy is to treat the 
numerical experiments in the manner of laboratory experiments: we do not seek to 
simulate the real world; we seek merely to preserve enough analogy to the real 
world for the results to give insight into natural phenomena. 

There are a large number of phenomena which may be investigated with such a 
model. In the present study we impose very simple wind stress patterns and study 
the evolution from a state of rest and eventual steady state configuration of the model 
ocean. In this paper the model is formulated and its linearized dynamics are ex-
plored by analytic means. Numerical results are discussed in the sequel to this work, 
Cane (1979), henceforth referred to as II. The analytic results are of interest in their 
own 1ight in addition to being an invaluable aid in the interpretation of the numeri-
cal experiments. The vertical structure of the model is novel and these results help 
to clarify the relationship of the model variables to more familiar oceanographic 
models. They provide a descriptive vocabulary, a check on the numerical results, 
and a contrast that highlights the nonlinear effects. 

2. Formu lation of the physical model 

The equations and parameters governing the model are discussed in this section. 
We begin by considering the familiar layered model in order to see why it is inap-
propriate for modeling the steady undercurrent. The equations for the model struc-
ture employed here are then derived, after which the choice of parameter values 
is discussed. 

a. Layered model. Since we are concerned with inertial and viscous dynamics of a 
wind-driven ocean, thermohaline effects will be ignored. We divide the ocean verti-
cally into stable material layers of constant density which are assumed to be non-
mixing (Fig. 1). We now identify the bottom layer with the water mass below the 
thermocline and regard it as being sufficiently deep so that its velocity vanishes. 
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Equatorial regions are a favorable environment for this approximation: the thermo-
dine is shallow (150-200 m), the wind stress projects about twenty times more 
strongly on the first baroclinic mode than it does on the barotropic mode (Lighthill, 
1969), and unlike midlatitudes (Veronis and Stommel, 1956), the baroclinic signals 
are only about one order of magnitude slower than the barotropic. Further theo-
retical support may be drawn from Philander's (1977) analysis of vertical wave 
propagation, which shows that for the time scales of interest to us, most of the 
energy put in by the wind will remain above the thermocline. Observational evidence 
also tends to support the validity of this approximation (see Philander, 1973b for 
a summary). 

Since the velocities in the lowest layer are assumed to vanish, the pressure gradi-
ent must vanish there as well. This leaves us with the familiar "reduced gravity" 
model; for a single active layer the equations governing the average horizontal cur-
rent and the layer depth h1 are 

a 
h1 + "v • (h1 0 1

) = 0. 

(2.1) 

(2.2) 

Where the reduced gravity g' = g (pz-p1) ! p2, -r0 is the wind stress, -r1 the interfacial 
stress between the two layers and ve"v 2u1 is the horizontal eddy stress.2 The com-
ponents of the Coriolis force due to vertical motions and departures from hydrostatic 
balance are neglected; this may be justified a posteriori. 

The wind stress appears as a body force in (2.1). This is a commonly used model-
ing procedure in oceanography that can be rigorously justified for many purposes 
(e.g. Charney, 1955). However for some purposes, such as modeling the undercur-
rent, a difficulty is created by introducing the wind stress as a body force averaged 
over the uppermost layer. 

For a constant easterly wind stress (of magnitude -r per unit mass) the steady state 
solution to (2.1), (2.2) is 

0 1 = O; h1
2 = h/ (x=0) + x -r / g'. (2.3) 

The zonal pressure gradient is balanced by the wind stress at all depths. In reality 
this pressure gradient is sufficient to drive the equatorial undercurrent because the 
fluid at depth feels the pressure force but not the wind stress (Charney 1960· Gill 

' ' ' 1971). Obviously the layered model misses this effect. 

2. The usual finite difference assumption about quadratic terms has been made, 
that 

f zu 
h,-, (u • V) u = u' • V u' . 

z, 
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Figure 2. Model with two active layers. 

