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A mathematical model for the distribution of dissolved silicon 
in interstitial waters-an analytical approach 

by George T. F. Wong1 and Chester E. Groscb1 

ABSTRACT 
A mathematical model for the distribution of dissolved silicon in interstitial waters is studied. 

This model includes the input flux of particulate silicon, bioturbation, the dissolution of silicon 
particles, and the diffusion of dissolved silicon in the interstitial water. It is shown that the 
model reduces to a nonlinear eigenvalue problem. This problem is shown to have only one 
eigenvalue which is determined by the solution of a simple algebraic equation. The eigenfunc-
tion is shown to be expressible in closed form in terms of elementary functions. The solution 
falls into one of three classes: I) all the particles dissolve and the interstitial water at depth is 
not saturated; 2) all the particles dissolve and the interstitial water at depth is saturated; and 
3) the interstitial water at depth is saturated but not all the particles are dissolved. The equa-
tions and solutions are analyzed and the dependence of concentration profiles on the param-
eters of the model is discussed. An exact predictor equation for the particulate flux in terms of 
the model parameters is also derived. The results of a number of sample calculations and 
simulations of the concentration profile for two actual cores are also given. 

1. Introduction 

Marine geochemists have devoted a considerable amount of effort to study of the 
composition of sediments and interstitial waters (Riley and Chester, 1976a, 1976b). 
One objective of these investigations is to improve the understanding of the history 
of the earth because marine sediments may contain the most complete record avail-
able. Moreover, these studies may allow the investigators to assess the fluxes of 
chemical species into and out of the sediments. These fluxes could have a profound 
effect on the geochemical mass balance of the oceans (Gieskes, 1975). In order to 
reach these goals, mathematical models have often been used to quantify the various 
processes that may affect the distribution of an element in the sediments and intersti-
tial waters and to identify their relative importance. (Anikouchine, 1967; Berger 
and Heath, 1968; Tzur, 1971; Guinasso and Schink, 1975; Imboden, 1975; Lerman 
and Lietzke, 1977; Goreau, 1977; Schink and Guinasso, 1977). 

Silicon is one of the elements in sediments and interstitial waters that has been 
intensively studied (Siever et al_., 1965; Anikouchine, 1967; Fanning and Schink, 
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1969; Fanning and Pilson, 1971; Bischoff and Sayles, 1972; Hurd, 1973; Schink 
et al., 197 4, 197 5) because it may play a central role in buffering the pH of seawater 
and in controlling the concentrations of major cations in seawater (Sillen, 1961; 
Garrels, 1965; Mackenzie and Garrels, 1965). 

The earlier models of Anikouchine (1967) and Hurd (1973) were based on the 
assumption that the distribution of dissolved silicon in interstitial waters is controlled 
by physical processes, such as diffusion and advection, and the dissolution of silicon 
containing solid phases. Advection was found to be unimportant when the sedi-
mentation rate is low as in the deep ocean. Anikouchine proposed clays as a possible 
silicon source and Hurd suggested biogenic particulate silicon, such as opal, as the 
solid phase. In both models, it was assumed that saturation is reached with respect 
to a certain solid phase at depth and that an equilibrium concentration is reached. 
Schink et al. (197 5) realized that large variations in concentrations in interstitial 
waters have been observed in both the Atlantic (Schink et al., 1974) and the Pacific 
(Hurd, 1973), and that these variations are not related to the mineral distributions. 
Moreover, it has been long recognized that stirring by benthic organisms, or, bio-
turbation, may have a significant effect on the concentration profile of an element 
in the sediments (Berger and Heath, 1968). Thus, they proposed a modified model 
in which both the input flux of particulate silicon and bioturbation have been in-
corporated together with diffusion and the dissolution of particles. 

