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Methods for estimating directional wave spectra 
from multi-element arrays 

by Russ E. Davis1 and Lloyd A. Regier2 

1. Introduction 

The Fourier wavenumber-frequency spectrum of a scalar variable 7/, with zero 
mean, is defined 

S(k,w) = (27T)-D-i f :.,, d l; f :~T exp (-ik • l; + iwT)C(l;,T) , 

(1) 

where D is the dimensionality of the l; space and C is the covariance, taken to be 
homogeneous and stationary, 

C(l;,T) = <'T](X,t) 7](X + l;,t + T)> ' (2) 

where <> represents the average value. The wavenumber-frequency spectrum is of 
fundamental importance in describing the distribution of variance according to 
space and time scales and finds widespread use in geophysics both as a description 
of variability and in using observations to test dynamical theories. 

Estimation of wavenumber-frequency spectra from real data involves overcoming 
the same two fundamental problems encountered in estimating frequency spectra 
from time series (see Jenkins and Watts, 1968), namely, statistical reliability and 
resolution. In essence, statistical reliability is limited by the quantity of data avail-
able from which the average in (2) is estimated. Resolution, on the other hand, is 
limited by the range of l; and T over which C(l;,T) in (1) is known. For example, 
in frequency spectrum analysis the fundamental maximum frequency resolution 
is the order of the inverse of the record length while knowing the covariance only 
at discrete values of T leads to the loss of resolution known as "aliasing." 

Measurement of wavenumber-frequency spectra is often accomplished through 
the use of arrays of instruments which observe 7J at a finite number of locations x,.. 
While the statistical reliability and frequency resolution of such spectral estimates 
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are often limited by the time over which observations are made, this limitation is 
usually less serious than the poor wavenumber resolution resulting from the small 
number of elements in the arrays and the associated limited numbers of locations 
in lag space (the z:; space in (2)) at which the covariance is known. The purpose of 
this paper is to examine ways of designing processing methods which maximize 
the resolution obtained from arrays with few elements without seriously degrading 
statistical reliability. 

In discussing measures of performance, emphasis will be placed on two-dimen-
sional fields and on variables which obey a single mode dispersion relation such as 
that describing linear surface waves. Generalization to fields without known disper-
sion relations and to three-dimensional Fourier spectra (D = 3 in (1)) are straight-
forward. 

There are three fundamentally different kinds of spectral analysis methods which 
find application in processing array data. "Model fitting" involves prescribing in 
advance a form for the spectrum in terms of an analytic relation (the model) in-
volving adjustable parameters. The other two classes of methods do not involve 
prescription of the form of the spectrum and are, therefore, model independent. In 
this paper only model independent methods will be discussed. Model fitting can be 
used to good advantage in spectral analysis (e.g. super-resolution, Munk and 
Hasselman, 1964, and the directional spectral estimates by Munk et al., 1963, and 
Longuett-Higgins et al., 1963) but the efficacy of such efforts depends strongly on 
how well the trial forms of the model match the true signal. Since there is no a 

posteriori way of testing this, model fitting must be used with caution. 
The remaining two methods, both model independent, may be categorized as a 

priori and data adaptive. The former, more familiar in time series analysis, is de-
signed to perform well according to criteria which are specified without reference 
to the data to be used. The latter, on the other hand, are tailored specifically to the 
data actually observed and cannot be fully specified until the data are taken. 

In what follows the general structure of estimates of wavenumber-frequency 
spectra and some measures of performance will be discussed. Then, attention will 
be turned to the design of efficient arrays and to the design of a priori analysis 
schemes. Then data-adaptive techniques will be discussed and a new data-adaptive 
spectral estimation scheme, designed for analysis of continuous spectra rather than 
detection of signals in the presence of noise, will be presented. Finally, comparisons 
of the various methods will be presented and recommendations given. 

A more complete and detailed discussion of these topics may be found in Regier 
(1975). 

2. Spectral analysis 

This paper is primarily concerned with estimation of wavenumber-frequency 
(WF) spectra using data from observational arrays which are well sampled in time. 
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An observational array which is well sampled in time is taken to be a collection of 
Ne elements at locations Xn which provide records of TJ(Xn,t) sufficiently long and 
well sampled that the cross-spectra of all element pairs can be computed with essen-
tially perfect frequency resolution, including the effects of aliasing. This is an ideal-
ized case but, in general, it is possible to achieve frequency resolution which is so 
much better than the achievable wavenumber resolution as to be essentially perfect. 
It is, however, important to account for the fact that there will inevitably be errors 
in the estimates of these cross-spectra arising from, if nothing else, the limited sta-
tistical reliability of any real observation. Thus, if the spatially lagged frequency 
cross-spectrum is defined by 

1 f "' Q(l;,w) = 27T -~T <TJ(X,t) 'Y}(X + l;,t + r)>exp(iwr) (3) 

the observer can compute, for each w, N estimates Q of Q(l;k,w) at the N (distinct) 
lags l;k separating all possible pairs of elements. The data are then N values of 

(4) 

where Xn and x,,. are the locations of the array elements, l;nm = x,. - x,,., and q is 
the error or noise. 