Similar no-motion solutions can easily be found for a multilayer model whether 
or not the bottom layer is constrained to be motionless: the layer depths may always 
adjust to reduce the pressure gradient to zero in each subsurface layer. For example, 
with some dissipation in the system a two layer model with its lower layer not con-
strained to be motionless will still evolve to such a motionless steady state. (This 
model does permit a transient undercurrent.) 

It should be emphasized that such models are not wrong in some simple sense. 
In fact, the profile of the thermocline depth specified by (2.3) is very close to what 
is observed at the equator (cf. Gill, 1975, Fig. 3). The difficulty is that the feature 
of interest is missed by the layered models because they consider only the depth 
averaged currents within each layer. A correct treatment of the wind stress would 
introduce it as a boundary condition e.g. VvUz = Twind at the surface, so the velocity 
cannot vanish at all depths. The vertically averaged velocities may vanish. For the 
example discussed above, this could come about at the equator if the surface flow 
driven westward by the wind stress were just compensated by the flow at depth 
driven eastward by the pressure force. In reality, inertial effects act nonuniformly 
with depth to give a net eastward transport at the equator. This is precisely the 
mechanism for generating an undercurrent referred to in Sec. 1. 

b. Model equations. To capture this essential mechanism we modify the model with 
a single active layer by dividing this layer into two parts: a surface layer of constant 
depth 'Y} and a lower layer of variable depth h (Fig. 2). There is no density difference 
between these two layers and transfer of mass and momentum between the two is 
permitted. The wind stress is felt directly only by the surface layer; in this sense this 
layer plays the role of the ocean mixed layer. 

Denote the average of a quantity q over the upper active layer by qs and over the 

lower layer by q1 ; i.e. 

f zo f z" qs = 71-1 q dz; qi = 1i-1 q dz . 
z" z, 

(2.4) 
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The sudace z = z,, is not a material surface so dz,,/ dt :::/= w(z,,); in fact 

dzo ( ) - dt = W Zo (2.5) 

and 

w (z,,) = ~~11 + w, = w (zo) + w, (2.6) 

where w, is the rate at which fluid must be transferred across the interlace z = z,, 
in order to keep the upper layer depth constant. By integrating the continuity equa-
tion, wz + V • u = 0, through the upper layer and using (2.6) we may obtain the 
relation 

w. = w (z,,) -w (zo) = 

V • u dz= V • u dz - {u (zo) • V Zo - u (z,,) • V z,,} . f Zo sZ• 
z. z. 

Since 

{u (zo) • Vzo - u (z,,) • Vz11 } = 

{ _ } _ { d:; _ ~~11 } 
d a 

{z 71-Zo} - {z,,-zo} = 0 

it follows that 

w. = V • ( 'IJD') = 'IJ V • u• , (2.7a) 

so that entrainment balances the divergence in the sudace layer. A similar manipula-
tion on the continuity equation integrated from Zo to Z1 yields 

ah --= - V • (hu 1
) - w · at e ' 

(2.7b) 

the depth of the lower layer is changed either by divergence of fluid within the 
layer or by exchanges with the layer above. 

To derive the momentum equations for the two layers we begin with the mo-
mentum equation in the form 

au au a a 
R = + u • Vu+ w = u + V • (uu) + -a;- (wu) 

with R standing for all the other terms in the equation. Integrating over the upper 
layer and using Leibnitz's rule 

f z0 
{ a f z. az0 az,, } 

z,Rdz= z, udz-[u(zo)~ -u(z71)~] 

+ { V • s:: u u dz - [u(zo) (u(zo) • Vzo) - u(z11) (u(z71) • Vz71))} 
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+ w(zo) u (zo) - w(z'l) u (z'l) 

a dz0 dz = (1108
) + V • (77D8U8) - u(zo) dt + u(z1)) dt1) + w(zo)u(zo) - w(z1)) u(z'l); 

f
zo a 
z. R dz=~ (1108

) + V • (1108 
0

8
) - W e u (z'l) (2.8a) 

with the last equality following from (2.6). 
In the lower layer 

f 
2
"R dz= -4---f 2" u dz+ V • f 2

"0 u dz - u (z1)) ddz1) + u (z1) ddzt1 

z, ut z, z, t 

s:: R dt = +, (hu1
) + V • (hu1u1

) + w. u (z'l) (2.8b) 

