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Interaction of inertia-gravity waves with the wind 

by Melvin E. Stem1 

ABSTRACT 
An inertia-gravity wave which propagates upwind and upward in the thermocline has a 

reflection coefficient r which is greater than unity ("overreflection") as a result of the wave 
current interaction in the mixed layer which overlies the thermocline. The second order ampli-
tude effect of the wave is to produce a mixed layer transport having the same direction as the 
wind stress T, whereas the undisturbed (Ekman) transport is perpendicular to T. The amplifica-
tion factor lrl-1 is proportional to !Tl, and increases as the frequency of the incident wave 
approaches the Coriolis parameter f. A preferred lateral scale is also given, and it is suggested 
that the spectral peak near f in the ocean is maintained by successive amplification of long 
wave packets entering the mixed layer. We also show that the turbulent Ekman flow at the 
upper boundary of a two-layer density model, such as can be realized in the laboratory, should 
become unstable with respect to long (hydrostatic) interfacial waves. 

1. Introduction 

One way in which a wind stress p0,: can generate inertia oscillations in a mixed 
layer (Fig. 1) of density p 0 is by means of the temporal variations of -r (Pollard 
and Millard, 1970; Pollard, Rhines and Thompson, 1972). Thus the sudden appli-
cation of a horizontally uniform ,: can generate transient currents whose frequency 
is equal to the Coriolis parameter f. Since the vertical group velocity of these waves 
vanishes, they cannot account for the prominent spectral peak observed in the 
stratified therrnocline (e.g., Briscoe, 1975; Sanford, 1975), and some kind of hori-
zontal variability must be invoked. 

The lateral variation of ,: can produce such an effect. This may be seen by com-
puting the Ekman transport M, or the vertical integral of the ageostrophic shear 
flow in the mixed layer, from the well-known equation 

aM/ at + f k X M = ,: 
This is valid if,: (or f) vary "slowly", as is the case on the scale of the wind-driven 
ocean circulation theory. The solution of the above equation indicates that if curl ,: 
# O, then "v • M =I= 0, and thus we see how the Ekman suction velocity "v • M 
can pump wave energy into the thermocline on scales determined by that of an 
atmospheric storm. But the validity of this theory becomes questionable when one 
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applies it to oceanic inertia oscillations whose horizontal wavelength is believed to 
be (see observations cited below) much smaller than the gross dimension of a 
storm. The modifications in the Ekman transport equations which are required 
when one considers relatively small scales (tens of kilometers) have been presented 
in previous papers (Stern, 1966, 1975), and in this paper we shall apply the theory 
to the inertia oscillation problem (See § 4). 

The wave generating theory presented here is somewhat similar to an instability 
mechanism, insofar as it depends on the local 't (or the local shear) interacting 
with "pre-existing" wave perturbations. Although our interest is directed mainly 
toward the prominent inertial peak, we should mention the problem of the semi-
diurnal internal oscillation, and refer the reader to Thorpe (197 5) for a survey of 
generating mechanisms. 

The following theory is related to previous studies of the instability of the Ekman 
layer (Kaylor and Faller, 1972; Gammelsr(iSd, 1975), but there are two major dif-
ferences. The nonhydrostatic force is crucial for the Ekman instability, and also 
for the turbulent fluctuations which maintain the fully-developed field of mean 
horizontal velocity V = (U(z), V(z)). In the following theory we examine the inter-
action of this V with quasi-hydrostatic waves whose horizontal length scale is much 
larger than the horizontal scale of the energy containing eddies in the mixed layer. 
The spectrum of the latter has been measured in the laboratory by Caldwell, Van 
Atta and Helland, 1972, and most of the turbulent energy appears to be in fre-
quencies well above the Coriolis parameter. Therefore we may ask what happens 
when this statistically steady Ekman flow is perturbed by an upward propagating 
inertia-gravity wave (Fig. 1) whose frequency w is slightly above f, and whose 
horizontal wavelength 21r/l is much larger than the wavelength of the turbulent 
eddies. 

Although the several different scales of motion which will enter our problem may 
be rigorously defined by ensemble averages, it is intuitively clear that the "large" 
scale wave under discussion is kinematically distinguishable from the turbulent 
fluctuations, and dynamically distinguishable because of the role of the hydrostatic 
relation. We shall therefore compute the reflection coefficient r for the thermocline 
wave (Fig. 1), as a functional of the ageostrophic shear flow in the mixed layer. 

In the first of the two theories used for this purpose, we make the bald but con-
ventional assumption that the wave only interacts with the mean shear flow V (z), 
and not with the turbulent eddies. These two fields are related in the undisturbed 
state by f k x V = a0o/ az, where 0 o denotes the mean turbulent Reynolds stress. 
An infinitesimal wave perturbation might change the (statistically averaged) stress 
to 0(x,y,z,t), but our first theory neglects such a contingency. It is true, of course, 
that the free surface boundary condition 0 (x,y,0,t) = 't is indeed unaltered by the 
perturbation, and the same is true near the base of a deep mixed layer where 0 = 
0 is assumed as another boundary condition. But it is doubtful that e = e0 at in-
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tervening depths, and therefore the entire question is re-examined in § 4 by means 
of a vertically integrated theory which makes no assumption regarding 0, and which 
introduces no pernicious eddy coefficients. The onus is placed on a closure approxi-
mation of the integrated theory, and the error is quantifiable. Strong preference is 
given to this second theory, because it is simpler in the linear regime and extendable 
into the nonlinear regime. However, the assumption of a deep, homogeneous, and 
immiscible mixed layer enters as a rather strong assumption which may not be valid 
in the oceanic case. 