According to (1) the WF spectrum is related to Q by 

S(k,w) = (27T)-D f dl; Q(l; ,w)exp(-ik•l;) (Sa) 

or the inverse relation 

Q(l; ,w) = f dk S(k,w)exp(ik•l;) . (Sb) 

Since, according to (Sa), the WF spectrum is a linear operation on Q it is natural 

to seek an estimate, S, of S which is a linear combination of the available data, i.e. 

S(k,w) = k O'.nm (k,w) Qnm(w), (6) 
n,m 

where, to make S real valued, O'.nm and a ,,,n are complex conjugates. All estimators 
discussed in this paper are of the form (6) although the methods of choosing the 
weights, a, are different; the authors are unaware of any truly nonlinear methods of 
estimating spectra. Since each frequency band is treated separately the notation will 
be simplified by dropping w except when it is required for clarity. In practice the 
estimation procedure is carried out separately for each frequency band for which 

Q is computed. 
The utility of the estimate (6) should be measured by two interrelated criteria 

which might be called noise-rejection (minimal effect of q) and wavenumber resolu-
tion. The nature of the noise, q, depends on its origin and the method of computing 
the cross-spectral estimates. If the array elements are well calibrated it will usually 
be the case that the principal noise will be due to statistical uncertainty resulting 
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from the finite quantity of data. When this is the case and when conventional com-
putational methods (see Jenkins and Watts, 1968) are used, the cross-spectral esti-
mates are unbiased so that 

The variance of the spectral estimate about its mean value, 

(T2 = <[S'(k} - <S'(k)> ]2> = k k <Xij (k)a,,,n(k) <qi} qnm> , (7) 
n Jm i , j 

depends both on processing method and the noise. The spectral estimate is biased 
by limited wavenumber resolution. Thus from (5) 

(8) 
n,m 

= I <XnmCk) J dk' S (k') exp (ik' • [x,, - Xm]) 
n,m 

= J dk' S (k') W(k,k') . 

The quantity 
W(k,k') = I a,.m(k) exp (ik' • [x,, - X,n]) (9) 

n,m 

will be referred to as the wavenumber window and measures how much an estimate 
of the spectrum at wavenumber k is affected by the variance density at wavenumber 
k' in exactly the way that the sine function frequency window encountered in con-
ventional time series analysis measures variance spreading in frequency space. 

High resolution WF spectra are obtained when the window W approximates a 
delta-function centered at k = k'. The a priori analysis methods involve selecting 
a,.m which produce a window which best approximates such a delta-function accord-
ing to some prescribed criteria. Data adaptive methods, on the other hand, do not 
strive directly to approximate a delta-function but rather attempt to make W(k,k1 
small at those values of k' (other thank) where S(k') is significant. 

Both methods are influenced by the noise q. In the a priori methods it is fre-
quently the case that the "optimal" window is achieved by using large values of a, 
particularly when there are nearly redundant lags. But, since the noise susceptibility 
<T2 of (7) increases as the square of these weights, this can seriously degrade the 
resulting estimate. Although somewhat less obvious from their development, data 
adaptive methods can suffer from very much the same problem. Unfortunately, 
accurate estimates of the noise matrix <qiJ q,.m> are difficult to make. Perhaps the 
most widely applicable case is when the noise is of purely statistical origin. In this 
case some estimate of the noise matrix can be made by assuming the field 7/ to be 
Gaussian. Making such estimates of the noise statistics is discussed in the Appendix 
but the complexity of this procedure is not warranted by the gain in reliability of the 
estimate. It is found in practice that when the statistics are reasonably stable, good 
rejection of statistical noise is obtained from processing schemes which were de-
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signed to reject noise which is uncorrelated between the different cross-spectral 
estimates and has random phase, that is 

l = 0 if n=r- j or m=r-i 
<qnm qif> 

= <ro2 if n=j and m=i. 

As will be seen ((lOb) below) this leads to a measure of a-2 which is influenced by 
the magnitude of the weights, a. The success of this gross simplification is, no 
doubt, due to the fact that, regardless of the precise nature of the noise, the cancella-
tion associated with large weights of opposite sign produces noise amplification. 

3. Array design 

In addition to the method of processing, the fidelity of WF spectral estimates is 
strongly dependent on the geometry and number of elements in the sampling array. 
Examination of (9) shows that the crucial feature is not so much the location of 
array elements as the location of the lags l; nm = x,, - Xm at which the cross-spectrum 
Q(l;,w) can be estimated. This bas led to the "coarray" as a description of an array. 
As the array is the collection of locations in physical space, x,,, where T/ is sampled, 
the coarray is the collection of locations, l;., 11., in lag space where the cross-spectrum 
can be estimated. If there are Ne array elements there are N.2 lags in the coarray 
but Ne of these must be redundant samplings of zero lag. One half of the nonzero 
lags are reflections of each other, i.e. l; nm = -l; ,,,,., so there are at most N.(N. - 1)/ 
2 + 1 truly distinct lags. In practice it may be difficult to achieve this theoretical 
maximum in large arrays. 

