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On the sampling requirements for measuring moments 
of eddy variability 

by G. R. Flierl 1
•
2 and J. C. McWilliams 1 

ABSTRACT 
The expected errors in first and second moments (means, variances, and covariances) calcu-

lated from data records of finite length are analyzed, using formulae based on the spectra. The 
physical processes from which the data are taken are assumed to be stationary and quasi-
normal. Asymptotic approximations to these errors (in inverse powers of the record length) are 
also discussed and compared with the exact expressions. The results are applied to time series 
measurements of low frequency current variability in the North Atlantic. The magnitudes of 
the estimated errors, especially in second moments, suggest that the present data sets can be 
used for qualitative descriptions; however, obtaining precise estimates (10% accuracy) may 
require prohibitively lengthy experiments. 

1. Introduction 

This paper addresses the following question: what is the accuracy with which 
means, variances, and covariances can be calculated from time (or space) series of 
finite length, and what characteristics of the series are important in determining 
this accuracy? For any physical system which is random or turbulent (i.e., having 
important restrictions upon its predictability), the statistical data-the means of 
various quantities, the intensities of the fluctuations (the variances) and the covari-
ances (such as Reynolds' stresses or eddy heat fluxes)--comprise perhaps the most 
useful description of its behavior. One oceanic example of such a description comes 
from measurements of mesoscale eddies and the North Atlantic mean circulation 
(Schmitz, 1976a and 1976b). Another example is the interaction of internal waves 
and lower frequency currents (Milller, 1974; Frankignoul, 1976). The mathematical 
problem of the accuracy of a time average from a finite record as an estimate for 
the expected value (for a stationary process) is standard and can be found in ref-
erence texts such as Bendat and Piersol (1966). One can also find simplified "rule 
of thumb" estimates of the errors derived by assuming the length of the record (T) 

is large. Here we offer the following contributions: first, we write the formulae for 
the expected errors in estimating the mean, variance, and covariance in terms of 
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the spectra of the fields, rather than the lagged covariance; second, we write the 
asymptotic form of the errors ( as T oo) to O (T- 2

); third, we discuss how these 
errors depend on the shape and character of the spectrum; fourth, we discuss the 
accuracy of the asymptotic forms for particular spectral forms; and finally, we use 
typical oceanic spectra to illustrate application of the formulae and also to indicate 
the order of the errors in averages from the present data sets. 

We have chosen to write our formulae using the spectrum E(w) (or the cross-
spectrum Ei;(w)), rather than the lagged covariance function Ci;(w), since the experi-
mentalist generally prefers to discuss the fluctuations in spectral space. 8 Because 
the raw spectral estimates of the energy in distinct frequency bands are statistically 
independent, one can average, smooth, or fit models in spectral space to obtain a 
more plausible estimate of the spectrum. In fact, a covariance function is best 
smoothed by Fourier transforming to find the spectrum, smoothing in spectral 
space (thereby avoiding unrealizeable covariance estimates which have negative 
energy bands), and then transforming back. Furthermore, the uncertainties in a raw 
spectral estimate are distributed as x2 (Jenkins and Watts, 1968), according to the 
usual theory, whereas covariance uncertainties can only be expressed as a compli-
cated convolution integral. For these reasons we have used Ei;(w) as the basic de-
scription of the random fluctuations, rather than C;(w). 

It is characteristic of oceanic spectra (c.f. Figs. 6-8) that they are red (rapidly 
decreasing) at least above a certain frequency. This feature assures that the high 
frequency spectral details are not the primary contributors to either the calculated 
lower moments of variability or to the estimates of their errors (see § 3). In particu-
lar, unbiased noise (from frequencies above the Nyquist or from instrumental error) 
contributes negligibly to the error estimates (see § 4). Similarly the formidable 
problems of estimation based on unequally spaced data sets or data with gaps can 
be disregarded if both the spectral peak scales and the extent of the measurements 
greatly exceed the longest sampling gaps. Thus, in the following, we discuss formulae 
describing the nature of low frequency and spectral peak contributions to errors in 
moments calculated from continuous records. 

Another simplification will be the assumption that the measurements are from 
stationary and quasi-normal processes. We assert this not because we believe the 
ocean truly behaves in this manner, but because the documentation of mesoscale 
oceanic second moments will be complete long before we discover how poor these 
assumptions are. For similar reasons, we have restricted ourselves to first and second 
moments, although our methods are surely extendible to higher moments, because 

_3. Of cour~e, t~e formulae can be converted between the spectral and covariance forms by 
usmg the relat10nship 

1 J"' E,1 (w) =-
2
- dr C,, (r) e''" . 

1T - co 
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present and foreseeable oceanographic observations are not concerned with the 
higher moments. 