To close the set of equations (2.7), (2.8) u(z1)) must be expressed in terms of the 
other variables. Applying the requirement that there be no spurious sources or sinks 
of energy determines that 

ll (z'l) = ½ (08 + 0 1
) (2.8c) 

Writing R explicitly and using (2. 7) to go from flux to momentum form gives the 
final form of the momentum equations. 

a w -- o• + (08 • V) 0 8 + - •- (u• - 0 1
) + f k x u• at 277 

T o K =-g' Vh +-- - --(o•-01
) + vH V 2 08 

11 11 ' 
(2.9a) 

a w at o1 + (01 • V) u1 + 2h (o• - oi) + f k x u1 

K K = - g' Vh -+ 0 1 + -h- (o• - 0
1

) + VH V 2 
0

1
, (2.9b) 

The stresses at the interfaces, ,: (z'l), and ,: (z1) have been modeled in a simple linear 
fashion: 

,: (z1)) = K (08 - 0 1
); ,: (z1) = Kn 0 1 

. (2.10) 

In terms of the vertical eddy viscosity v,, ,: = v,, fJu/ {}z so we may argue heuristi-
cally that 

K=Kn=v,,/H. (2.11) 

with H. a characteristic vertical distance between fluid elements in the active layers. 
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Table 1. Standard Values of Model Parameters. 

Parameter 
T 

g' 

VH 

v. 
K 

Ks 
Xa 
Br 
Ba 

T/ 

B1 

/3 

Value 
.465 dyn cm- 2/(gm cm-s) 
.1724 msec-• 

5.86 X 105 cm' sec-1 

15 cm' sec-1 

1.5 X 10-• msec-1 

1.5 x 10-s msec-1 

28.6° (3184 km) 

15° 
-15° 
25 m 

175 m 
2.2 X 10-11m-1sec-1 

Remarks 
Wind stress per unit mass 
"reduced gravity" g' = g (p.-p,.)I p, for 
(p2-p1)/ p2 = 1.86 X 10-• 
coefficient of horizontal viscosity 
coefficient of vertical viscosity 
interfacial friction parameter; K = v.l H* for 
H* = 100 m 
bottom friction parameter; Ks = K 
zonal extent of the basin 
basin walls are at 15N and 15 S 

depth of upper layer 

mean value of the lower layer depth h 
/3 = (df I dy ),=o = 2!l/ R where !l = 21r day-1 

and R is the radius of the earth 

Finally, at all lateral boundaries we impose no-slip boundary conditions 

g s = gl = 0 • (2.12) 

c. Choice of parameter values. The values for the model parameters given in Table 
1 are by and large typical values for equatorial oceans. Placing the zonal coasts at 
± 15° makes them sufficiently far from the equator so that their presence has negligi-
ble influence on the dynamics in the vicinity of the equator (SS to SN). The possi-
bility of separating the effects of zonal walls from the equatorial dynamics depends 
on these dynamics being locally determined; i.e., "trapped" to the equator. That 
this is the case is borne out by our subsequent analytic investigations (also see Cane 
and Sarachik, 197 6, 1977); it is also evident from the flow field pictures obtained 
from the numerical calculations (see II). Additional shorter numerical experiments 
with the zonal walls 20° from the equator differed little near the equator from those 
with the walls at 15°. The zonal width of the basin is smaller than that of the world's 
oceans, but is large enough to have a broad interior region where the dynamics may 
be clearly separated from the dynamics of the meridional boundary layers. The 
model ocean is taken to be on an equatorial beta plane ( e.g. Veronis, 1963a, b) with 
the Coriolis parameter f = f3y. 