The two theories mentioned above are in quantitative agreement in an asymptotic 
(small -r) limit, despite the different physical assumption in each. They predict that, 
when the incident wave has an upwind component of phase velocity, the magnitude 
of the reflection coefficient is greater than unity and lrl-1 is proportional to the 
undisturbed Ekman transport. The scale values of l and w-f for "preferred waves" 
having largest lrl are discussed. Both theories indicate that "spontaneous waves" 
with lrl = oo are possible, but this occurs for values of the parameters which are 
beyond the formal limits of validity of either theory. 

A reflection coefficient greater than unity (sometimes called "overreflection") 
suggests that "packets" (groups) of inertia-gravity waves can be amplified each time 
they enter the mixed layer with a horizontal phase velocity that is directed upwind 
(relative to an observer moving with the mean geostrophic velocity of the layer). 
An amplified packet which travels downward will be reflected subsequently by the 
ocean bottom or by thermocline inhomogeneities. This new upgoing packet will be 
re-amplified when it re-enters the mixed layer, and thus we have a potent mechanism 
for maintaining an equilibrium sea. 

Mention should be made of the fact that the phenomenon of overreflection re-
quires very special conditions on a shear flow because of such constraints as are 
provided by the Eliassen-Palm Theorem (see Lindzen, 1974). These special con-
ditions occur in our problem because of the external force (0o) that maintains the 
basic flow which is not unidirectional and which does not satisfy the thermal wind 
equation. (See Andrews and McIntyre, 1976). 

2. Wave-current interaction theory 

The x-axis in Figure 1 is oriented parallel to the wave fronts of the perturbation 
whose (x, y, z) velocity components are denoted by (u,(y,z,t),v,,w,), and the hydro-
static pressure perturbation in the mixed layer is p, (y,t). If the perturbation in the 
Reynolds stress is neglected, as previously mentioned, then the linearized perturba-

tion equations for z>-H are 

au1 / at + V(z)au1 / ay + w, Vz - f v, = 0 
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ap1/az = o 

av1/aY + aw1/ az = O 

where Uz = au; az. By inserting the modes 

into (1) we obtain 

w1 = Re w'(z) exp i l y + i w t, etc. 

i(w+lV)u' - f v' + w' Uz = 0 

i(w+lV)v' + f u' + w'Vz = - i l p' I Po 

p' = constant 

v' = (i / l) dw' /dz 

The elimination of (u', v') gives the first order inhomogeneous equation 

( fz - B(z) ) w~(~t) = C(z) 

in which we use the abbreviations 

f Uz - i(w+lV)V., 
B(z) = (i / l) (f2-(w+lVF) 

l (w+lV) 
C(z) = (i l l) (f2-(w+lV)2) 

This differential equation for w'(z) can be written as 

[35, 3 

(1) 

(2) 

(3) 

d [ w'(z) f z ] - p'(-H) f z 
dz w'(-H) exp - - H B('Y))d'Y) - pow'(-H) C(z) exp - !if.'YJ)d7] 

and since w'(O) = 0 is the upper boundary condition, the vertical integral gives 

- 1 = p'(~~ f ° C(z) dz exp f z - B('YJ)d'YJ 
Po W - -H -H 

(4) 

Because of the continuity of the U, V and density profiles, the vertical velocity 
w'(-H) and the pressure perturbation are continuous across z = - H, and the 
following wave dynamics for the thermocline will allow us to eliminate these terms 
in (4). 

The static stability s (or the Brunt-Vaisala frequency) is assumed to be constant 
in the semi-infinite thermocline, and the Boussinesq dynamics supplies us with the dis-
persion relation. For each (w,l) this gives us two vertical wavenumbers with oppo-
site sign, one of these waves Cw+', P+') being associated with an upward energy 
propagation, and the other one (w_', p_') representing a downward radiation of 
energy. The sum of the two waves gives the total vertical velocity w = w+' + w_' 
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and the total pressure p'(z) = P+' + p_' at any depth z in the thermocline. If A 
denotes a velocity amplitude for the upward wave, and rA the corresponding ampli-
tude for the downward wave, then the mathematical expression of the foregoing 
relations is 

w +'=A exp i l(z+H) (gs-w2)l (w 2-f2)-l 

P ' (gs w•) l _ +_ = - - (w 2-f2)1w ' 
Po lw + 

w_' = rA exp - i l (z+H) (gs-w2)½ (w 2-f2)-l 

, _ (gs-w2)½ (w 2-f2)l 
P- I Po-- lw w_' 

f < w < (gs)!, l > 0 

Since the total vertical velocity field just beneath z = - H is 

w' (-H) = w+' (-H) + w_' (-H) = A (l+r) 

then the total pressure p' (-H) = P+' + p_' is 

p'(-H) _ (gs-w2)l (w 2-f2) l ( 1-r) 
Po - wl l+r w'(-H) 

Although this relation is valid for nonhydrostatic oscillations, the dynamics of the 
mixed layer (1) are only valid for hydrostatic conditions. To insure consistency, 
by making the oscillation in the thermocline hydrostatic, we must restrict the above 
equation to the range 

w2 << gs 

(l << 1/H) 

in which case we get 

p'(-H) = (gs)l (w2-f2)l (1-r) 
pow'(-H) wl l+r 

as the hydrostatic boundary condition. 