The mathematical form of the model is a pair of coupled nonlinear partial differen-
tial equations in time and one space dimension together with boundary conditions. 
Schink et al. (1975) first assumed that the concentrations are in steady state thereby 
reducing the equations to ordinary differential equations. Then they replaced the 
spatial derivatives by finite difference approximations and solved the coupled differ-
ence equations by an iterative procedure. This model has certainly offered substan-
tial improvements over the earlier models and has approximated the natural condi-
tions more closely. 

The results of these calculations are quite interesting but the solution procedure 
presents a number of problems. Fundamentally, these problems arise from the fact 
that the structure of the equations and solutions are not analyzed but are only in-
ferred from a large number of numerical calculations. The equations and boundary 
conditions, as used by Schink et al. (1975), contain seven independent dimensional 
parameters, thus requiring a large number of calculations to explore the solution 
space. The use of numerical calculations in place of analysis obscures the basic 
structure of the problem and leads to an erroneous statement; namely that there are 
no steady state solutions if the pore water saturates (siliceous ooze). Finally the two 
predictor equations derived from the results of these numerical calculations are only 
approximate. 

In this paper, we shall use the same mathematical equations as Schink et al. 
(1975) for dissolved silicon in interstitial waters. However, instead of using a numeri-
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cal procedure for solving the equations, we shall obtain a solution analytically. We 
shall show that this model reduces to a single second order, nonlinear eigenvalue 
problem which contains only two independent, dimensionless parameters. For any 
pair of values of these parameters, there is only one eigenvalue and the correspond-
ing eigenfunction can be expressed in closed form in terms of elementary functions. 
The numerical solutions of Schink et al. (1975) are special cases of the general solu-
tions presented here. Moreover, in contrast to the statement of Schink, et al. (1975) 
there are steady state solutions to the model for the case of siliceous ooze. In addi-
tion we will derive exact predictor equations for the interstitial water concentration 
at depth and the flux of dissolved silica from the sediments in terms of the parameters 
of the model. Finally, we will present a number of sample calculations to illustrate 
the analytical solution procedure. Our results suggest that, aside from being mathe-
matically elegant, the analytical approach can yield substantially more information 
and provide a better tool for understanding and quantifying the processes governing 
the distribution of dissolved silicon in interstitial waters. 

2. The diffusion-dissolution model 

Schink et al. (1975) proposed that the concentration of silicon in interstitial 
waters may be described by the following equations: 

ac a2c (Cr-C) B (cp + K*n) = cp De~+ KB Cr , (1) 

..J.!!_ - D a2B - K (C,-C) B 
iJt - B iJz2 B Cr ' 

(2) 

where: z is the distance below the water-sediment interface, and z = 0 at the inter-

face, 
tis time, 
C1 is the saturation concentration of silicon in solution (g/ cm3

) , 

B is the concentration of dissolvable particulate silicon in the sediments 

(g/ cm3
), 

cp is the porosity of the sediment and is equal to the ratio of the partial vol-
ume of the liquid phase to the total volume of the liquid and solid phases, 

De is the 'effective' molecular aqueous diffusion coefficient ( cm 2 / sec). That 
is De = Dm/ 02, with Dm the molecular aqueous diffusion coefficient and 
0=dl / dz with 1 the path length in the aqueous phase. 

K* n is the mean distribution coefficient for adsorption of the dissolved silicon 

onto the sediments, 
KB is the first-order reaction rate constant for the dissolution of the particu-

late silicon (1 / sec), 
DB is the 'effective' particulate diffusion coefficient due to sediment mixing 

by benthic organisms (cm2/ sec). 
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C is the concentration of dissolved silicon in interstitial waters at z. 
Schink et al. (1975) assumed that cf>, K*D, De, KB, C1, and DB are constants and 

looked for steady state solutions to equations (1) and (2). Their steady state model 
is then 

(3) 

(4) 

The imposed boundary conditions are: 

C = C0 at z = 0 (5) 

dC 
0 as z oo , (6) 

dB 
DB -- = F B at z = 0 (7) 

dz ' 

dB dz 0 as z oo . (8) 

F B is the flux of particulate silicon through the water-sediment interface. 