Vertical eddy diffusion is to be the principal dissipative mechanism in the model. 
We choose H. to be 100 meters (one half of the depth of the active layers) and use 
(2.11) to relate the K's to the vertical eddy viscosity coefficient vv, Knauss (1966) 
calculated a value of 5 cm2 sec-1 by fitting a parabola to the velocity profile of the 
undercurrent observed in the Pacific. Willi ams and Gibson (1974) applied universal 
similarity and local isotropy assumptions to measurements of small scale tempera-
ture fluctuation at 150W and a depth of 100 m. They found values of vv of 25 cm 
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sec-1 at the equator and 12 cm sec-1 at lN. Charney (1960) and Charney and 
Spiegel (1971) found that their models best fit the observed undercurrent for a value 
of the eddy viscosity in the range 14-17 cm2 sec-1• In the light of this evidence, we 
use 15 cm2 sec-1 as a standard value for Vv, feeling some confidence in (at least) the 
order of magnitude of the choice. The horizontal eddy viscosity is taken small 
enough to have negligible effect on the interior dynamics. A nonzero value is needed 
if the boundary conditions (2.12) are to be satisfied. 

The presence of the surface layer introduces another parameter, the layer depth 
r,. The numerical value we attach to r, will determine how the vertically integrated 
transport is divided between the two active layers. For example, if 'Y/ = 25 m and 

ii, the total depth of the layer, is 200 m, then u• is the average zonal velocity in the 
top 25 m and u1 is the average zonal velocity in the next 17 5 m. Their depth-
weighted sum 25 u• + 175 u1 is the zonal transport. The choice of the surface layer 
depth has two effects on the model physics, as may be seen by considering its effect 
on the transport equations. First, the bottom drag is proportional to the lower layer 
velocity, whose value will depend on the value of r,. This is true even in a linear 
model (cf. Sec. 3). The second effect is nonlinear, and comes about because we 
make the modelling assumption that the velocities are independent of depth within 
each layer. This means that the way we choose to divide up the average velocity 
affects the size of the nonlinear terms. 

Because the choice of the surface layer depth does affect the model physics, we 
seek a physical basis for determining its value. Unfortunately, the available observa-
tional evidence from the world's oceans is not sufficient to help us choose this param-
eter. We make the choice on theoretical grounds. Consider a shallow homogeneous 
ocean driven by an imposed wind stress. The ocean is specified to be shallow so that 
the horizontal component of the Coriolis force may be ignored everywhere. Extra-
equatorially, the wind stress is felt in an Ekman layer of depth DE = {2vv! f)½. Be-
low this boundary layer (and away from the bottom) the dynamics are inviscid and it 
is transmitted via the boundary layer pumping of the Ekman layer. (See, for ex-
ample, Charney, 1955; Pedlosky, 1968; or Robinson, 1970 for a detailed account.) 
As the equator is approached, the Ekman depth DE increases, becoming infinite at 
the equator in the absence of additional dynamical balances. We are, however, in-
terested in modelling a parameter range when the wind stress is sufficiently strong 
and the value of the vertical viscosity sufficiently small so that inertial effects be-
come important in the vicinity of the equator. A measure of these effects in the 
boundary layer is the Rossby number R 0 based on the boundary layer velocity. For 
a wind stress per unit mass of magnitude r the velocity scale in the Ekman layer is 
given by U = r / (DEf). Then R0 = U / (fy) = r [2vvfi3Y5]-! so that 

(2.13) 

The inertial terms will enter into the boundary layer momentum balance (along 
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with the Coriolis and vertical friction terms) when R 0 = 0(1). As the equator is ap-
proached, R0 increases so that equatorward of some latitude Y a the inertial effects 
will prevent the boundary layer from deepening any further. In fact, if the velocities 
increase toward the equator, we may expect that the boundary layer will get 
shallower. If we assume that the boundary layer stops deepening when R o= .5 and 
use the values in Table 1 (i.e, r = .5 cm2 sec-2, vv = 15 cm2 sec-1), we obtain Y e 
= 2°. The Ekman depth DE is approximately 25 mat this latitude. [Neither of these 
is very sensitive to the precise value of R0 for R0 = 0(1).] These values agree well 
with Charney and Spiegel's (1971) calculation for the same parameter values (see 
their Fig. 1). On the basis of this argument we choose the value 77 = 25 m, so that 
our surface layer will contain the boundary layer to be expected from a continuous 
model. 