The substitution of the last equation in (4) and the use of (3) gives 

(4a) 

l+r 
1-r 

-i I (gs)l (w 2-f2)1 f O dz(w+lV) _ .1 f z fU,,-i(w+lV)V,, d 
w -H (w+lV )2-f2 exp 1 

-H (w+lV )2-f2 'YJ 

i [(gs)l (w2-f2) f 0 

W -H 

dz(w+lV) .1 f z U,, d'YJ 
[(w+lV) 2-f2] 3/2 exp - l f -H (w+lV)2-f2 

= -iY-a 

where V(-H) = O has been used in the simplification leading to (5). 

(5) 

(Sa) 
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Although the form of the turbulent Ekman flow is not known, Eq. (5) can be 
used to compute the magnitude of the reflection coefficient r for any specified 
velocity profile. If the right-hand side of (5) is purely imaginary (i.e. a = 0), as is 
the case if f = 0, then it follows that /r/ = 1. The latter conclusion also holds if 
Vz = 0, and thus we see that /r/ can be greater then unity in a rotating fluid only if 
there exists a component of the mean flow which is parallel to the wave fronts. 

In terms of the real (-a) and imaginary parts of (Sa) we see that r = - (1 +a+ 
iY)/ (1-a-iY), and therefore 

11 2 = (l+a)2 + y 2 
r (1-a)2 + Y2 (Sb) 

is greater than unity, if a > 0. If (5) be expanded as power series in the modulus 
of the basic current (I U/, /V/), then the real and imaginary parts are 

l(gs)!H 
Y = (w2-/2)l + · · · O (/VI) 

(Sc) 

a= (~~~~:)! ( w;~/2 ) f ~fz U(z) + ... 

We therefore obtain the important conclusion that /rl > 1 if f ~H dz U(z) is a small 

positive quantity. The meaning of this becomes clear if the wind stress vector points 
in the direction of the +y axis, in which case the Ekman transport relation for the 
mean flow is 

f O U dz = ___!__ 
-H f 

The substitution of this in (Sc) gives 

a= 

, f 0 
Vdz=0 

-H 

[ 2 (gs)Ir 
(w2-/2)a/2 (5d) 

which shows that waves traveling upwind have a reflection coefficient greater than 
unity. For a further discussion of (Sb) see Eq. (30). 

Can the reflection coefficient be infinite? If we set r = co in (5) we obtain 

1 _ i l (gs) ½ (w 2-t2) f O dz(w+lV) . f z U,, dTJ 
- w -H [(w+lV)2-f2]3/2 exp - zlf -H (w+zv)2-f2 (6) 

and the (w,l) roots of this complex equation give the wavelength and frequency of 
the "spontaneous" wave. In the following section we will illustrate the pervasive 
nature of this larger effect by obtaining the roots of (6) for a variety of different 
profiles, the most realistic of which is in § 3b. 
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3. Examples of spontaneous waves 

a. "Slab" flow in the mixed layer. Suppose that the mean flow in the mixed layer 
is unidirectional with the axis oriented such that V = 0. Then (6) simplifies to 

l _ i l (gs)! f O 
d i l V(z) 

- (w2-f2)! -H z exp - wz-fz (7) 

Suppose further that V(z) increases rapidly from V(-H) = 0 to a constant v
0 

in a 
short distance from the interface. This so-called "slab" flow (Pollard, et al., 1973), 
might be approximately realized for small mixed layer depth, and for such profiles 
(7) simplifies to 

1 
__ il (gs)l H il f V 0 exp-(w2-f2)i w2-f2 

The real and imaginary parts of this give 

and 

7T 

2 
51r 

2'"' 

l (gs)! H = l 
(w2-f 2)l 

It follows that the highest possible frequency of such "spontaneous" waves is given 
by 

(w2- f2)~ -

f 
and the smallest possible wavenumber is 

Vo ( 2) 
H(gs)i 1r 

lH = __2_ --1!!..E_ 
1r gs H 

(8) 

(9) 

Since similar nondimensional groups are obtained for the more realistic profiles 
in the next subsection, we believe (8) and (9) provide significant space-time scales 
for the oceanic effect, and therefore we shall estimate the order of magnitude by 
using p0 T = 2 dynes/ cm2, s = 10-s cm-1, f = l0- 4 sec-1 and a mixed layer 
depth of H = 50 meters. Note that the equation above (8) implies that the vertical 
wavenumber in the thermocline equals 1/ H = 1/ 50 meters. If we set VoH equal 
to T/ f, then (8) and (9) become 

(w2-f2)½ T ( 2 ) 1 
f ~ f H 2(gs)l -:;- ~ 6 

2 T 1 
lH ~ -:;- gsH2 = 200 (9a) 

Thus we see that the preferred frequency is slightly greater than f, and the pre-
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ferred horizontal wavelength is of the order of 60 kilometers. Reference is made 
to a recent paper by Rossby and Sanford (1976), which supports the idea of a net 
downward propagation of energy near the inertial frequency, and in which the 
scaling is not inconsistent with that given above. It must be emphasized, however, 
that our theory does not imply that waves observed locally receive all their energy 
locally. We believe that the average inertial oscillation in the ocean is the result of 
multiple reflections and multiple passages of a wave packet through the mixed 
layer. Therefore measurements of the average value of l appear to be the most feasi-
ble way to test the application of the theory to the ocean. 