3. Scaling of the equation and boundary conditions 

Equations (3)-(8) contain seven constants. The analysis and solution of this prob-
lem are facilitated by scaling the equations and boundary conditions. Let 

x = zlv'</>D BIKB, 

r = cf>(C1-C)IC,, 

b = (DB/ D0)(B/ C1) . 

Then equations (3)-(8) are, in nondimensional form, 

d 2r 
---br=O 
dx2 ' 

d2b 
dx2 -rb = 0' 

r(O) = r0 = cf> (Cr-Co)/C, 

dr 
0 as x oo , 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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db 
oo 

739 

(17) 

The differential equations are, in this fo~m, parameter-free. The only parameters of 
the problem appear in the boundary conditions and they are , 0 , the dimensionless 
concentration defect at the water-sediment interface and F0 , the dimensionless par-
ticulate flux at the water-sediment interface. 

4. Solution of the boundary-value problem 

Equations (12) and (13) are a pair of coupled nonlinear ordinary differential 
equations and the general properties of the solution to this boundary-value problem 
can be easily found. The general solution can be expressed in terms of familiar, 
known functions: Elliptic or Pseudo-Elliptic integrals, or equivalently, Jacobian 
Elliptic functions. 

First, subtract equation (12) from (13) giving 

Integrating once 

d'b 
dx' 

d 2r 
-d. =O. x -

db dr 
dx - -;1x=A, 

(18) 

(19) 

db dr 
where A is a constant. Because -;Ix and approach zero as x oo , we 

must have A = 0. Reverting to dimensional variables, equation (19) is equivalent 

to 

D ___!!!!_ = - cpD _!!£ 
n dz c dz 

(19a) 

This equation states that the downward flux of particulate silica is equal to the up-
ward flux of dissolved silica at all depths; in particular z = 0, the water-sediment 

interface. 
Setting A = 0 and integrating (19), we have 

b-r=>.. (20) 

with >.. a constant. Thus the difference between the dimensionless particulate silicon 
concentration and the dimensionless dissolved silicon defect is a constant at all x. 
In dimensional form, equation (20) implies that 

(20a) 

Since the diffusion coefficients, porosity and >.. are constants, the weighted sum of 
the concentration of particulate silicon and dissolved silica is constant at all depths. 
In other words, the total mass of silica per unit volume is a constant, independent 
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of depth. This is the result of the assumptions that a steady state exists and that silica 
is conserved. As will be shown below, A is not an arbitrary parameter but is a func-
tion of the concentration of dissolved silica and the flux of particulate silica at the 
water-sediment interface. 

Now 

b=r+A 

and substituting into equation (12) 

d 2r ---Ar-r2 =0 dx2 • 

The boundary conditions for equation (21) are, equation (14), 

r(O) = ro, 

and, using equations (16) and (19), with A= 0, 

( dr ) -- =Fa 
dx .x=o ' 

as well as equation (15) 

dr dx 0 as x oo . 

(20b) 

(21) 

(22) 

(23) 

(23a) 

Equation (21) is nonlinear but is of a form that can be made exact by multiplying 

by an integrating factor. Multiply equation (21) by 2 :: and integrate, thus 

f: [ 2 :: :; ] dx = 2 f : [ Ar :: + r 2 
:: ] dx , 

p 2 = ( :: ) 2 = Fo2 + A (r 2-ro2) + (2/3) (ra-roa) . (24) 

The boundary conditions at x = 0, equations (22) and (23), have been used. Inte-
grating once more, assuming that F < 0 (It is assumed that C increases with depth, 
so (dC/dz) > 0 and this implies that F = (dr/dx) < 0.) 