3. Formulation of the mathematical problem 

To facilitate analytic treatment of Eqs. (2. 7), (2.9) we scale the variables as fol-
lows: 

(x,y) = L (x',y') 

r, =Fl ex. 

h =Fl1 + [U,8L2/ g'] h' 

t =Tt' 

(u•,01) = u (u•',011) 

W e = [uFl/ L] we' 
'[='To -r' 

Here 8 1 is the mean depth of the lower active layer and Fl= F11 + 77. 
The velocity scale is related to the wind stress magnitude by U = r 0 (Fl,BL)- 1• 

We take the length and time scales as the baroclinic equatorial ones (e.g., Matsuno, 
1966; Blandford, 1966): L = (c/ ,8)~ and T = (c,8)~ = (,BL)- 1, where c = (g'B)~. 
These length and time scales are internal scales, picked out by the dynamics of the 
fluid motions. We assume that the wind stress is a smooth function at these scales 
and that the dimensions of the basin are large compared with L. (For the values in 
Table 1, L = 296 km, T = 42.6 hours and c = 1.92 m sec - 1.) 

Dropping the primes and denoting differentiation with subscripts the scaled equa-
tions are: 

w 
u/ + € {(u• • V ) u• + 

2
~ (u• - 0 1

) } + y k x u• 

= -Vh + -r/ cx. + A '\7 2 u• -y1 (u8 - 0 1)/ cx., 

w (u•-01) 
u/ + € { (01 

• V) 01 + e + y k X 0 1 

2 (1-cx. +Eh) 

= - V h + A v2 ui + Yi (u•-u1) 
1-cx. + € h 

W e = CX. '\7 • U8 , 

')' g l 
1-cx. +Eh 

(3.1 a) 

(3. lb) 

(3.1 c) 
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h i + (1-a) V • u1 + a V • u• + e V • (hu1) = 0 . 

where the following nondimensional numbers have been introduced: 

Rossby number E = U/ ((3L2); 

Horizontal Ekman number A = VH/ ((3V); 

Interfacial Ekman number YI= K/ ((3LH); 

Bottom Ekman number y = Ks/ ((3LH); 

Nondimensional boundary 
layer depth a =YJ/ 8. 
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(3. ld) 

(3.2) 

The last three of these numbers, while logically independent as the model is for-
mulated, are all related to vertical friction and so may be related to one another. 
First, with K = Ks we have y1 = y. From the arguments of Sec. 2c we expect T/ to 
be on the order of the Ekman depth, T/E, at the edge of the equatorial boundary 
layer y = L (since L = Y0 ). Now 

T/E = (2vJ f>½v=L = [2KH* / ((3L)] 2 = y½ [2H ./HP 

where H* is a characteristic layer depth. As before we take H * = 8 / 2, so a = 
0 (YJEI H) = 0 (y½). 

We are interested in parameter ranges for which vertical friction is more im-
portant than horizontal friction: A < < y, y1. We also assume that y½ < 0(1). (For 
the values of the parameters given in Table 1, a= .125, A = 10-4

, y = .011, y1 = 
.1, and this is the case. 3

) Horizontal friction will be neglected in the interior of the 
basin, including the equator. As previously mentioned, A must be nonzero to allow 
the boundary conditions (2.12) to be imposed; if A = 0 only the normal component 
of the transport may be set to zero. Sidewall boundary layers will not be considered 
further here. Cane, 1975 contains a thorough discussion of boundary conditions 
and sidewall boundary layers in this model. (See Pedlosky, 1968 or Robinson, 1970 
for a discussion of sidewall boundary layers in a continuous, unstratified ocean.) 