Some simplification in visualizing the wavenumber window W(k,k') can be 
achieved by using the weights {3 defined by 

O'.nmCk) = f3nmCk) exp (-ik • [x,, - Xm] • 

In order to insure that the wavenumber window is real valued, f3nm must be the com-
plex conjugate of f3mn• Then the window of (9) and the noise measure of (7) using 
the simplified noise statistics become 

W(k,k') = f3nmCk) exp (il; nm • [k' - k]) 
n.,1n 

n,m 

(10a) 

(10b) 

Truly optimal design of array geometries depends on establishing a criteria of 
merit for a given wavenumber window and deciding on the method of processing 
which will be employed. The process of array design then involves a trial-and-error 
evaluation of given array geometries in terms of their figure of merit. Short of this 
exhaustive procedure, some reasonable assessment of array performance can be 
made from an examination of the coarray. The characteristics to be considered are 
(a) the maximum extent of the coarray, which most strongly affects the sharpness 
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Array Coo rray 
X p 

A • • • . X X X X 

B . . . • X X X X X X X 

C . . . • X X X X X 

Figure 1. Examples of three linear arrays and the associated coarrays. Only the coarray ele-
ments for zero or positive p are shown. Array B, which has no redundant separations, has 
the largest coarray and consequently the highest resolving power. 

of the wavenumber window around the central peak at k = k', (b) the minimum 
separations in the coarray, which affect the minimum wavenumber difference lk -
k' I at which the window will have a secondary peak resulting in aliasing, and (c) 
the uniformity of the coarray, which will influence the size of the major "side-lobes" 
of the window at wavenumber separations smaller than the aliasing wavenumber. 

lliustration of these general observations, which hold equally well in one or many 
dimensions, is given by considering the three linear arrays of four elements shown, 
together with their coarrays, in Figure 1. Array A has many redundant lags and, 
consequently, has a small coarray which spans only - 3 ::;:; p ::;;; 3. Array B achieves 
the theoretical maximum size coarray (seven distinct lags) spanning -6 ::;:; p 6. 
Coarray C also spans -6 ::;:; p ::;;; 6 but the coarray is quite nonuniform. On the basis 
of (a) above the widths of the central peaks of the windows for B and C should be 
comparable and narrower than that for A. All have minimum separations of unity 
and hence, according to (b), their windows should have large aliasing peaks at k -
k' = 0(21r); in fact, because all lags are multiples of unity the windows are exactly 
periodic with period 21r. Array C differs from B only in uniformity of the coarray; 
from (c) it is expected that B should have the smaller side lobes. These conclusions 
are demonstrated in Figure 2 whcih portrays the wavenumber windows for the 
three arrays. These windows were chosen to minimize 

s = _,,W2(k, k + l)dl 

while maintaining W(k,k) = 1; only O < l < 1r is shown since the windows are 
symmetric about the end points. 

Haubrich (1968) has carried out extensive experimentation to discover rules for 
design of good two-dimensional arrays. For various array geometries he found the 
window W(k, k + l) which best approximated the function F(l) = 1 for Ill < r and 
F(l) = 0 for r < Ill < R. He found that the best arrays were those with minimum 
separations of 0(21r / R) and the largest uniform coarrays; increasing the maximum 
lags at the expense of uniform coverage in lag space did not improve resolution. 
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-Q.5Q=-------.,,L/2 _______ _J7' 

Figure 2. Examples of the resolving windows associated with the arrays shown in Figure 1. 

See the text for the criterion of optimization. 

Interestingly, Haubrich (personal communication) finds that the practice of design-
ing large arrays using regular geometric patterns is generally inferior to random 
selection of element locations, presumably because of the many redundant lags 
found in arrays which appear regular to the eye. 

Array design influences noise rejection as well as resolution. Adding redundant 
lags does not influence resolution but does reduce noise sensitivity because the 
sample cross-spectra of these lags may be averaged together. This is particularly 
effective in reducing instrumental noise but is often not very effective in reducing 
statistical noise from sampling errors because the errors on the redundant lags are 
frequently correlated and, consequently, not much reduced by averaging (see Ap-
pendix). 

The design of optimal arrays requires an a priori criterion of merit for the array/ 
processing method combination; such criteria are discussed in §4. While the choice 
of a measure of merit affects the comparison of array geometries, our experience 
is that the general rules above produce good arrays by most criteria. This suggests 
that good arrays for use with data-adaptive processing can also be found using these 

general principles. 

4. A priori design of processing methods 

Given an array geometry, the objective in designing a processing method is to 
obtain a "useful" presentation of the observations, say N cross-spectra observed at 
N spatial separations. There is an infinite family of spectra which could produce 
these N observations so a measure of "utility" cannot be unambiguous. The resolu-
tion criterion employed here, the one which seems most natural in analysis of con-

tinuous spectra, is that the estimate S(k) should represent the average spectral in-
tensity of the family of possible true spectra in the wavenumber region around k. 
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This is accomplished by using a window W(k, k') which is concentrated in the 
region of k' space around k' = k. 