b. "Spiral" profiles. We shall now show that large values of lrl can also occur when 
the basic flow is not unidirectional, and for this purpose we may confine attention 
to waves near the inertial frequency (w"=' f) , with their wavelength being sufficiently 
long so that the approximation 

(w+lV) 2 - f 2 "=' 2f (w+lV-f) 

is valid. Upon introducing this in (6) the equation for the spontaneous waves be-
comes 

1 = i l (gsp (2f) (w-f) f O dz exp f z-H - i l U,, dTJ (IO) 
(21)312 -H (w+lV-!) 312 2(w+lV-f) 

If z be replaced by the new dummy vari able 

11 T/ l f z U d 
'I' = 2 -H w+lV-f (11) 

so that 

dcp _ l Vz 
dz 2 (w+lV-f) 

then (10) transforms to 

1 _ i l (gs)! (w- f) f "'< 0> 2e-t<t> 
- (2 fP o dcp l Vz (w+lV-f) l (12) 

where the upper limit of integration is obtained by setting z = 0 in (11). 
Let us consider a class of profiles for which Vz > 0 and Vz decreases monotoni-

cally upward, but U is otherwise unrestricted. We shall now prove that if the pro-
file normal to the wavefronts is given by 

V(z) = /3 [ Jz2 - U/ {~H)] (13) 

where Uz(-H) is the value of Vz at z = - H, and where 

1 5° /3 = -- Vz8 dz 
27T -H 

(14) 
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Uz(-H) 
2a12(gs)½ 

l = (w-f) U.2(-H) 
/3 
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(15) 

are roots of (12). When the last equation is used we see that (13) can be written as 

l V ( ) l/3 (w-f) U.2(-H) z + w - f = -- - ---~'----_;_ 
U,2 - U.2 

and therefore (12) simplifies to 

1 = I gs w- 2 - ,ct> d"-. ( )! ( f)½ f </>( O) 

(2!)1 Uz(-H) o e 'I' 

When the first equation in (15) is used this becomes 

1-e-•</>(0) 
1=----

2 

(15a) 

and the first root is <p(O) = 1r. Therefore when (11) is evaluated at z = 0, and when 
(15a) is used, we obtain 

1T = (l/ 2) f 0 

-11 

Uz dz 1 f 0 

w+lV-f = 2/3 _J!.8 dz 

which is identical to (14). This completes the proof that (15) gives the frequency 
and wavenumber of a spontaneous wave for the class of profiles considered. 

Since Uz decreases monotonically for this class, and V(z) increases monotonically 
from V(-H) = 0 to its maximum value at z = 0, we see that the vector formed 
from (U, V) will lie in the same quadrant and will rotate with height. The hodo-
graph is a plausible representation of a turbulent boundary layer, and we have 
shown that such a profile allows large reflection coefficients. Our subsequent work 
[cf. Eq. (30)] will indicate, however, that the assumption (on 0) of this theory can-
not be relied upon when JrJ = oo, and thus (15) merely suggests the scales having 
maximum amplification. 

If one forms an energy equation for stationary waves from (1) then it follows 
that the net downward radiation (pressure work) at the base of the mixed layer (or 
the top of the thermocline) must equal the average of W1, U1, Uz + W1, V1, V z. The 
latter quantity, or the rate at which the mean field does work on the perturbation, 
must be positive when Jr!> 1. But this does not imply that the mean flow kinetic 
energy decreases with time (to second order) because the body force (or -r) can 
resupply the mean flow, as discussed in § 5. 
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4. The vertically integrated theory 

The weak point of the foregoing theory, as mentioned in § 1, is the assumption 
that the interaction of the waves with the turbulence (which maintains the basic 
flow) can be neglected. One of the advantages of the following integrated theory 
of the mixed layer is that it removes this assumption, and replaces it with another 
one which occurs in the closure of the theory, and which is quantifiable. In this 
way we are able to formulate a consistent asymptotic theory for the interaction of 
the internal waves with 't. Moreover the final result of the integrated theory is not 
only simpler than the previous theory, but it also may be extended to finite ampli-
tude waves. After reviewing the basis for this theory (Stem, 1966; 1975) it will be 
applied to the problem of the generation of inertia-gravity waves by the wind. 

We will assume that the local thickness h of our mixed layer is greater than 
0.39 -r! 1-1, the latter being the depth at which Caldwell et al. (1972) find that the 
ageostrophic shear flow decreases by 99 % . Thus the vertical shear and the turbu-
lent stress 0 are negligible near and below z = - h. In the presence of an inter-
facial perturbation h(x,y,t), the statistical (ensemble) average of the horizontal velo-
city in the mixed layer may be expressed as Vb(x,y,z,t) + Vo(x,y,t), where V0 repre-
sents the realized flow at Z = - h(x,y,t) and Vb(x,y,z,t) is the departure of the 
realized flow from V 0 at any larger2 Z. The generalized Ekman transport M is de-
fined by the integral of the shear component, or 

So 

M= Vbdz 
-k (a,,11,t) 

(16) 

The total vertical velocity Wo(x, y, z, t) + wb(x, y, z, t) is also resolved into two 
components, the first of which (w0) is computed from aw0 / az = - V 2 • V0 and the 
interfacial boundary condition w0(z=-h) = - dh/ dt. Therefore this w0 gives the 
realized vertical velocity near z = - h. From the linearity of the continuity equa-
tion it follows that wb must satisfy awb/az = - V 2 • Vb, and wb(x,y, - h,t) = 0 
provides the boundary condition. Since w0(x,y,0,t) + wb(x,y,0,t) = 0 at the free 
surface, we must have 