Since it is the linear dynamics of the model which are to be investigated analyti-
cally, we linearize (3.1) by assuming e = 0. It is convenient for this analysis to intro-
duce two new variables: 

ii_ (1 - a) u1 +au•; ii= a (u" - u1
) (3.3) 

Then by taking appropriate combiations of (3.la) and (3.lb) one obtains 

ii1 + y k X ii + E ii = -r + A '\1 2 ii + -
1 

a y ii , 
-a 

(3.4) 

3. Neglect of A in (3.la) or (3.4) requires A <y'12; neglect in (3.lb) or (3.5a) requires A <y, 
which is only marginally true. The analytic results should be in qualitative agreement with the 
linear numerical experiments. 
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where 
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0 1 + y k x u + 'vh = -c + A 'v2 u - y (u-ii) , 

ht + V • u=O, 

E = (l-a)-1 [a-1 y1 + ay] = 0 (yl). 

[37, 2 

(3.5a) 

(3.5b) 

(3.6) 

In the absence of bottom friction (y=O) then equations become uncoupled: ii may 
be determined from (3.4) alone and u,h from (3.5) alone. The quantity u is the 
(scaled) vertically integrated mass transport while u is the frictional layer velocity; 
extra-equatorially (y> >E) u is just the Ekman layer transport. From (3.3) we may 
write 

u• = a-1 ii + 0 1 , 

which says that the surface velocity is given primarily by frictional effects corrected 
by the interior velocity 0 1

. Away from the equator 0 1 becomes geostrophic. The 
variables ii , 0 1 are this two-layer model's analogues of the variables used by Phi-
lander (1971) in his analysis of the dynamics of a continuous shallow equatorial 
ocean. 

4. The interior circulation: analytic results 

a. Frictional velocity. Eq. (3.4) may be used to obtain ii since the term involving 
ii is never greater than 0(£2) relative to the retained terms. This equation is first 
order in time with only a parametric dependence on x and y (with A=O), and so 
may be solved readily for arbitrary wind stress. It is sufficient to treat only a wind 
stress that is a step function in time switched on at t=O. In this case 

ii= [E2 + y2J-1 {- y k X r +Er} X {l - exp [(-E + i y)t]} (4.1) 

The time scale for the buildup of this component of the current system is clearly 
E-1 

- 20 days for the values in Table 1. For short times [t < < O(E- 1)] and points 
sufficiently near the equator [IYI << O(t- 1

)] (4.1) simplifies to ii= t-c; i.e. the solu-
tion is in the direction of the wind and grows linearly with time. Right at the equator 
the solution valid for all time is simply ii = -cE-1 { I-e-Et} so that the ii at the 
equator is always in the direction of the wind. Its magnitude is limited by the fric-
tion between the two layers and approaches E- 1 1-rl for times long compared with 
E- 1

• Away from the equator ii approaches the Ekman wind drift, -y- 1 k X -r ; it is 
directed 90° to the right (left) of the wind in the northern (southern) hemisphere. 

b. Vertically integrated transport: steady state circulation. The steady state form of 
the continuity equation (3.5b) allows us to define a mass transport stream function 

ii=k X 'vtjJ . (4.2) 

satisfying tjJ = 0 at the boundaries. A vorticity equation may then be derived from 
(3.5a): 
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y y 2 iJl + lfl :J) - k • v X -r = y k • V X ii . 
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(4.3) 

For the moment we set the right-hand side of (4.3) to zero, reducing it to the 
Stammel (1948) model for the mass transport stream function. As is well known, 
this equation admits boundary layers at the zonal boundaries and at the western side 
of the basin, but not at the eastern side. The appropriate boundary condition for the 
interior problem is l/J = 0 at x = XE, the eastern boundary. Letting -r = ('r <"'>, 7Cvl) 
the interior solution may be written 

f
X E 

iJJC0> =- x k • v x -r dx, 

(4.4) 

h<0> = - s:.f) [y k • V X '[ + 7 (:0) ] dx + f y 7 ( V) (x = XE) dy 

If the wind stress curl vanishes everywhere (e.g. for constant -r) then (4.4) says that 
there is no vertically integrated mass transport; the wind stress is balanced by the 
pressure gradient force. 