The objective of a priori design of processing methods is to provide a method 
whereby the analyst may choose processing methods with a desirable balance of 
noise rejection and resolution where resolution is defined by an appropriate cri-
terion. Such criteria can be generated from a quadratic form which measures lack 
of resolution. 

P = f W2(k,k') G(k,k') dk' (l la) 

where G is a prescribed positive semidefinite function which vanishes at k' = k 
and is large at values of k' where significant values of S(k') are anticipated. It is 
through G that the analyst determines what is meant by "concentrated" around k. 
From (8) it is apparent that there is no reason to minimize W(k,k') at values of k' 
where there is no significant variance in the spectrum S(k') and consequently 
G(k,k') should be chosen to vanish there. Other characteristics of G depend on 
what are judged the most important features of desirable windows. In some cir-
cumstances the important characteristic is that the central peak of the window be 
as sharp as possible; this behavior is encouraged when G increases rapidly as 
lk - k'I increases and then becomes reasonably constant. In other cases a some-
what wider central peak but lower side-lobes away from k' = k is desirable; this 
behavior is encouraged when G increases gradually around the point k' = k but 
continues increasing over the entire region. The decision as to what are the more 
desirable characteristics of resolution depends on the nature of the spectrum to be 
investigated and the questions to be answered by the investigation. If the spectrum 
varies smoothly from very large to very small values, a wide central peak and low 
sidebands will be best; a spectrum with small amplitude, but narrow, peaks will be 
better described using the narrowest central peak achievable. Similarly, if the im-
portant feature of the spectrum is the average energy density over fairly large regions 
of k space it is most important to minimize side-lobes, whereas if the important 
spectral characteristics are the locations of peaks or other wavenumber localized 
features a narrow central peak is of paramount importance. Examples of the effect 
of G on window shapes will be given later. 

While minimizing P, it is necessary to constrain the window to have nonzero 
values at the central peak; a useful general form is 

V = f W (k,k') H (k,k') dk' = 1 , (llb) 

where H, like G, is a positive semidefinite function chosen to promote desirable 
concentration of W at the central peak. 

Optimal processing schemes are designed by minimizing some combination of 
the resolution penalty, P of (lla), and noise sensitivity, cr2 of (10b), while meeting 
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the constraint V = 1 as in (llb). Computationally this is accomplished by choosing 
the weights f3nm of (11) to minimize 

P+vcr2 +µ,V (12) 

where µ, is a Lagrange multiplier used to meet the constraint V = 1. The param-
eter 11, or equivalently the fundamental noise parameter cr02, is adjusted to strike 
the desired balance between optimal resolution and maximum noise rejection. 
When P, V and cr2 are expressed in terms of the weights f3nm using (l la), (1 lb), and 
(10b), respectively, minimization of (12) results in a system of linear equations for 
the optimal weight and this is easily solved using standard computer routines. 

The fundamental trade-off between noise rejection and resolution is another 
necessarily subjective choice which must be specified by the analyst. Failing to 
account for noise sensitivity, that is setting v = 0, can lead to very large values of 
{3 and processing schemes which, although having nicely shaped windows, produce 
meaningless results when applied to real data. Although the analyst's choice of 
where on the resolution vs. noise rejection curve to operate is subjective, the results 
are not highly dependent on the choice unless the extreme of high resolution is 
sought. Our experience is that as the noise parameter 11 increases from zero the 
resolution decreases slowly while the noise rejection increases rapidly at first and 
then fairly abruptly becomes approximately constant. Our subjective criterion for 
the appropriate balance of resolution and noise is to operate near the point where 
the rate of change of cr2 with 11 has begun to decrease noticeably; the overall proc-
essing performance is not highly sensitive to this choice, but knowledge of the 
expected noise levels might alter the choice significantly. 

Any knowledge of the area of k space over which S(k) is small can serve to im-
prove the resolution obtainable over the remainder of the space. A particularly 
significant improvement occurs when there is adequate reason to believe that a 
linear theory predicting a dispersion relation is applicable. In this case the region 
of k space over which W2 is to be minimized is reduced to a band (or several bands 
if there is more than one mode) and it is generally possible to minimize W2 over 
this band more completely than can be accomplished over a larger region of wave-
number space. In a similar manner, there is sometimes a priori knowledge that some 
propagation directions are not energetic; this information can be used to improve 
resolution over the energetic directions by limiting nonzero values of G(k,k') to the 

energetic region of k' space. 
We turn now to examination of some a priori processing schemes using, as an 

example, estimation of the directional spectrum of oceanic surface waves. The im-
portant feature of this example is that it is reasonable to assume that a majority of 
energy in the spectrum is concentrated on the dispersion curve 

!kl = ko = W 2 / g . 
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In view of this concentration it is logical to seek estimates of S(k) with k on the 
dispersion curve and to optimize resolution so that there is minimum of energy 
spreading from the region of wavenumbers k' also on the curve. 