f ro dg _ 
r \/P(g) = \/2/3 x , (25) 

where 

P(r) = r 3 +-- Ar 2 +--3 3 [ 
- 2 2 (26) 
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The integral on the left-hand side of equation (25) can be expressed in terms of 
Elliptic or Pseudo-Elliptic integrals, or alternatively we can write r in terms of 
Jacobian Elliptic Functions of x . Note that this solution satisfied the boundary con-

ditions at x = 0 for any value of A, ie, r = r0 and F = --..!!!__ = F0 at x = 0. 
dx 

5, Determination of 11. and the solutions 

Although it has not been stated explicitly, there is one further condition which 
the solutions to equations (12)-(17) must satisfy in order to be acceptable: r, b, and 
their derivatives through second order must be continuous functions of x. There are 
three classes of solutions which are acceptable. 

The first class consists of those solutions for which all the particles dissolve and 
the interstitial water is not saturated. If all the particles dissolve at some depth X1 , 
say, then b(x1) = b1 = 0. In order for the solution to be continuous, F(x1) = F1 = 
O; therefore r(x1) = r1 must be the largest real root of (24) or alternatively (26). 
Now from (20b) 

(27) 

or -A must be the largest real root of equation (26). Substituting -A for r in (26), 

we see that 

(28) 

and that O < -A < r0 • Assuming that a root of equation (28) lies in this range, the 
solution in O < x < x1 is given by equation (25). 

If A is a root of (28) such that O < -A < r0 , then it can be shown that 

P(r) = (r + A) 2(r - A/ 2) , (29) 

and that the integral in equation (25) is a Pseudo-Elliptic integral and can be ex-
pressed in terms of elementary functions. The solution, which is the eigenfunction 

of the problem, is 

r = (__±_){ 3 [ 1 + f 1 exp(-v'~ x)] 2 -1 } (30) 
2 1 - r1 exp(-y'-A x) 

where 

r1 = (y'r0-(l / 2)A - y'-(3/ 2)A) / (v'ro-(1/ 2)A + v'-(3/ 2)A) . (31) 

and x1 = oo , that is r -A , F 0 and b 0 as x oo. 

The second class of solutions consists of those solutions for which all the particles 
have dissolved at the same depth at which the interstitial water saturates. In order 

to have a solution in this class 

A= O, (32) 
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F 2-
2 s o --
3
-ro . 

For this class of solutions, 

P(r) = r 3
, 

and the solution, which is the eigenfunction, is 

r = ro/(1 +vro/6 x) 2 
• 

As x oo, r 0, F 0, and b 0. 

[36, 4 

(33) 

(34) 

(35) 

The third class of solutions consists of those solutions for which the interstitial 
water is saturated before all the particles dissolve. If the interstitial water is saturated 
at some depth Xi , say, then r(x1) =Ti= 0. In order for the solution to be continuous 
F(xi) = F1 = O; therefore r1 = 0 must be the largest real root of equation (26). If 
T1 = 0 is a root of equation (26) then 

A= (Fo/To)2 -+ To , (36) 

and from equation (20b), >.. > 0. 
If such a value of >.. exists, then the solution is given by equation (25) for O < 

X < Xi. 

For this class of solutions, 

P(T) = T2 
( r + + >. ) , (37) 

and the integral in equation (25) is again a Pseudo-Elliptic Integral. The integration 
is performed and the solution, which is the eigenfunction, is 

T= (-3- >.. ){[ 1 + f 2 exp (-~x)] 
2 

_ 1 } (3S) 
2 l-f 2exp(-y >.. x) 

where 

r2 = (y 2ro+3>.. - y 3>..)/ (y2To+3>.. + y3>..). 

and T 0, b >.., and F 0 as x oo, ie x1 = oo . 