Wo(x,y,0,t) = f O V2. vb dz = V2. M 
- k (a,,y,t) 

(16a) 

where the interchange of the integration with V 2 is permissible because 
Vb (x,y, -h,t) = 0. Since Wo is a linear function of z, the continuity equation for Wo 

can be written as 

V 2 • Vo=_ Wo(x,y,0,t) - (-dh/ dt) 
h 

and by using (16a) this becomes 

2. The continuation of Vo in the thermocline will , of course, vary with z but explicit consideration 
of the thermocline dynamics is unnecessary here. ' 
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ah - + V 2 • CVoh) = - V • M at 
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(17) 

where the last term is merely the generalized Ekman suction velocity. Let us now 
turn to the hydrostatic momentum equations which arise after the smaller scales of 
motion are averaged over. 

Since the turbulent stress at z = - h, as well as Vb, is assumed to be negligible, 
the horizontal momentum equation at the base of the mixed layer must reduce to 
the familiar form 

(18) 

but this equation (together with the conservative dynamics of the underlying thermo-
cline) and (17) are obviously incomplete since the Ekman suction velocity in (17) 
must be determined by another equation. 

To obtain the required dynamical equation for M one proceeds as follows: The 
realized horizontal acceleration (i.e. the Lagrangian derivative of the total field 
V 0 + Vb) equals the sum of the corresponding Coriolis force, the pressure gradient 
force, and ae; az. By subtracting (18) from the latter relation, by integrating the 
result from z = - h(x,y,t) to z = 0, and by simplifying one obtains (Stern, 1975) 

aM at + f k x M + (Vo • V 2) M + (M • V 2) Vo + M (V 2 • Vo) + Q = ,: 
(19) 

(20) 

where Vb Vb is a dyad. Equation (19) reduces to the classical Ekman transport 
relation when the fields are horizontally homogeneous (V 2 = 0) or slowly varying. 
A new dynamical system arises, however, when the horizontal fluctuations in Vb 
(or M) are small compared to the V 0H fluctuations. In this case the quadratic term 
(20) is small compared to the bilinear terms in (19), and we have the "small stress" 

approximation 

(21) 

We shall subsequently compare the magnitude of the neglected term Q ~ (,: / fH) 

jV
2
Mj with the terms involving (V0 ,M) which have been retained in (21). This lat-

ter equation together with (17), (18), and the nonturbulent dynamical equations 
for z - h constitute a complete set for the investigation of a much wider class of 
motions than is encompassed by the classical wind-driven theory. Notice that no 
strong dynamical assumption regarding the turbulent stress 0(x,y,z,t) has been 
made in this formalism, and the onus has been transferred to Q. 
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Let us apply the "exact" equation (19) to the inertia-gravity wave problem 
(Fig. 1) considered previously. Suppose that the basic state consists of a wind stress 
't' acting in the +y direction, with Mx = -r/f, My= 0 denoting the (x,y) components 
of the undisturbed Ekman transport. Suppose that the interface at the base of the 
mixed layer is then given an infinitesimal perturbation h" = h - H which is inde-
pendent of x, and let V 0 = (u", v"), M" = (M31", My'') denote the corresponding 
velocity and transport perturbations. The linearized value of the bilinear term 
M (v\ • V 0) in (19) will then have an x component equal to (r/f) av"/ay and a 
vanishing y component. The Q term, on the other hand, has an order of magnitude 
-r/fH aM" /ay, it being assumed that the undisturbed Vb is of order -r/fH. There-
fore the ratio of Q to the bilinear term is 

JM"I 
,-J Hv" (22) 

For a given amplitude of the incident wave in the thermocline it is obvious (and 
verified below) that as r approaches zero, M" approaches zero, but v" does not. 
Thus the nondimensional stress parameter (22) approaches zero, thereby implying 
that Q is indeed negligible compared to M(\12 • V 0). Furthermore V 0 • \lM van-
ishes to first order in the perturbation amplitude, and M • \12 V 0 = r/faV0 /ax = 0 
because the perturbation is independent of x. Therefore the perturbed version of 
(19) can be written as 

aMv'' + f M " = 0 
at a; 

aMai'' - f M ,, + _.:!_ av" (l +O( )) = 0 
at v f ay e 

where the O(e) term corresponds to Qin (15) and (22). The elimination of M.," then 
gives 

( :[22 + t2) Mv'' = T a;;' (l +O(e)) 

This clearly shows that JMv''I ~ (rl/w 2-j2) Jv"J, and thus the value of (22), is 

Tl 
E = -(-:-w-=2-_-=f2.,.,.)""""Hc-- 0 

as r 0, for any fixed w > f, l. 
When (23) is combined with the linearization of (17), or 

ah" av" 
+H-at ay 

we get 

aMy'' 
ay 

(23) 

(24) 

(25) 
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( a2 
)( ah" av") a2v" at2 + f2 at + Hiiy =-TaT (1 + O(E)) 

When modes of the form 

v" =Re v* exp i wt+ i l y 

h" = R e h * exp i wt + i l y 

are substituted in (26), the result may be written as 

wh * + l H i v * = 0 

i rl 
H i = H - w2-f2 (1 + 0 (E)) 
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(26) 

(27) 

The form of (27) is the same as the ordinary continuity equation for a homogeneous 
layer when r = 0, but in the present problem the "equivalent depth" H i has an 
imaginary part proportional to r. The analogy shows that the reflection coefficient 
for Figure 1, which we shall compute below, will be complex. 