2. Expected first and second moment errors for stationary, quasi-normal processes 

In this section, we shall write formulae for the expected error of an estimate for 
the mean or covariance. Some of these formulae are written in standard texts such 
as Bendat and Piersol (1966) in terms of covariance. Since we are interested in 
discussing the functional dependence of the errors upon the spectrum, we must 
either Fourier transform the standard results or rederive them using the Fourier 
transformed data (see the Appendix for an example). 

We denote our data by <f>lt) for te [-T / 2 , T / 2] . We assume that Fourier trans-
forms of the <pi exist, so that 

<p, (t) = f :
00
dw e-""t <l>i (w) + (<pi) , (2.1) 

where the notation ( • ) represents an ensemble average and <I> is the transform 
variable. Under the assumption that the process is stationary, we define the cross-

spectrum by 

( <l>i (w) <l>i (w') ) = E ii (w) o (w + w') (2.2) 

where Ei1 (w) is the cross-spectral density. The record mean of <p will be denoted by 
<p and is defined for continuously sampled data by 

l ST!, 
if, = T -T h<p (t) dt ' (2.3) 

and analogously for discretely sampled data. 

a. Error formulae. The expected error variance in an estimate of the true mean of 
cf> by the record mean (2.3) is defined as 

(2.4) 

The Appendix shows that this is related to the autospectrum E(w) by 

e1 = s:
00
dw E (w) S2(wT/2) . (2.5) 

S(x) is defined as exp (-i2xt/ T) and, for the definition of the average (2.3), is just 
the "sine" function (sin x)/x commonly used in spectral analysis.4 

4. A different defi nition of the mean (e.g., using discrete samples) will only affect the formu-
lae in this paper by changing the function S(x) from sine (x) to exp(-i2xt! T). For discrete sam-
ples at spacing t,.1 = T l (N-1) 

I sin [x (I + M I T)] 
S(x) = JI/ sin [x t,.1/ T] 
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The expected error in the covariance is defined as 

(2.6) 

= ( { cp/ cp/ - cp/ cp/ - ( cp/ cp/ ) } 2 ) ' 

where the cp' are the true fluctuations cp - < cp ). If we make the quasi-normal as-
sumption that 

( cp/ cp/ cp/ cpz' ) = ( <p/ cp/ ) ( <pk' <p{ ) 
(2.7) 

+ ( cp/ cp/ ) ( cp/ cpz' ) + ( cp/ <p{ ) ( cp/ <pk' ) ' 

then we can rewrite (2.6) in terms of the spectrum as 

€ 2 = s:oodw s:1w' E;,;, (w) Ejj (w')KA (w,w') + Eij (w) Eij (w') KB (w,w') 

(2.8) 

where 

KA (w,w') = S2 ([w - w'] T /2) + S2 (w T /2) S2 (w' T /2) 

- 2 S ([w - w'] T /2) S (w T /2) S (w' T /2) 
(2.9) 

KB (w,w') = K A (w,w') + S2 (w T /2) S2 (w' T /2) 

Making the familiar partition of the cross-spectrum into the real co-spectrum and 
quadrature spectrum, 

EiJ (w) = PiJ (w) -y-1 Qi; (w) (i #- j) , 

and using the symmetries of EiJ and KB yield 

E2 = s:
00
dw {Ei1 (w) E11 (w') K .1 (w,w') + 

[PiJ (w) PiJ (w') -Qi; (w) QiJ (w')] KB (w,w')} . 

(2.10) 

(2.11) 

For the simpler case of estimating the variance or autocovariance (i.e., i=1), (2.8) 
becomes 

€2 = s:oodw s:/w' E (w) E (w') [K A (w,w') + KB (w,w')] . (2.12) 

We can also compute the relative errors for estimated covariances and variances by 

dividing (2.11) by {f :/iJ (w) dw} 
2 

and (2.12) by {f :
00 

E (w) dw} 2 

respectively. (2.5) and (2.11), (2.12) will be our basic equations. 
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b. Asymptotic approximations. In section a, formulae for the expected errors in 
means, variances, and general second moments were presented. However these are 
rather complicated and, even for simple spectral shapes, require numerical integra-
tion for any practical application. Next we shall derive simpler asymptotic approxi-
mations to the errors €1 and € 2 for large values of the record length T. The require-
ment for the asymptotic formulae to be useful-that T be large compared to the 
energetic scales in the spectrum-will be analyzed in more detail in § 3. 