In conjunction with analysis of ocean surface waves, Barber (1963) introduced 
an a priori analysis method which has received much use, often under the name of 
Beam Former estimate. If cross-spectra are observed at lag l;o = 0 and the 2N non-
zero lags ,n, where ,n = - '-n and 1 n N, Barber argued that the estimate 

N 

S(k) = L Q(l;n) exp (-ik • l;n) 
n = - N 

is a good approximation of the exact form (Sa). This corresponds to weights 

/31m = 1/M(xz - X,n) , (13a) 

where M is the number of element pairs associated with the lag Xi - x,,,, and the 
window 

N 

W(k, k') = 1 + 2 L COS (l;n • [k - k'J) . (13b) 
ti = 1 

Although not usually presented as such, the Beam Former is an "optimized" 
processing method. For every finite coarray there exist two generating vectors 
and l;v such that every lag can be represented as 

where L and M are integers. It then follows that the exponential functions in (10a) 

are periodic (and hence orthogonal) over rectangles of dimensions 21r/ /~x/ and 
21r/ /l;v/- The Barber processing scheme is the one which minimizes 

f W2 (k,k')dk' 

over this rectangle while maintaining 

W(k,k) = 2 N + 1 . 

The nonobjective elements in these design criteria are that the area over which 
W

2 
is minimized is determined by the details of the array geometry, not by any 

properties of the spectrum, and that the constraint on W at the central peak is not 
motivated by any objective principle. The results are the ambiguity associated with 
nearly redundant separations, which may be traced to the sensitivity of the generat-
ing lags l;x and l;v to nearly redundant lags, and unreasonable estimates of the total 
energy, f dk S(k). 

These fundamental weaknesses of Barber's scheme do not imply a lack of utility. 
In cases where the coarray is a regular one, so that l; ,, and l;

11 
are essentially the 

smallest separations, the resolution and noise rejection of the Barber scheme is 
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reasonable and the computational simplicity attractive. The remaining difficulty is 
easily overcome by renormalizing the spectral estimates so that the total energy is 
that computed directly from the auto-spectra of the individual elements. Conse-
quently this method, although not truly an optimal one by any reasonable criterion, 
is included in the comparisons of performance. 

A second interesting scheme is achieved by optimizing only for noise rejection, 
that is by setting 11 = oo in (12). If the constraint (llb) is taken as 

W(k,k) = N,2 - N. + 1 

the optimal weights are 

/3nm = 1 
and the window is 

W(k,k') =Ne + 2 L L COS (~nm• [k- k']). 
n= l m= n+1 

This window bears a strong resemblance to the Barber window (13b), differing in 
that redundant separations are weighted more heavily. It has the interesting prop-
erty that W is positive semidefinite, a characteristic which occurs whenever /3nm 
has the factorable form 

Although the resolution is inferior to the Barber window and the method suffers 
from the same difficulty that the estimate must be renormalized to preserve total 
energy, in cases where the noise is large this may be a useful processing scheme. 

Two additional a priori optimizing methods, designed to make use of knowledge 
of the dispersion relation, have been examined. In the first of these, called the 
Omnidirectional A Priori (OAP) scheme, it is assumed that energy is confined to a 
circular region surrounding the point at which the spectrum is being estimated. 
This omnidirectional criteria of optimization has the virtue that the coefficients /3nm 
are independent of the wavenumber at which the estimate is being made and de-
pend only on R, the radius of the circular region over which the spectrum is taken 
to be confined. In the second method, called the Steered A Priori (SAP) scheme, a 
more detailed specification of the region over which the spectrum is assumed sig-
nificant is used and the weights /3nm depend on the wavenumber at which the spec-
trum is being estimated. While this allows some improvement in resolution and 
noise rejection, the added computational difficulty may not always be warranted. 
Although the presentation is confined to the two-dimensional problem, the methods 

are easily generalized to higher dimensions. 
The OAP and SAP schemes are motivated by the following considerations. If 

the dispersion relation jkj = k 0 (where k0 depends on the frequency band being 

analyzed) is correct then the estimate 
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<S(k)> = f dk' S(k') W(k,k') 

[35, 3 

(8) 

is influenced only by the value of W(k,k') along the band jk'I = ko. The most ap-
propriate criterion of resolution would then be obtained by letting the resolution 
penalty function G(k,k') in (11 a) take zero value except near this curve. This is the 
motivation for the SAP scheme. Representing k' in its polar components k' and 0', 

G(k,k') is taken as 8(jk'j-k0) G(0' - 0) where 0 is the angle of the wavenumber k. 
Choice of the angular function G is subject to the same considerations as pertain 
to the choice of G itself. The constraint (11 b) is similarly chosen to account for the 
localized nature of the spectrum; in the examples to be given here H(k,k') is taken 
to be 8(lk'I - k0)/k0 so that if the spectrum S(k') is isotropic the estimate (8) will 
be exact. 