First linearize the momentum equations (18), and then insert the mode forms 
to get 

i w u* - f v * = 0 

. l * 
__ z_p_ = i w v * + f u* = (i w + f 2/ iw) v* 

Po 
(28) 

where p * is the amplitude of the hydrostatic pressure perturbation in the mixed 
layer. The latter quantity is also given by the radiation boundary condition (4a) 
which was obtained from the dynamics of the thermocline. With w' (-H) = - i w h* 

(4a) can be written as 

p* (gs)! (w2- f2)l ( 1-r) . ,. - = --=___:__;__--'--~ - (-z wh · ) 
Po wl l+r 

Therefore (28) becomes 

( 1 ') w
2
-f2 (gs)! (w 2-f2 P --=- h* = -. - v* l+r zw 

By combining the latter equation with (27) we obtain the following result for the 

reflection coefficient 

1 +r = _ i (gs)~ l
1 

[H _ (1 +O(e))] 
1-r (w2- f2) 2 w--f-

This is identical to the result obtained from (Sa), (Sc), (Sd), thereby implying equiv-
alence of the two theories when r is small, and establishing confidence in the con-
clusion that an inertia-gravity wave which propagates upwind can obtain energy 
from 't. Note that the contribution of the Q term to the above equation is propor-
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tional to (7E) o: 72, and is therefore negligible compared to the contribution of the 

MV • Vo term. 
The value of (Sb) becomes large when a= l and when Y is small. When a= 1 

(Sd) implies 

1 
l 

[ (gs)! 7 J 
- (w2-/2)s/2 

and for any Y Eq. (Sb) then becomes 

lrl 2 = 1 + 4/¥2 

(29) 

When the asymptotic (7->0) value of Y given in (Sc) is inserted here, and when 
the optimum wavelength (29) is used we get 

lrl 2 = 1 + 4(w2-/2) = 1 + 47 
gsl2H2 (gs)½H2(w2-f2)! (30) 

with the error ( cf 24) being of the order of the square of the last term in (30). 
Although consistency requires the latter to be less than unity3 , we may conclude 
from (30) that lrl 2 increases as the inertial frequency is approached, and these 
waves are therefore "preferred" at small 7. 

It is interesting to examine the implication of our theory for a two-layer density 
model, such as may be realized in the laboratory. The upper layer of mean depth 
H has a turbulent Ekman layer, as previously, but the region below the interface 
now contains a layer having uniform p0 + !:::.p and thickness H 2• We shall examine 
the growth rate - Imw of the normal modes. The essential result (27) has already 
been obtained, and we previously pointed out that this equation for the upper layer 
is formally identical to the continuity equation when there is no stress. A little re-
flection will reveal that the dispersion relation for the frequency w when 7 > 0 can 
be obtained from the well-known dispersion relation when 7 = 0, by merely re-
placing the upper layer thickness in the latter relation with Hi as given by (27). 
Accordingly, we find that the normal modes in our present problem satisfy the dis-
persion relation 

(wz-12) [-1- + _1_] = 
Hi H2 

z2 g!:::.p 

Po 

When (27) is substituted in this, and when terms of order 7 2 are neglected (for con-
sistency) we get 

1 
+ H 2 

3. Note that the fir st equation in (9a) does not satisfy this consistency relation, and therefore the 
prediction of the "spontaneous waves" cannot be relied upon. Nevertheless (9a) suggests optimum 
values of (/,w) . 
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- l2 g!1p/ po 
-_1_ + _1_ 

H H 2 

i rl + O ( •) 
H(l+H / H 2) . . . e-

Thus we see that the asymptotic growth rate 

rl 
H(l+H ! H 2) 

- Im w = ------------------
2 [ / 2 + g!1p • {2 (-1- + _1_) -1 ] ½ 

Po H H2 

is positive when r,l are positive, thereby implying exponential amplification of inter-
facial waves, which propagate upwind. This relation might be tested experimentally. 

5. Remarks on energetics 

We have used two different theories to show that internal waves near the inertial 
frequency are substantially amplified when they enter the mixed layer with a hori-
zontal component of the phase velocity which is directed upwind. (In the case where 
there is a uniform geostrophic velocity superimposed on the mixed layer the waves 
must propagate opposite to 'l' relative to an observer moving with this geostrophic 
velocity). When the amplified wave leaves the mixed layer and propagates down-
ward in the thermocline, it will eventually be reflected upward again because of the 
ocean bottom or inhomogeneities in the thermocline. Thus the waves enter the 
mixed layer a second time and abstract more energy from the wind. The amplifica-
tion process will therefore continue until some equilibrium is reached, in which the 
rate of transfer of energy from the wind is balanced by the transfer of energy from 
the near inertia frequency to higher frequency waves. Equation (30) suggests a 
maximum spectral peak near the Coriolis frequency, and (9a) is a more detailed 
estimate of the relevant space-time scales. Reference has been made to the meas-
urements of Rossby and Sanford which indicate a net downward flux of inertial 
energy; their estimates of horizontal wavelength are not inconsistent with our scaling. 