The derivation of the asymptotic formulae depends on two theorems given in the 
Appendix. Based on these results we can write 

21r 2 s00 E(w)-E(0) ( 1) 
€1 ~ T E (0) + T2 - oodw w 2 + o TN (2.13) 

(for any finite value of N) and 

€ 2 ~ 2
; s:.:1w [Eii (w) E;; (w) + Pi/ (w) - Q;/ (w)] 

+ ~ 2 {S:00 d; s:oodw [ Eii ( uJ + ; ) Eii ( w- ; )- Eii (w) E jj (w) 

+ Pii ( w + ; ) P;1 ( w - ; )- Pi/ (w) - Qi, ( w + ; ) Qi, ( w - ; ) 

+ Q;/ (w) ]- 21r2 Eii (0) E1i (0)} + 0 ( ; 3 ) (2.14) 

For the variance error (2.12), the asymptotic approximation is 

4 f oo 
€2 ~ ; - oodw E 2 (w) 

- 1r2 E (0)} + 0 (1 / P) . (2.15) 

We can see that the asymptotic formulae are simple in the sense that the integrals 
over the spectrum need be done only once, whereas the correct formulae (2.5), 
(2.11), (2.12) need to be reintegrated each time Tis changed. 

The order 1/ T asymptotic approximations are found in standard texts in terms 
of the covariances; for example, the first term in (2.13) (which we define to be 

€1 (l l) is just 

€
1 

<1 > = 21r:(O) = : f dr C (r) == 2 u-~Ti , (2.16) 

where u-2 is the variance (i.e., C(0)) and Tr is the integral time scale (Lumley and 



802 Journal of Marine Research [35, 4 

Panofsky, 1964). Bendat and Piersoll (1966) also give the first asymptotic term for 

the second moment error 

E2<1J = _!!_ dw E2 (w) 4 Seo 
T - co 

2 500 

=r O drC2 (T), (2.17) 

in the special case of variance estimation. 
The order 1 / T2 contributions to the errors are much less familiar and are rarely 

included in error estimates; however, we shall show below that their inclusion sig-
nificantly improves the accuracy of the asymptotic formulae (2.13-15). We should 
also mention that the simplicity of the asymptotic formulae is somewhat misleading 
since our attempts to evaluate (2.5), (2.11-12) and (2.13-15) for various test spectra 
indicate that the integrals in the asymptotic formulae are considerably more sensitive 
to the numerical techniques used than are the exact formulae. 

3. Contributions of various parts of the spectrum to mean and covariance errors 

We can illustrate the contributions of various regions of the spectrum by using a 
test spectrum. Consider a Gaussian spectral component 

aT 
a(w) = 21rv'1r exp [- (awT / 21r)2

] (3.1) 

which has unit total energy (i.e., unit frequency integral) and a bandwidth 0(a-1) 

in the frequency variable x = wT / 21r. We shall choose an 0(1) bandwidth in x 

since, in practice, one has no knowledge on any finer bandwidths from a finite 
record length T; therefore it seems appropriate to discuss test spectra which average 
over this bandwidth in frequency. We have used a = 2.25 for the following plots 
and discussions, but the results are not especially sensitive to this choice. x is also 
the natural variable for discussing the S2 (wT / 2) weighting function in (2.5) because 
S2 (wT / 2) bas zeros at x = l, 2, 3 .. . 

A sequence of test spectra Dn ± ( w) will be defined by 

Dn± (w) = +[ a ( w- 2; n ) ± a ( w + 2
; n ) ] (3.2) 

for n = 0, l , 2 . .. This test spectrum can be considered a component in the follow-
ing representation of an actual spectrum: 

co 

E(w)= ~en Dn+ (w) (3.3) 
n = O 

The amplitudes en in (3.3) would be defined by 
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f
2"/ T (n+½) 

en = dw [E (w) + E (-w)] 
'"I T (n-½) 

= 4; E (2rrn/ T) 

since E(w) is an even function. 

803 

(3.4) 

Thus as our record length T increases, the frequency corresponding to a given n 
decreases and the amplitudes e,, also tend to decrease. Alternately a given spectral 
peak in E (w) will , as T increases, be associated with higher values of n, be broader 
in 11n and decrease in amplitude en, 

If we expand E(w), E., (w), E;; (w) and Pi1 (w) in the Dn + (w) functions as in (3.3) 
and Qi; (w) in the Dn - (w) functions (which are odd functions of fr equency), we 
can write the error in the mean as 

(3.5) 

the error in the variance as 

€2 =;~en em [S: O'.)dw s:~w' {KA (w,w') + K s (w,w')} Dn + (w) Dm + (w' ) , 

(3.6) 

and the error in the covariance as 

+ l l P nij p,,,ii [f 00 dw 
nm - oo 

f :d
00

w' K s (w,w') D,, + (w) Dm + (w')] 

s:
00

dw' K s (w,w') D,.- (w) D ,,.- (w')] . 