The primary disadvantage of the SAP scheme is that the weights /3nm depend on 
the k (or 0) at which S is being estimated. Thus to make directional spectrum esti-
mates at various angles it is necessary to compute and store a large number of 
coefficients. This disadvantage is overcome, at some expense to performance, by 
the OAP scheme which is based on the observation that for every energetic k all 
the energy is concentrated in wavenumbers k' such that jk - k'I 2k0 • Thus there 
is no advantage to making W(k,k') small at values of lk - k'I greater than 2k0• 

This suggests that an optimal processing scheme based on weights f3 which do not 
depend on k itself can be obtained by taking G(k,k') = gjk - k'I where g vanishes 
for lk - k'I > rko and r is on the order of two. It would be inappropriate to con-
strain the integral of W over the entire region lk - k'I "'= rk0 so the constraint 
W(k,k) = 1 is employed; this leads to the same difficulties with respect to total 
energy preservation as are encountered with the Barber and noise rejector schemes, 
but this is easily overcome by renormalizing the estimated spectrum so that total 
energy in each frequency band is correct. 

While these descriptions of the OAP and SAP schemes demonstrate how the 
area over which resolution is optimized may be selected, they do not address the 
question of selecting the weighting functions G(0) and g(k). As discussed earlier, 
the shape of these weights is how the analyst selects the optimizing principle which 
strikes the desired balance between sharp central peaks and low side-lobes in the 
resolution window W. An example of the effect of different shapes is given in 
Figure 3. The example is based on the one-dimensional array A of §3. In Figure 2 
of that section the resolving window obtained by minimizing 

P = f ~,!;f'2(k,k + l)dl 

subject to W(k,k) = 1 was shown. This corresponds to minimizing (12) with v = 0 
and 

G(k,k') = 1, H(k,k') = 8(k - k') , 
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Figure 3. Examples of the resolving window associated with Array A of Figure 1. The three 

examples are the windows obtained by minimizing the resolution penalty J _; W'(k,k+l) 

IW di for n==0,1,2. Note that n==2, which penalizes most strongly for nonzero W2 at large /, 
produces the smallest side-lobes whereas n==O leads to the sharpest central peak. 

for jk - k'j < Tr and G = H = 0 elsewhere. In Figure 3 this window is depicted 
along with those obtained with the same 11 and H but with 

G(k,k') = jk - k'j and G(k,k') = (k - k') 2 

for jk - k'I < Tr and zero elsewhere. The general pattern is clear. The more rapidly 
G increases with jk - k'j the lower the side-lobes away from the central peak and 
the wider the central peak itself. 

The discussion above describes the various considerations employed in design of 
all spectral estimation techniques, namely, rejection of noise and maximization of 
resolution which may be considered as a balance between sharp central peaks and 
low side-lobes in the resolving window. An attempt has been made to emphasize the 
subjective nature of optimization of these characteristics. In the following section 
data-adaptive estimators will be discussed. These methods have some real virtues 
relative to a priori estimators but their primary disadvantage is that the effects of 
different choices of optimization criteria are not so easily seen. It is important to 
remember that these schemes are associated wtih the same subjective elements that 
are found in a priori schemes. They have susceptibility to noise and wavenumber 
windows and these windows differ in the relative rejection of energy at wavenum-
bers near and far from the estimation wavenumber. One must not allow the sim-
plicity of their optimization principles to hide the fact that they are still basically 
subjective. In the final analysis it is the analyst who must select the method which 
performs best according to his own criteria. It is for this reason that examples of 
various processing schemes are included in a later section. 
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5. Data-adaptive processing methods 

The a priori processing methods are optimized in terms of prescribed criteria of 
merit; once the criteria are established it is possible to compute, once and for all, 
the weights a nm or /3nm from which spectral estimates will be made. Data-adaptive 
methods are also optimized according to a prescribed criteria of merit but this pre-
scription involves the observations themselves and, as a consequence, the weights 
O'.nm cannot be found until the observations are made. The most widely employed 
data-adaptive methods are the Maximum Likelihood and Maximum Entropy 
methods. The Maximum Likelihood method, first employed for estimating wave-
number-frequency spectra by Capon et al. (1967), is based on a criteria of merit 
which in essence leads to a minimum square error estimate of a plane wave signal 
in the presence of noise, which in the case of WF spectrum estimation is the con-
tribution to the observations from components with different wavenumbers. We are 
unaware of an algorithm for estimating WF spectra by applying the maximum 
entropy method to coarrays of arbitrary form; McDonough (1974) provides a 
suitable method for an equally-spaced linear coarray. Lacoss (1971) has presented 
the method and an evaluation of its performance relative to a particular a priori 
method and the Maximum Likelihood method in the analogous case of frequency 
spectrum estimation. Only the Maximum Likelihood method and an extension of 
it tailored to estimating continuous spectra, rather than signal detection, will be 
discussed here. 