In the absence of bottom friction the steady state circulation is completely de-
scribed by (4.1) and (4.4). However, with y nonzero the right-hand side of the vor-
ticity equation becomes 0(1) in a region JyJ ,;;;; 0 (E). Hence there is a region at the 
equator in which the circulation controlled by the interfacial friction, which itself 
has no net transport, induces a mean circulation via bottom friction. Letting { = 
E-2 y and writing 

(4.5) 

where Tr is the stream function for this frictionally induced circulation, we note that 
Tr depends only on the local winds at the equator. Since near the equator 

k • V Xii= - E-2 u,<oJ = E-2 {(1 + {2)-1 ({-r <v> (x,y) + -r<"' l (x,y)) h 

[cf. (4.1)], the equation for Tr derivable from (4.3) is 

(4.6) 

where a= y- 1£ 2 = 0(1). The solution to (4.6) is derived in Cane (1975) and is 
depicted (for a=l) in Figures 3 and 4 for uniform easterly and southerly wind 

stresses. 
For a zonal wind stress the net transport at the equator is in the direction of the 

wind. This is, of course, contrary to what is observed for the undercurrent. It says 
that we must look to other (i.e. nonlinear) effects to explain the undercurrent. For a 
meridional wind the transport will be in the direction of the wind drift current in 
both hemispheres. The fluid circuit will be closed by a weak interior transport di-
rected opposite to the wind and a downwind flow in the western boundary layer. 
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Figure 3. The equatorial boundary layer mass transport stream function rr<u (x,{) of Eq. (3.16) 
for a uniform easterly wind T<•> = -1, T<•> = 0. 

For any wind stress pattern the flow will be predominantly zonal [v=O(Eu)] since 
flow along the equator is favored. The diffusionlike nature of (4.5) means that 
the region of frictionally induced transport will broaden from east to west. This 
description will be compared with the steady state linear numerical results in II. 

To summarize, we have found that the steady state interior circulation consists of 
two parts. The first part, described by (4.1) and (4.3), has a Sverdrup balance every-
where for the transport and essentially a wind drift solution for the boundary layer. 
The second part, described by (4.6), is important in a region extending about 300 km 
on either side of the equator. (Note that although t = 1 corresponds to only y = 
30 km, variables fall off slowly-like t- 1 in some cases.) There is a net transport at 
the equator in the direction of the zonal wind. Return flow also takes place within 
this region. 

These results may be compared with those of Philander (1971) for a homoge-
neous ocean continuous in the vertical. For that model, the frictional layer deepens 
toward the equator and extends throughout the ocean at the equator. The boundary 
layer in which this happens is embedded in a more diffuse boundary layer in which 
bottom friction is important. There is a net transport in the direction of the zonal 
wind in the first of these layers, which is returned in the broader layer. It appears 
that our modeling assumption, which fixes the boundary layer depth, has the effect 
of combining these two layers. 

c. Vertically integrated transport: time dependent circulation. As with the steady 
state solution, the time dependent circulation described by (3.5) is best split into 
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Figure 4. The equatorial boundary layer mass transport stream function nm (x.~) of Eq. 
(3.16) for a uniform northerly wind T<•> = O, T'•> = 1. 

two parts. By neglecting bottom friction in (3.5a), Eqs. (3.5) become the inviscid 
shallow water equations on an equatorial beta plane, which may be solved by the 
methods of Cane and Sarachik (1976, 1977) for all cases of interest here. We will 
use their results in subsequent descriptions of linear numeral calculations, but for 
now we only state some of the implications of their work for the spin-up of the 
present model. 

Adjustment toward a final steady state proceeds from east to west and is accom-
plished by quasi-geostrophic Rossby waves generated at the eastern boundary. The 
timescale for adjustment (the "setup time") depends on the time it takes for these 
waves to cross the basin, and so is a linear function of the zonal extent of the ocean. 
When equatorial Kelvin waves are present (as is usually the case) the adjustment 
does not proceed smoothly from east to west. Kelvin waves cause mass to oscillate 
back and forth across the basin so that the final state is not approached monotoni-
cally from the east and the adjustment time is lengthened. 