(3.7) 

The terms in the square brackets in equations (3.5-7) have been plotted or con-

toured in Figures 1 through 5. That is, we have plotted 

€1(n)= s :codwD,,+ (w)S2("' T/2) (3.8) 

€
2 

(n,m) = f '° dw f co dw' [K A (w,w') + K s (w,w')] Dn + (w) D ,,.+ (w') 

- co - co (3.9) 

and similar cospectral and quadrature spectral terms. 
Note that each of these is independent of T ; all of the T dependence enters in the 
relationships between n and w and between en and the spectral energy. We have 
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Figure 1. The contributions to first moment error for the Gaussian spectra (3.2). Also shown 
is D,+ plotted for frequency w = n 27TIT (where n is regarded as a continuous variable). 
Three formulae are shown: the exact e, from (3.8), the first asymptotic approximation (3.10), 

and the combined approximation (3.11). 

also plotted the equivalent bracketed terms which would occur in the asymptotic 
formulae (2.13-15) upon substitution of expansions such as (3.3); these terms are 

defined by 
E1 (l) (n) = 2" I T Dn + (0) 

E1<2 > (n) = 2"/ T Dn+ (0) + 2/T• s:00 D,.+ (w) D,.+ (O) dw 

E2(l) (n,m) = 41T IT s :oodw D,,+ (w) D,,,+ (w) 

e/ 2> (n,m) = E 2 <1 > (n,m) + 

; 2 {S:/7/T• s : oodw [D,. + (w + T / 2) D,n + (w - T / 2) -

D,. + (w) D,,,+ (w)] - 7r2 Dn + (0) Dm + (0)} 

etc. 

(3.10) 

(3 .11) 

(3.12) 

(3.13) 

a. Error in the mean. Figure 1 shows the contribution to the error in the mean 
from various parts of the spectrum. The energy in the unresolved band (n=0) con-
tributes with the greatest weight to the error; it is adequately represented by both 
the one and two-term asymptotic approximations (though the one-term form some-
what overestimates E1 (0)). The energy in the marginally resolved band (n=l) is 
weighted by a factor an order of magnitude smaller than that of the unresolved 
band, but now the single term estimate E1 <1> is much too small. These features are 
also characteristic of the better resolved bands (n > 1), whose contribution to the 
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Figure 2. The contributions to variance error for Gaussian spectra (3.2). The three panels are 
(a) the exact Ez from (3.9), (b) E/ 1> from (3.12), and (c) the two-term approximation (3.13). 

total e1, per unit energy in the band, decreases as n-2
• These results lead to a few 

simple rules: if the actual spectrum is red, then the major contribution to e1 comes 
from the unresolved band (w < 2-rr / T) and the simple single-term formula (2.16) will 
adequately, even conservatively, estimate the error. However, if the spectrum is 
strongly peaked at frequencies greater than 2-rr IT, then either (2.13) or the exact 
formula (2.5) must be used. 

b. Error in the variance. In Figure 2 are shown e2 (n,m) from (3.9), e2 C
1 > (n,m) 

from (3.12) and e2 <2> (n,m) from (3.13). The contributions are most strongly 
weighted along the diagonal m = n, where the weighting is fairly uniform. The one 
term formula e2 <1 > (n,m) generally overestimates the exact e2 by about 50% over 
most of the diagonal region and by more than 100% in the doubly unresolved band 
(n = m = 0). Away from the diagonal e2 <1> is a gross underestimate of E2 , The two-
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Figure 3. The contributions to covariance error for the bracketed autospectral quantity in (3.7) 
with Gaussian test spectrum (3.2). The three panels are (a) the exact e2, (b) e,m, and (c) e}" 

-which have been defined similarly to (3.9), (3.12), (3.13). The sign of e, is positive every-
where except near m = n = 0 in (c). 

term expansion is a satisfactory representation of e2 everywhere except in the un-
resolved bands, where it yields a slight overestimate Oess than 10% ). At the origin, 
though, e/ 2 l is a nonsensical negative number. The asympototic forms for variance 
are unsatisfactory for the doubly unresolved band, and may be successfully used 
only when the amount of energy there is small. If there is much energy in any of 
the other unresolved bands (i.e., if the products e0em are not relatively small in 
(3.16)), then the two-term approximation will be an overestimate. Nowhere is the 
first term approximation very accurate. 

c. Error in the covariance. The contribution to covariance errors from the auto-
spectral terms is shown in Figure 3. The heaviest weighting is along the diagonal 
with a moderate decrease in the unresolved band; thus our ignorance of this band 
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Figure 4. The counterpart to Figure 8 for cospectra. 
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is not as serious as it is for variance. The "equal frequency" dominance implies 
that if one process is band limited, then we need examine the other process only in 
this band. The one term approximation E2 <

1 > (n,m) is qualitatively similar to E2 (i.e., 
within 50%) for the diagonal band m = n (except m = n = 0) and the nearest off-
diagonal bands. However, it decreases much too rapidly for more widely separated 
bands. The two term estimate E2 <2> (n,m) is quite accurate except at the origin 
(where it gives a fallacious negative contribution). Thus, if the actual spectra, Eu (w) 

and EH (w), are both narrow band and similar in their shapes, then either of the 
one or two-term approximations will give similar estimates; if there is much energy 
in the unresolved band for this case, then they will not well represent its contribu-
tion. For autospectra of dissimilar shapes, the two-term approximation will be 
clearly superior, and, unless both autospectra are red, it will be reasonably accurate. 