In summary, physically acceptable solutions of class one exist if, and only if 

F 2 < 2 
s o -

3
-ro , 

of class two, if and only if 

and of class three, if and only if, 

(39) 

(40) 

(41) 
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F 2 > 2 s o -
3
-ro . (42) 

This discussion shows that A is an eigenvalue. The differential equation (21) and 
boundary condition (22) through (23a) constitute a nonlinear eigenvalue problem, 
although Schink et al. (1975) who first proposed the problem in the form of equa-
tions (3) through (8), apparently might not have realized this. This problem can be 
solved in closed form in terms of elementary functions [equations (30), (34), and 
(39)] and the eigenvalue equation is an algebraic equation. 

In addition to the closed form solutions, this analysis has yielded several important 
results. First, and perhaps most important, we have found a simple, explicit criterion 
to determine from the flux and interstitial water concentration at the water-sediment 
interface whether the silicon particles will completely dissolve, leaving the interstitial 
water unsaturated or whether the interstitial water will saturate before all the silicon 
particles are dissolved. If 

F "> 2 s o• -
3
-ro , 

the interstitial water saturates before all particles are dissolved. If 

F " < 2 8 o- -
3
-ro , 

all particles dissolved before the interstitial water is saturated. Finally, if 

2 F 2- __ r s 
0 - 3 0 

the last of the particles dissolve at the same depth as the interstitial water saturates. 
Putting equation (41) back into dimensional quantities gives a critical value of the 
particle flux at the water-sediment interface. 

(43) 

If F B < (F n)crit, all the silicon particles dissolve before the interstitial water saturates. 
If F B > (F n)crit, the interstitial water saturates before all particles are dissolved. 

Schink et al. (1975) have stated (see caption to Figure 9 of their paper) that the 
model does not have steady state solutions if the interstitial water saturates. This is 
not correct. Steady state solutions of the third class (the interstitial water is saturated 
and not all the particles are dissolved) exist if F0

2>(2/ 3)ro3 and these solutions 
satisfy the differential equations, the boundary conditions and are continuous and 
have continuous derivatives through second order, in fact of all orders, for all x < 
0. We will give an example of this class of solutions below. 

Once the eigenvalue, 11., has been found by solving the algebraic equation (28), 
(32), or (36), the surface concentration of particles can be determined immediately 
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as well as the concentration of dissolved silicon and the equilibrium concentration of 
silicon particles at great depths. Letting the subscript 'co' refer to values as x co, 
we have: For a solution of the first class, 

F 2 < 2 
3 o -

3
-ro , 

b =(~) 00 
dx "" 

= (__!!!!.._) =O, 
dx2 

"" 

A solution of the second class is found if (A=O), Fl= 2/3 r o3
• 

Then 

rao=( ~: )
00 

(~) dx2 
.. 

=O, 

b =(~) 00 
dx "" 

- ( d
2

b) 
dx 2 ao 

=0. 

Finally, a solution of the third class has 

Fo2 > 2/3 To3
, 

rao=( ;: ) 
00 

- (~) =O dx 2 
00 

boo = A, ( ~! ) 
00 

- ( __!!!!.._) =O. dx2 ao 
6. The flux of silica through the water-sediment interface 

One quantity of great interest to geochemists is the flux of dissolved silicon 
through the water-sediment interface. From equation (19a) we see that 

-( dC ) _ cf> ( Dn )( dB ) 
Z=O - Z=O 

but, in general, the particulate flux , !! , is not easily measurable. Therefore, we 

must derive an equation for !~ at z=O in terms of the other parameters of the 

model. Apart from the diffusion coefficients, dissolution rate, and porosity, two 
parameters which are measurable are C0 and C00, the concentrations of dissolved 
silicon at the water-sediment interface and the equilibrium concentration at great 
depth in the sediment. We have derived expressions for the flux of dissolved silicon 
in terms of C0 , C00, or in the case of siliceous ooze of B 00 , and the other model 
parameters. 