Extra-equatorially (!YI > > E), the term y (ii-ii) in (3.5a) is negligible for all time, 
but we know from the steady state solution discussed above that it must eventually 
become important in the equatorial vorticity balance. By rescaling (3.5) it may be 
shown that frictionally induced transpo1i has a stream function 1T satisfying the time 
dependent version of (4.6); viz. 

( _/J_ -f- 1 ) 1Tl;I; -f- a 1Ta; = - ii ,(O) , ar. 
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As before, {=E- 1y while t .=yt so that this component of the transport evolves 
on a timescale y- 1 : about 200 days for the values in Table 1. The height deviation 
associated with this transport remains small [h=O(E)]. 

5. Condusion 
The principal purpose of this paper has been the development of a simple model 

suitable for numerical experiments designed to give insight into the dynamics of the 
equatorial ocean circulation. There are two layers above the thermocline with no 
density difference between them. The ocean below the thermocline is modeled as a 
resting layer with a higher constant density. The surface layer is taken to be of con-
stant depth while the depth of the lower active layer is dynamically determined. The 
two active layers exchange mass (and momentum, energy, etc.) via the vertical 
velocity at their interface. They are also frictionally coupled. This is the simplest 
vertical structure that allows a steady state undercurrent. 

In our model the wind stress is taken up directly by the surface layer, which thus 
acts like an Ekman layer in a vertically continuous but homogeneous ocean. In a 
more realistic model-or the real ocean-it is the surface mixed layer that directly 
absorbs the wind stress and turbulently mixes the momentum input more or less 
uniformly throughout the depth of the layer. 

Strictly, the wind stress enters the momentum equations as a boundary condition 
on the vertical shear. By integrating these equations in the vertical a layer model is 
obtained in which the stress appears as a body force driving the total momentum in 
the surface. As shown in Sec. 2 the conventional layered model (in which the layer 
below the surface has a different density and there is no mass exchange between 
layers) permits a steady state solution in which there is no motion for a curl-free 
wind stress. Such a model can miss the undercurrent when it should be present. 
More generally, these models will underestimate inertial effects because the effect 
of the wind stress is averaged over too great a depth. The mean velocity of the layer 
is much smaller than the velocity to be expected in the surface mixed (or Ekman) 
layer. (It is this turbulent surface layer that first becomes nonlinear.) For example, 
the calculation of O'Brien and Hurlbut (1974), while formally nonlinear, shows 
nearly linear behavior because the direct effect of the stress is not confined to a suffi-
ciently shallow surface layer. 

The linear steady state vertically integrated transport is given primarily by the 
Sverdrup (1947) balance. For spatially constant winds this Sverdrup transport 
vanishes. If the stress at the model thermocline is nonzero, there is additional verti-
cally integrated transport in a frictional boundary layer centered on the equator. 
This layer thickens from east to west. The interior transports are predominantly 
zonal; a boundary current is required at the western side to close the fluid circuit. 
A zonal wind stress produces a net transport in the direction of the wind at the 
equator. This result shows that the linear model cannot produce vertically integrated 
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transport in the same direction as the observed (and model) undercurrent. The non-
linear dynamics must be included to get the correct result. 

Two timescales for the evolution of the circulation are revealed by the analysis 
of the time dependent equations. The time for the boundary layer flow ii to become 
established is 0(y-!) - about 20 days for the parameters used in this model. The 
transports (or lower layer flow) cannot be establishel until the basin-wide pressure 
gradients are set up. This requires that mass be moved longitudinally across the 
basin, a task accomplished by equatorial Kelvin and Rossby waves. The setup time 
thus depends on the zonal extent of the ocean. It also depends on the nature of the 
forcing: the setup time is longer when Kelvin waves are a significant part of the 
ocean's response. In all cases the setup time will be at least 100 days for the present 
model. 

Because (at least) the surface velocities in the vicinity of the equator quickly 
become large, it is clear that the flow becomes nonlinear. The nonlinear dynamics 
are investigated numerically in II. Those numerical experiments, together with 
similar experiments on the linear dynamics, will be interpreted in the light of the 
analytic results reported here. 
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