The error contributions from the cospectral terms (i.e., terms with P ii (w)) are 
shown in Figure 4. Again the diagonal terms dominate and the off-diagonal weight-
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Figure 5. The counterpart to Figure 8 for quadrature spectra. The sign of the contribution is 
the same as that of - m•n. 

ings are several orders of magnitude smaller. Now, however, the doubly unresolved 
band at the origin is the most heavily weighted region; the error is dominated by 
the "equal frequency" contribution with a slight predominance in the unresolved 
band. The asymptotic estimates of the contribution are of similar quality as those 
discussed for variance errors. The two term estimate is everywhere excellent (even 
at the origin) but the one term estimate is conservative along the diagonal and 
greatly underestimates the contributions elsewhere. 

Finally we have plotted the contribution of various parts of the quadrature spec-
trum in Figure 5. The weighting is negative in the n,m > 0 quadrant, is maximum 
on the diagonal and decreases to zero for either n or m = 0. Since the coefficients 
q nii may be of either sign, the contribution of the quadrature term could be positive 
or negative. However, since the dominant contribution is from the diagonal region, 
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which will be multiplied by a positive [qnii ]2, we expect the quadrature spectrum 
terms will in general tend to reduce the total error in (2.11). The single term asymp-
totic estimate of the quadrature contribution is again an overestimate along the 
diagonal (reducing the error by too much) and an underestimate elsewhere. The 
two term formula is everywhere accurate. 

In summary, the major contributions to the covariance terms come from the 
diagonal m = n parts of the integrals. The two term asymptotic formula will be 
fairly accurate unless there is a sizeable amount of energy in the unresolved bands 
of both autospectra. 

4. Oceanic applications of a model spectrum 

In practice there are often few pieces of information which can be determined 
from a measured spectrum with any accuracy; for example, turbulent subrange 
spectra are often summarized by only an overall amplitude and a power law ex-
ponent. In this spirit we introduce a three parameter auto-spectrum for purposes of 
demonstrating certain simple functional dependences in the errors E1 and E2 and for 
applications to observations of mesoscale eddies. 

The model spectrum is chosen to be even in w, analytic as w 0, rapidly decay-
ing to zero as w oo, and capable of representing a spectral peak at intermediate 
frequencies; explicitly, the form is 

(4.1) 

Various characteristics of EM are listed in Table 1, including the consequent ex-
pected mean and variance errors and their asymptotic expansions through two 
powers of 1/ T; the formulae for these quantities are listed in § 2. Notice that, in 
addition to terms proportional to 1/ T or 1/ P in E1 , the remaining terms behave as 
exp (-T2)/T, etc.-they decay faster than any power of 1/ T as T oo (see (2.13)). 
Listed are general results plus their limiting forms in the alternative limits of T/ 0 
(a red spectrum) and T/ > > 1 (a highly peaked one). 

a. Asymptotic validity. One use of the three parameter model is as a tool in examin-
ing details of the dependence of error upon record length. If we divide the first and 
second moment error formulae in Table 1 by Eowo and (Eowo)2, respectively, then 
these normalized errors are functions only of T/ and T * = w 0T / 2, the record length 
multiplied by half the characteristic decay rate in (4.1). Shown in Figure 6, there-
fore are expected mean and variance errors v. T * for different values of T/ · 

For errors in the mean, the first approximation E1 C
1 > is an underestimate of the 

actual E1 for T/ > 2 and an overestimate for T/ < 2. Because of this behavior, the 
E1 C

1> approximation is an accurate one for moderate T* only within an intermediate 
range of T/ values (e.g. only the T/ = 1, 1.5, and 2 plots exhibit 10% accuracy by 
T* = 4). The two-term approximation, however, is generally quite accurate for all 
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Table 1. A Three Parameter Auto-Spectrum. 

Feature 

Covariance 
function C(-r) 

Variance er 

Integral scale -r, 

Covariance function 
zero crossing -r. 

Time scale of 
spectral maximum TM 

Spectral maximum 
E(IITM) 

Time scale of wE(w) 

maximum-r'M 

Spectral maximum 
1 

-,- E(lh'M) 
TM 

Error in the mean e1 

Asymptotic error in 
the mean e,<2> 

Error in the variance 

Asymptotic error in 
variance e,C2> 

General form 

( 
7J ) --r'wo'/4 

Eowo 'v1T 1 + - 2- e 

(1- 7J -r'wo' ) 
l+__L 4 

2 

{

co for 7J 1 

1 7) 
Wo 7)-1 for 7J > 1 

~o 

27T WoT 
Eo --;y- erf - 2-
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Figure 6. A set of plots for six values of 'T/ of expected errors v. T* from the three parameter 
spectrum (4.1). In the left half of each panel is (E,/ Eowo); the right half is (E,/ Eo'wo'). For 
each of these, the exact (e), one-term (I), and two-term (II) error forms are plotted. In the 
variance case a vertical axis is appended which interprets the variance errors as percentage 
accuracies (i .e., 100 X V E,lu') . A small plot of E,r(w) is also included for each 'T/ value at 
the side of the figure. 