For the Class I solutions, from equation (27) 
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Substituting for A in equation (28), expressing the variables in dimensional terms 
and using equations (7), (16) and (19a) 

Flux = cf:, De ( !C ) 
Z Z=O 

= cp De C1 { ( +) ( 1 - g; ) 2 + ( 1 _ ~; )[ ( 1 _ ~; ) 2 

- 3 ( 1 - g; ) 2 
]} 

11 2 
h / 3DBI K B (44) 

An analogous expression can be obtained for the Class II solutions. In this case 

( dC ) ( c ) s12 

Flux= cp De -d- = cp Dec, 1 - _co h / 3DB/2KB. 
z Z=O I 

(45) 

A Class II solution may never exist in nature because the existence of this type of 
solution requires an exact balance between the flux and the surface concentration. 
Nevertheless, this case is extremely important because it provides a lower limit of 
the flux for siliceous oozes to exist. If the interstitial water is saturated at depth, then 

( de ) ( c ) 3
1

2 

Flux = cf:, De z=o ? cp DC C, 1 - +, /y3DB/ 2KB . 

(46) 

Thus, if no residual dissolvable particulate silicon is present at depth, aside from the 
approximately known constants De, c,, DB, and KB (Schink et al. , 1975), the flux 
of silicon into the water column will depend on the variables C0 , C., and cf:, , and these 
values can be easily measured. 

Finally, for the Class III solution, in siliceous oozes, we find, in a similar way, 

that 

Flux= cp D 0 ( )z=o 
= cf:> De C, ( 1 - g; )[ ( lz{ )( ~; ) + +( 1 - g;)] 11 2 

/yDBI Kn 

(47) 

In this case, the interstitial water is saturated so that C., = C,, and, the residual con-
centration of particulate silicon, B, and the ratio of bioturbation to diffusion rate 
(DBI D0 ) may also become important in determining the flu x of dissolved silicon into 

the water column. 

7. Some sample problems 

In order to illustrate the behavior of the solutions, we have calculated the con-
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Figure 1. Simulated profiles of dissolved silicon in interstitial waters with increasing particulate 
flux. C and C, are the concentration at any depth z and concentration at saturation respec-
tively. x is the nondimensional depth as shown in equation 9 of the text. z is the correspond-
ing real depth if porosity (cp) is 0.8. The rate of dissolution (Ko) and the bioturbation diffu-
sion coefficient (Do) are 10-• sec- 1 and 5 X 10_,, cm2 sec- 1 respectively. The three cases 
represent the situations where saturation is not reached at depth (I), where saturation is 
reached at depth but all dissolvable particulate silicon has been exhausted (II), and where 
saturation is reached at depth and excess particulate silicon is present (III), respectively. 

centration-depth profiles for a few sample cases. Schink et al. (197 5) gave ranges of 
values of the parameters and we have chosen median values from these ranges. 
These values are: 

cp = 0.8 
De= 4 X 10-6 cm2/ sec 
KB= l0 - 9 sec- 1 

DB=5 X l0- 8 cm2/ sec 
C1 = 1.0 µ, mol/ cm3 

C0 = 0.05 µ, mol/cm3 
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and three values of Fe; 1.000 x 10-1 , 2.705 x 10-1 , and 4.500 x 10-1 µ, 
mol/cm2-sec. With this choice of values r 0 = 0.760 for all cases and F0 = 0.200, 
0.541, and 0.900. 

The first example, ro = 0.760, F0 = 0.200, gives a solution of the first class; the 
second, ro = 0.760, Fo = 0.541, gives a solution of the second class; while the third 
example yields a solution of the third class. These examples show the effect of in-
creasing particle flux, while holding all the other parameters constant. 

Figure 1 is a plot of C/ C1 versus the dimensionless depth, x. The scale on the 
right-hand side is the depth in centimeters. In all cases the surface concentration is 
the same, Co/C1 = 0.05. In the first case (I), the particles dissolve and the equilib-
rium concentration is reached at x:::::: 6 (e.c. :::::: 30 cm). The other two cases have the 
pore water saturated at depth. For the second case (II) , C C1 quite slowly with 
increasing x because of the algebraic dependence (equation 35) of r on x. Finally, 
in the third case (III), the interstitial water is effectively saturated at a depth of 
about 40 cm. 