Data-adaptive spectral estimation, like the a priori estimation methods of the 
previous section, is based on linear weightings of the observed cross-spectral matrix 
of the form (8). One unique feature is that the weights are of the factorable form 
O'.nm = '}' n '}' ,n * where 'Ym * is the complex conjugate of 'Ym• This is a natural feature 
when it is the signal amplitude, rather than the variance, which is to be estimated 
since the appropriate amplitude estimator is a linear weighting of the signals from 
the array elements; when the variance is estimated as the square of the estimated 
amplitude this leads to a variance estimator like (8) but with factorable weights. 
The result of the factorable property of the weights O'.nm is that the window W be-
comes the magnitude squared of a function and is, therefore, nonnegative. While 
this is not necessarily a desirable property for spectral estimators (the a priori cri-
teria employed in the previous section do not usually lead to nonnegative windows) 
it is fundamental to the data-adaptive methods discussed here. 

The optimization principle upon which the Maximum Likelihood Estimator 
(MLE) is based concerns detecting a signal consisting of a single plane wave ( or in 
other than Fourier spectral analysis, some other prescribed functional form) in the 
presence of noise. Capon et al. (1967) originally presented the method as the mini-
mum expected square error estimator of the complex amplitude (representing ampli-
tude and phase) of the signal or, equivalently, the estimator of the most likely 
amplitude when the noise at the various array elements has a joint Normal (Gaus-
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sian) probability distribution. As it turns out this is equivalent to minimizing the 
error in estimating the variance of the signal when the processing method is con-
strained to pass the signal itself with unit gain. Since it is the variance of the signal 
which is most relevant to spectral estimation, it is this latter line that will be followed 
here. 

Application of the MLE to continuous spectra is clarified by considering the ob-
served field to consist of a plane wave with wavenumber I and variance (energy) 
E(I) plus "noise". The wavenumber-frequency spectrum is then 

S(k) = 8(k-l) E(l) + SN(k) 

where SN is the noise spectrum. Here, as in previous sections, each frequency band 
is considered separately and the w denoting the frequency under consideration has 
been dropped. An estimate of the variance E is 

E(l) = L 2 ')'n(l) 'Ym*(l) Q,.m (14a) 
" ,n 

= E(I) I k ')'ny 11 , * exp (11 • [x.,.-x,,.]) + f dk W(l ,k)SN(k) 
n m 

where W, in analogy with (9), is given by 

W(l,k) = lk ')'n(l) exp i k • x,,12 
• 

n 

The crucial feature of the MLE is the imposed constraint that in the absence of 
noise the signal be passed with unit gain which leads to 

k 'Yn exp (i l • x.,.) = 1 (14b) 

" and 

E(I) = E(l) + f dk W(l,k) SN(k). 

Once the constraint (14b) is imposed the optimal weights are obviously those which 
minimize the convolution of W and SN which, since E, W and SN are all nonnega-

tive, is equivalent to minimizing the estimate E, itself. 
Minimization of (14a) subject to constraint (14b) results in a linear system from 

which the weights 'Yn0) can be found for each I at which E is to be estimated. Sub-
stitution of these into (14a) leads to the estimate 

l 
N e 

E(l)= 
i Qnm -l exp (i I • [xn-XmD i -i 

m 

(15) 

where Qnm - 1 is the inverse of the matrix Qnm· This inverse almost always exists 
when Qnm is obtained from real data since its nonexistence implies that the meas-
ured field can be described as made up of less than N, wavetrains. Even in this 

pathologic case an estimate E could be achieved by minimizing (14a); the solution 
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for the 'Yn would be nonunique but the estimate itself would be the same for all 
possible solutions. 

A fundamental difficulty with applying the MLE to estimation of continuous 

spectra is disclosed by considering the practical aspect of using P;, ostensibly an 
estimate of the variance of the wave with wavenumber I, to estimate the variance 

density S(I). The natural choice would be to divide P; by some estimate of the area 
in I space which contributed to the estimate E. A reasonable approach, the one 
usually employed, is to compute i(I) at a number of discrete wavenumbers I, con-
nect these by a smooth curve and normalize the curve by the constant required to 

preserve the total variance estimated directly from Onn; this a posteriori renormali-
zation is also required in some of the methods described in the previous section. 
The difficulty exposed here is that the MLE is optimized to estimate the variance 
at a particular wavenumber whereas in a continuous spectrum this energy is zero. 
This does not mean that the spectral estimates achieved by the renormalization pro-
cedure are not useful ones but it does suggest that a data-adaptive technique de-
signed to extract a signal, with finite variance at a single wavenumber, might not be 
the optimal one with which to estimate continuous spectra. 