T* 1.5 independent of the 'Y/ value. Near the T* origin, E1 t 2> diverges considerably 
from e1 • Notice from Table 1 that the requirement for the second term to contribute 
as much as e1 t1 > in the asymptotic estimate is that 'Y/ > 2 (yTT T* + 1). If, in addi-
tion, this condition should hold while the two-term approximation is an accurate 
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one (T* 1.5), then we require 'Y/ 7; thus, if the spectrum is highly peaked, the 
two-term approximation is markedly superior to E1 <

1 J . 

For the variance errors the time required for accurate estimates by the asymptotic 
forms is somewhat larger; generally, the values for the exact and two term approxi-
mations are within 10% of each other for T* ~4 . The first term approximation is 
always an overestimate of E2; E2<2l diverges to negative values as T* 0 and at 
intermediate values is either an over or underestimate depending upon whether T/ is 
greater than or less than about 1.5. The E2 <1 l estimate is generally within 10% of E2 

for T. values of between 5 and 20, depending upon whether 'Y/ is large or small. As 
remarked following (2.12), it is possible to estimate relative errors by normalizing 
y E2 by the variance cr2 (this relative measure has been included in Figure 6 as an 
additional ordinate). Notice that for all values of 'Y/ in Figure 6, one still must expect 
an uncertainty of greater than 50% in estimates of cr2 even by T. = 5. Contrary to 
the case of E1 , for E2 it is the small T/ cases (red spectra) in which the 0(1 / T .2) cor-
rections are most important for assuring successful asymptotics at modest T* values. 

b. A noise model. We may employ the model (4.1) for T/ = 0 and w0 = w N >> 
to represent an unbiased noise spectrum with time scales very much smaller 

than the record length. If we define E N = <rN2 I "'N yn, then crN2 is the finite noise 
variance and the covariance function 

C (r) = <rN2 exp [-(r wN/2)2] 

has a correlation time 1 / "' N which is very much smaller than T. The noise contribu-
tion to the asymptotic mean error is 

E ( 2 ) -er 2 ____ 71"- - -1 ( 2yn) 
1 - N V'iT W N T W N T 

which goes to zero for large w NT. If we compare the contributions to the error from 
both the noise and the mesoscale (using E1 <

1 l) , we find that the ratio of the two con-
tributions is crN2w0 (1 + TJ / 2) / cr2wN which is negligible if the noise variance is small 
compared to the signal variance or if the noise time scale is sufficiently short. Simi-
larly, the E/ 1 l form is proportional to <rN4/ w NT . When the preceding noise spec-
trum is a component of a more complicated spectrum, then all terms contributing 
to expected errors, which depend upon crN2 -=I= 0, are also proportional to 1/ wNT. 

This, then, justifies our neglect of noise contributions to moment errors. 

c. Deep ocean spectra from the Western North Atlantic. Long time series from the 
mid-ocean are presently somewhat rare, though much effort is being expended to 
acquire more. In this section we shall examine three autospectra and estimate from 
them the expected errors in the calculated means and variances. The following 
cases were selected: a temperature spectrum in the main thermocline near Bermuda 
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Figure 7. A temperature spectrum from the main thermocline near Bermuda (from Wunsch, 
1972) plus the optimal fit (4.3) within the three parameter model (4.1). Only the positive 
frequency parts of the spectra are plotted; to obtain the total contribution associated with a 
particular lwl, the amplitudes here should be doubled. 

(Wunsch, 1972), and two kinetic energy spectra from current meter moorings in 
the center of the MODE region (Schmitz, personal communication)-one at 500 m 
and the other at 4000 m depth. Respectively, these will be referred to as T500, V 500 , 

and v.000• The first of these is a very long record (about 6 years) while the latter 
two are around 2 years. 

We have used two different methods to estimate the moment errors from the data 
spectra. The first involves interpolating between data values and evaluating the 
exact error formulae by trapezoidal quadrature. The second method fits the free 
parameters of the model spectrum (4.1) to the data and calculates errors from the 
formulae in Table 1. For the fit a least-squares minimization procedure was used 
with two alternative forms for the minimized error norms between the data and the 
fit; they were finite series approximations to either 

(4.2) 

or 

s:"'d loglO w [w Edata - w EMF . (4.3) 

These yield fits which best approximate the observations on either an (E v. w) plot 
or an "energy preserving" (wE v. log10w) plot. The results from the latter are com-
pared with the data spectra in Figures 7-9. The optimal parameters from both 
cases, as well as the expected moment errors, are listed in Table 2. One can note 
immediately that the parameters selected from (4.2) and (4.3) are not identical: the 
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Figure 8. A kinetic energy spectrum from 500 m depth near 28°N, 70°W (from Schmitz, per-
sonal communication) plus the optimal fit. 

vice-versa. The consequent expected errors, however, are not sensitive to this param-
eter uncertainty. 