These sample calculations show that by using values presently considered reason-
able for the various parameters in the model, most of the concentration changes 
occur in the top 10 to 20 cm of the core. Thus, the common practice of sampling 
interstitial waters by squeezing 10 cm slabs of the cores will hardly be adequate for 
a realistic description of the distribution of dissolved silicon with depth. Sampling 
at 1 cm intervals would seem to be more appropriate for this purpose. 

The dimensionless depth (x) is related to the real depth (z) by the equation 

z = y'<f>D s!Ks x 

which is a rearrangement of equation (9). Thus, the simulated distribution in terms 
of real depth will vary with De/ Ks. This is particularly important in the reactive 
zone before an equilibrium concentration is reached. In other words, the shape of 
the profile in this zone may be significantly altered by changing the rates of bio-
turbation and/ or dissolution of particulate silicon. 

The calculations also show that the equilibrium concentration of dissolved silicon 
at depth may acquire any value up to the saturation concentration. The particular 
concentration reached in each case will be determined by the flux of dissolvable 
particulate silicon supplied to the sediment in that area if all other parameters are 
held constant. 

We have also simulated the distribution of dissolved silicon in the interstitial 
waters of two cores (Fig. 2), which were used by Schink et al. (1975) for illustrating 
their model. We used the same input parameters as theirs; these parameters are 
given in Table 1. The model can reproduce the measured data reasonably well ex-
cept in the surface sample. The measured concentration does not show the steep 
increase in concentration with depth in the top 10 cm because the entire 10 cm 
length of the core is represented by only one sample. 
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Figure 2. Simulated profiles of dissolved silicon in the interstitial waters of two cores: TR-091-
3 (Fanning and Pilson, 1971) and Hurd 100 (Hurd, 1973). (Schink et al. (1975) have mis-
labeled the second core as Hurd 101.) The ratios of the observed concentrations to the satura-
tion concentration (assumed to be 1000 µ, mo! 1- 1) instead of just the observed concentrations 
are given in the figure. The depth scales are given in both the nondimensional form and the 
corresponding real depths for each core. The vertical bars represent the observed concentra-
tions. The simulated profiles are represented by the smooth curves. 

8. Summary 

The major findings of our study may be summarized as follows: 
1. The mathematical model, proposed by Schink et al. (1975) for describing dis-

solved silicon in interstitial water which includes diff usion, bioturbation and dissolu-
tion of particles can be solved analytically in closed form instead of numerically. 

2. Actual profiles can be adequately simulated by this model. This suggests that 
physical and chemical as well as biological processes may be important in deter-
mining the distribution of silicon in interstitial waters. 

Table 1. Input parameters for two cores in Figure 2. 

Co FB DB/KB D. 
µ,mo! 1-1 4> µ,mo! cm-2s-1 cm2 cm•s-1 

TR-091-3 35 0.75 2.5 X 10----- 100 4 X 10_,, 
HURD 100 125 0.90 8.4 X 10----- 100 4 X 10_,, 
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3. Contrary to the finding of Schink et al. (1975), the model does not break 
down when saturation is reached at depth. Thus, the model may be applied to areas 
where siliceous oozes are found. 

4. The concentration of dissolved silicon at depth is controlled primarily by the 
flux of dissolvable particles. 

5. The shape of the profile in the reactive zone, where large concentration gradi-
ents may be observed, depends primarily on De/Ke. 

6. In areas where all dissolvable particles dissolve at depth, the flux of silicon out 
of the sediment-water interface is controlled by the variables C0 , C00 and cp . If excess 
dissolvable particulate silicon is present, the flux will also be dependent on B"' . 
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