At the end of § 3 we alluded to the peculiar energetics of the "overreflected" 
wave, and the following discussion of the nonlinear momentum and energy integrals 
obtained from Eqs. (17)-(21) will clarify the mechanism. 

Let us assume a finite amplitude perturbation field which is cyclic in the un-

bounded horizontal direction; a bar will denote an average over (x,y). Thus Q = 0 

in (19), V 0 • "y 2 M = - M V 2 • V 0 , and it follows that the average of (19) is 

aM -- + f k X M - Vo("v 2 • M) = 'l' at 
(31) 

This equation and (34) show how the wave Reynolds stress modifies the horizontal 
average of M and V 0 • If - z = + H 0 < min h(x,y,t) be any level surface in the 
mixed layer then the average of (18) can be written as 
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i) 

at (32) 

Since "y2 • V 0 is independent of z and since (16a) states Wo(x,y,0,t) = "v2 • M, we 
can write 

iJW0 Wo(x,y,0,t) - Wo(X,Y - H o,t) "v 2 • Vo = - -- = - _..:__:_---'--'----'-----'---'-'--az H o 

and thus 

(33) 

Therefore the sum of (31) and (32) is 

( :t + f k X) (M'+ v~ H o)='[+ Vo Wo(x,y,-Ho,t) (34) 

The interpretation of this mean momentum equation is simplified if we assume 
that the z = - H0 datum may be chosen such that Vb(x,y,-H0,t) is negligible, in 
which case M + V 0 H0 is the total horizontal momentum above the z = - H0 

datum level. Equation (34) then states that the rate of change of this momentum 
plus the Coriolis force equals the difference between T and the downward flux of 
momentum at z = - H0 • Since this agrees with first principles, we see that our (ap-
proximate) theory (21) conserves momentum exactly. 

The extent to which our system conserves energy may be seen by forming the 
following integrals. The scalar product of H 0 V 0 with (18) yields 

-+ :t HoV0 2 -+ H0V/ "v2 • V 0 = : : p '\12 • V 0 

and the scalar product of M with (18) yields 

M iJVo • at + M • CVo • "v2) Vo -Vo• f k x M = -M • "vJJ p0 - 1 

On the other hand, the scalar product of V 0 with (21) yields 

aM 
Vo • at + f Vo • k X M + Vo • (Vo • "v 2) M + (VO • M) "v 2 • V 0 

+ Vo • (M • "v 2) Vo = Vo • -r 

The sum and simplification of the last two equations gives 

or 

a 
at CVo • M) +Vo• "v2 (M •Vo)+ (Vo• M) "v 2 • V 0 + ½ M • '\72 V 02 = 

V • T + P "v2 • Mpo- 1 

(35) 
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Figure I. Schematic diagram of a wind-driven mixed layer overlying a semi-infinite thermo-
cline of uniform density gradient. The undisturbed state consists of an arbitrary shear flow 
U(z) in the x direction, and V(z) in the y direction, with U = V = 0 for z ::;:; - H (the base 
of the mixed layer). This shear flow is maintained by the small scale turbulence produced 
by the wind stress 't. The perturbation consists of an oblique plane wave propagating energy 
upward in the thermocline, and the wavelength 21r/ / is very much greater than H . We com-
pute the amplitude of the reflected wave, or the reflection coefficient r, as the result of the 
wave-current interaction in z > - H . The Coriolis parameter is f and (w', u', v' ) are the 
infinitesimal amplitude perturbations associated with the wave. 

The sum of this and (35) is 

:t ( ~0 ·v0 2 + V 0 • M )- (Vo2/ 2 + p/ po) ('v2 • M + Ho 'v2 • Vo) =Vo• -r ' 

or 

:t ( ~ o V 0 2 + V 0 • M )- Wo(x,y,-Ho,t) (Vo2/ 2 + p/ Po)= Vo • 'T 

where (33) has been used. 
Since the total kinetic energy above z = - Ho is 

+ f ~H~0 +Vb)2 dz= ~0 V02 +V0 •M++ f ~J/dz 
we may interpret the energy Equation (36) as follows: 

(36) 

The kinetic energy associated with the barotropic component (i.e. Ho/2 V / ) plus 

the "interaction kinetic energy'' VO • M increases at a rate equal to the rate at which 
the wind does work on V 0 , minus the energy transported downward at z = -Ho. It 
is in this sense that the small stress approximation (21) conserves energy. 

Let us apply (36) to the problem (Fig. 1), in which an infinitesimal inertia-gravity 
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wave interacts with the basic Ekman flow. The first term in (36) vanishes in the 

statistically steady state, and the cubic term w 0V 02 is negligible compared to the 

quadratic w0p term. Equation (36) then states that the net energy radiated downward 
into the thermocline must be balanced by the right-hand side of (36), thereby im-

plying that the second order mean flow Vo [cf. (34)] is in the same direction as 'T. 

Thus we see that the undisturbed Ekman flow does not continuously lose energy, 
even though (§2) it supplies the wave perturbation with energy. The basic shear flow 
acts like a catalyst, which allows the body forces (-r) to do more work than they 
would ordinarily do (in maintaining the small scale turbulence). The second order 
effect of the wave is extremely interesting in the context of generating larger scales 
of motion than the inertia-gravity wave. Such larger scales, ranging up to that 
which has been considered in theories of the wind driven general circulation, are 
also encompassed by (21). 