Another aspect of imperfection in the fit is shown in Figure 8; the shape of the 
V 500 spectrum is not particularly similar to the model (4.1). The peak in wE(w) is 
not resolved in the data and the high frequency decay is much weaker than exponen-
tial. Nevertheless, the predicted errors from the fit match reasonably well those 
from direct quadrature. 

Some insight into the behavior of the errors as a function of T and of the asymp-
totic formulae can be gained by referring to Figure 6 for the relevant T/ values 
(recalling that T* = 1 corresponds to T = 2/ w0). Here we shall note only that the 
simple one term asymptotic formula for the error in the mean E1 <1 > is accurate for 
the 300 day estimates for T500 and v.000 and for all 700 day estimates, whereas the 
two term formula E1 <2 > is accurate for the whole table. For the variance errors, 
E 2 <1 > is only accurate for the 700 day estimates of T500 and v.000; e/ 2> is accurate 
for all estimates at 300 and 700 days. Thus we can see that the simple standard 
asymptotic formulae of order 1/T may be inaccurate for the time intervals com-
monly used for moored instrument deployment. 

For the alternate approach of fitting an interpolating function to E aata we used 
cubic splines with ae/ aw = 0 at both w = 0 and the highest frequency. E(0) is an 
unknown constant which was chosen by simple extrapolation; however, we also 
used the Eo values from the three parameter model fits as a guide for this choice. 
The estimates of the errors from this method are also shown in Table 2 along with 
the errors from a more conservative choice of E(0) (a factor of 5 larger than the 
first choice). E1 is the only error which is a sensitive function of E(0) . It is encourag-
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ing to see that both the model fitting and the direct quadrature give quite similar 
results. This confirms a posteriori that our methods for estimating e

1 
and e

2 
are not 

particularly sensitive to the parts of the spectrum which may not be adequately 
modeled by (4.1) or to the necessarily unknown E(0) value. 

Finally we shall discuss the implications of the results in Table 2 for the accuracy 
of present mesoscale observations. The mean temperature at 500 m in the Bermuda 
area is on the order of 17°C; thus the relative errors in this quantity are quite small 
even for short time periods. However, large-scale, mid-ocean horizontal temperature 
gradients at 500 m may be only 5° / 1000 km, and measurements to 10% accuracy 
of differences of mean temperature of the order of 5° would require y e1 = .1 
(l / y2) 5° = .35° or measurement times <: 700 days. Similarly, even the 700 day 
estimates of the variance in T' are only of 20-30% accuracy, and, for a more 
typical mooring lifetime of 300 days, the estimates are quite inaccurate. 

The mean velocities at 500 and 4000 m have been estimated as 1.3 ± 1.2 cm/ sec 
and .3 ± .4 cm/ sec, respectively (Schmitz, personal communication). The uncer-
tainties quoted are "stability" estimates, derived by finding the changes in the 
average of the series when the most energetic or least energetic records are dis-
carded. An average of our estimates for the errors in these means (from Table 2) 
gives ± 3 and ± 6 after 700 days; thus neither mean is distinguishable from zero. 
300 day measurements give only crude estimates of the variances and virtually no 
information about the mean. (The error estimates from our formulae tend to be 
somewhat larger than the stability estimates of Schmitz, since his estimates in some 
sense consider only the error contribution from the resolved part of the spectrum, 
while ours include, albeit approximately, the contribution from the unresolved part 
also). Schmitz (1976a) gives a 700 day estimate of eddy velocity variance at 4000 m 
of 17.3 ± 3.0 cm2/ sec2

• He also reports that the estimates settled down to within 
bis tolerance after 250-300 days. This may seem surprising since Table 2 indicates 
the errors in a 300 day variance should be ± 11 cm2/ sec2

; however, the probability 
that the averages of two independent series differ by 4.5 cm2/ sec2 given the expected 
deviation of an average to be 11 cm2/ sec2 is order 50% (using normal distribution). 
Thus it is not improbable that the averages of the first and last 300 days of the 
record should be within 4.5 cm2 / sec2 of each other. 

Schmitz (1976b) has recently reported on estimates of mean velocities in many 
locations in the western North Atlantic. If we extrapolate the conclusions from the 
MODE spectra above to the other locations he discusses, then we would expect 
large uncertainties to be present in his estimates; this is qualitatively borne out by 
his Figures 2 and 5. Schmitz (1976c) describes a relatively strong mean current of 
2.0 ± .3 cm/ sec at 4000 m in the eastern part of the MODE region. If we were 
to assume, as a simplest alteration which allows us to use the previously calculated 
error values, that the velocity spectrum there were similar to Figure 9, except about 
50% weaker (to give a variance ~ 10 cm2/ sec2

) , then our estimate of the uncer-
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Figure 9. A kinetic energy spectrum from 4000 m depth near 28°N, 70°W (from Schmitz, 
personal communication) plus the optimal fit . 

tainty at 700 d would be ± .4 from Table 2. As in the comparison of the variance 
estimate described above, the 700 d variance error estimates are similar here, but 
the small uncertainties for shorter times suggested by his Figure 2 are, in our 
opinion, fortuitous. 

As a final application of our error formulae to current meter data, we estimated 

the errors in u'v' estimates from the same records as in Figures 8-9. The tech-
nique was direct numerical quadrature using the exact formula (2.15). Not sur-
prisingly, these errors were comparable to, but larger than, those for the variance 

estimates: for T = 700 d, we estimate the relative uncertainties in u'v' at 500 and 
4000 m, respectively, as 0.7 and 0.3. 

d. Prospects for measuring mesoscale moments. Presented in § 4C was an applica-
tion of the three parameter model to particular observations and an evaluation of 
the errors in present estimates of means and variances. We can extend this discus-
sion somewhat and ask what is the measurement time required to achieve a certain 
level of accuracy in the more difficult of these measurements, the variance. From 
Table 1 we can estimate the r.m.s. relative error for very large times as 

VE2/cr2 = yC/T* 

where C is a complicated function of Y/· The range of C is small, however: for Y/ = 
0, C = 2.5, and for YJ oo , C 1.9. If we therefore choose a typical C as 2.2, 
then a relative error of one-tenth can only be achieved for T. ::::: 220. From the w0 

values in Table 2, we can estimate the required record lengths for ten percent vari-
ance accuracy as 15 years (Tsoo), 28 years (V 5oo), and 14 years (V4000). If these 
numbers are typical of mid-latitude eddy processes, then one must admit that a 
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statistical documentation of them, encompassing their geographical diversity, is a 
formidable task. While ten or twenty years does not exceed the working career of 
a scientist-nor do the resources required exhaust present levels of public support 
for oceanography-one must nevertheless be certain there are not more informative 
quantities that could be measured with greater economy. On the other hand, meas-
uring these statistics to discover gross qualitative features of the ocean environment 
is well worthwhile. An example of this is Schmitz's (1976a) demonstration of dif-
ferences by a factor of 100 in the magnitude of eddy energy in the North Atlantic. 

Acknowledgments. We appreciate the support of this research by the National Science 
Foundation through its grant to the National Center for Atmospheric Research. We are espe-
cially grateful to Dr. William Schmitz for sharing with us his unpublished spectra. This study 

is MODE Contribution No. 72. 

APPENDIX 

1. Error in the estimate of the mean. 
From (2.3) and (2.1) we find 

ip = (cf,) + dw cf> (w)-1- dt e-'"'' f <X) ST/2 

- <X) T - T/2 

= (cf,) + s :
00

dw <l> (w) S (wT/2) . 

Substituting this into (2.4) gives 

€1 = ( s:"'dw <l> (w) S (wT/2) s:"'dw' <l> (w') S (w'T/,)) 

= S::w f :
00

dw' S (wTI, ) S (w'T/,) E (w)8 (w+ w') , 

which leads directly to (2.5). 

2. Asymptotic formulae. 

(A.1) 

The formulae (2.13)-(2.15) may be derived by a direct application of the following two 

asymptotic relations: 

f "' f "' F(w) + F(-w)-2F(o) 
_,:w F (w) S' ("' TI ,)~ '"I r F (o) + 1/r2 _::,w w' 

+ o (1/TN) as T - oo 

f ::w f ::w' A (w) B (w) S [(w -w'f /,] S ("' T 12) S ("'T' I, ) 

4-,r ~ T2 A (o)B (o) + 0 (1/r•) . 

(A.2) 

(A.3) 
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To prove (A.2), let 

l= s:,,,dwF(w)s2 ( w:) = s::wF(w)S'("T/2), 

where F (w) = ½ [F(w) + F(-w)] is an even function of w. The integral l can also be written as 

I=F(o) s:~wS2("'T/,)+ 5:codwF,(w)sin2(wTl2) 

where F, (w) = [F (w) - F (o)]/w, which is bounded as w - o. The first term in l can be 
evaluated explicitly, and the second can be split into two components: 

Through successive integrations by parts, the last term in l can be shown to decay faster than 

any negative power of T (n.b., the evenness of F, (w) implies that all odd derivatives of F, (w) 

vanish at the origin). This completes the proof of (A.2); (A.3) may be proved in a similar 
manner. 
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