6. Summary 

The two models which have been used to demonstrate the systematic interaction 
between long inertia-gravity waves and the wind induced shear flow have some 
common assumptions and some notable differences, these being summarized as 
follows. 

There are similar scaling and kinematic assumptions in each model, such that 
the turbulent stress and vertical shear vanish near and below the homogeneous 
upper layer. There is a distinct scale separation between the turbulence and the 
hydrostatic disturbance, such that the pressure field associated with the latter is 
independent of depth in the mixed layer. Thus the vertical shear of the horizontal 
motion in this layer would vanish when 'l' = 0 = M, in which case (17) and (18) 
reduce to the classical nonlinear shallow water equations. When 'l' =I= 0 the vertical 
shear on the scale of the disturbance will not vanish, and we therefore inquire as to 
whether such an interaction can systematically transfer energy from the wind to the 
near inertial oscillations in the oceanic thermocline. 

In the first theory the wave perturbation of the wind-driven stress field is com-
pletely neglected. [We have rejected an alternate approach, in which one uses an 
eddy coefficient parameterization of e and then assumes this coefficient to be con-
stant. The latter approach is, of course, completely appropriate in the related prob-
lem of the instability of laminar Ekman layers having constant molecular viscosity]. 
It is worth emphasizing that our first model is equivalent to a "thought experiment" 
in which the basic shear flow is produced by applying fixed lateral body forces to 
the rotating fluid. Eq. (1) is certainly "dynamically consistent" in such a system, in 
the sense that no conservation laws are violated. In this sense the conclusion re-
garding overreflected waves, and also jrj = oo, is unobjectionable. But the asymp-
totic, or qualitative, validity of our conclusions is not assured in the context of the 
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wind-driven model, wherein the body force ae;az is not fixed. We obviously need 
some measure of the error. 

Therefore we turn to the second theory wherein (17)-(20) appear as rigorous 
deductions, in the context of the scaling assumptions mentioned above. Eqs. (17)-
(20) arise from the "primitive equations" (Stem, 1975) by means of a convenient 
formal separation of the total velocity V0 (x,y,t) + Vb (x,y,z,t) into two components, 
the first of which CVo) is independent of z and the second of which (Vb) vanishes 
at z = - h(x,y,t). The choice of this separation was dictated by the hydrostatic 
character of the total velocity, and by the desirability of maintaining "correspon-
dence" with the classical hydrostatic equations for V 0 when -r = 0 = Vb. Thus the 
equations which define (sic!) the V 0 field are given by (18), (17), these being chosen 
such that when -r = 0 = M they reduce to the well-known shallow water dynamics. 
Thus we see that the separation (when -r -=/= 0) is such as to shift the "dynamical 
burden" to the equation for aVb/at (cf Stem, 1975), which equation arises by sub-
tracting (18) from the dynamical equation for a (V0 + Vb)/at. The vertical integral 
of the av bl at equation then gives the equation (19) for aM/ at. It is the Q term in 
the latter equation which prevents closure of the system for the fields (V0 , M). But 
we find that this Q term may be neglected compared to the new bilinear terms in 
two different asymptotic regimes, one of which is dealt with in this paper. In this 
regime we found that infinitesimal perturbations to the undisturbed Ekman transport 
(/M/ = -r/ f) give rise to perturbations in Q which are small compared to those in 
M V • V 0 [by order e (24)], in consequence of which the leading term in the ex-
pression for the amplification coefficient (/rl - 1) can be computed by discarding 
the term Q o: -r 2 while retaining the term M V • V o: -r. Although the amplification 
coefficient obtained from (30) is asymptotic, thereby justifying the main result 
obtained from the first theory, we have no assurance that the detailed vertical 
structure of the wave in the first theory is asymptotic. Likewise, the suggestive 
information about the "preferred" lateral scale (9a) of the inertia oscillation cannot 
be relied upon because of these confidence limits. The author would also make the 
same criticism of any model which utilized an eddy coefficient whose magnitude 
was quantitatively significant. 

Both theories imply that a turbulent Ekman layer in a vertically bounded system 
is unstable with respect to infinitesimal amplitude long waves, and the energy near 
the inertial frequency will therefore increase with time. We may be able to address 
the question of the statistically steady state which eventually arises in a real fluid 
by means of the following alternative view of (21). Suppose that -r = 0 and Vo is 
large at some time t 0. For t < 0 the conservative nonlinear dynamics of the 
system are then governed by (18), (17) with M = 0, and by the well-known dy-
namics of the thermocline. The total energy in such a system (t < 0) cannot increase 
in time, and must be arbitrarily specified ab initio. At time t > 0 we apply a "small" 
uniform wind stress -r. Eq. (19) applies to the resulting weak interaction problem 
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because Q is small compared to the bilinear terms in (19) by a factor which is pro-
portional to T. "Weak interaction" means that the nonlinear inertial waves will be 
approximately conservative over short periods of time (f- 1) but will gain a signifi-
cant amount of energy from the wind over long periods of time (> > f- 1). In the 
stationary state the energy gained by the inertial waves must equal the energy 
transferred to other scales of motion in the thermocline, and if this "dissipative" 
aspect can be formulated then we can address the fundamental problem of relating 
the r.m.s. amplitude of the intertia wave to the driving force of the wind and to the 
other scales of motion to which it is coupled. This is an ambitious problem, of 
course, but it seems worthwhile to consider it in the context of a homogeneous 
model [e.g. Fig. l] before turning to the real ocean case in which 't varies in space 
and time. 
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