It is application of constraint (14b), insuring a unit gain response to the "signal" 
wave, which poses the greatest question about use of the MLE for estimation of 
continuous spectra. It is alteration of this constraint which has led us to propose 
an alternative estimator, which will subsequently be referred to as the Data-Adap-
tive Spectral Estimator (DASE) to distinguish it from MLE which is actually a 
signal detector. The method is similar to the MLE in that factorable weights 'Yn are 
used to form an estimate 

S(I) = L L y,.(I) {! ,.my,,. *(I)= J dk W(l ,k) S(k) (16a) 
n 111 

where, as for the MLE, 

W(l,k) = II ')'n(I) exp (i k • Xn)l 2 • 

" 
Rather than insisting that W(l ,l) = 1, as is done for the MLE, the constraint em-
ployed in the DASE method is that the integral of the window over some region 
surrounding the estimation wavenumber I be unity. In the case of interest here, 
estimation of the directional spectrum of waves obeying the dispersion relation 
JkJ = ko, it is the integral along this line which is appropriate so the constraint is 
taken as 

f Oo+ A/2 
ko W(l,k)d0 = 1 

Oo- A/ 2 

where 0 = arg(k), 0o = arg (I) and the integral is taken along Jkl = k0 • When the 
form of the window is substituted this constraint becomes 
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Ne Ne 

'Yn Tnm'Ym* = 1 (16b) 
n m 

f 0.+M2 
Tnm = ko exp (i k • [Xn - x,,.])d0. 

0.-/j./2 

Because the window is nonnegative, minimization of S subject to the constraint 
minimizes the influence of S(k) from k outside the band k = [k0 , 00 ± A/ 2). This 
minimum is achieved at the extreme of 

ii[;'\ _l ] * 
n m ~nm - A Tnm 'Yn Ym 

where A is the Lagrange multiplier. Minimization of this form may be shown to be 
equivalent (Regier, 1975) to solving the eigenvalue problem 

i [i Qml-1 Tzn]Ym = A Yn 
m I 

where, as before, Q- 1 is the inverse of Q. Combining the solution of this equation 
with the constraint (16b) and the form of the estimate in (16a) demonstrates that 
the optimal estimate is 

(16c) 

where >-..0 is the largest eigenvalue of the Hermitian matrix 

(16d) 

The DASE involves the adjustable parameter A which determines the size of the 
area in k space over which the integral of W(l ,k) is constrained to be unity. In the 
limit A = 0 the DASE is equivalent to the MLE. When A is small the estimate 

S(I) will be larger than the true value S(I) since in (16a) much of the estimate will 
be due to the convolution of W(l ,k) and S(k) from outside the range of k over 
which the integral of Wis constrained to unity. After considerable experimentation 
with model spectra we find that as A approaches 21r the integral of the DASE esti-
mate becomes less than the true estimate unless the true spectrum is nearly iso-
tropic. The analyst is presented with two options for choosing an appropriate value 
of A. On the one hand, if some a priori knowledge of the width of the true spectrum 
is available, he may take A as some prescribed value of approximately this size. 

This will result in an estimate S(I) which does not correspond to the true variance 
as determined from the auto-spectra Qnn but this deficiency is easily overcome by 
the renormalization procedure employed with the other estimators discussed above. 
The second alternative is to search for that value of A which leads to the proper 
correspondence between variance and the integral of the spectral estimate. Although 
this latter approach involves considerable computational effort, we have found that 
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the resulting spectral estimates are, for a wide range of true spectra, accurate and 
the lack of any subjective element in the design the processing method is attractive. 

6. Comparison of processing methods 

Three a priori processing methods were introduced in §3. The Beam Former 
(BF) estimator, introduced to ocean wave spectral estimation by Barber (1963), is 
the only one for which the window and coefficients can be computed analytically 
(see (13)). Both the Omnidirectional A Priori (OAP) and the Steered A Priori 
(SAP) methods involve optimization of the measure of merit given in (12). They 
differ in the specific definitions of P and V employed (see equations (11)); as a 
consequence of these definitions the weights f3,,rn for the SAP method depend on 
the direction of the wavenumber at which the spectrum is being estimated whereas 
the weights for the OAP method do not. One of the primary advantages of a priori 
methods is that, once the array geometry is established, a set of weights /3nm (and 
the associated CTnm) can be computed once and the process of estimating spectra 
from different sets of data simply involves summing (6). Regier (1975) gives details 
of computing the weights which, by accounting for symmetries in the specific array 
and in the processing scheme itself, reduce the amount of computation involved. 
Clearly the BF method involves the least computational difficulty while the SAP 
method involves the most. Even for modest array sizes and waves obeying a known 
dispersion relation, the SAP computations can be significant; to estimate the direc-
tional spectrum of such waves at 10° increments at 40 frequencies from a six ele-
ment array over 2000 complex valued coefficients are required, even after the 
natural symmetries involved are accounted for. 

The data adaptive Maximum Likelihood Estimator (MLE) and the Data Adap-
tive Special Estimator (DASE) introduced in §4 require extensive calculation each 
time a spectral estimate is to be made. In the case of the MLE the inverse of the 

cross-spectral matrix !2nm must be computed for each frequency and the sum (15) 
computed at each estimation wavenumber, I. The DASE requires even more exten-
sive calculation since the dominant eigenvalue of the matrix R of (16d) must be 
found for each frequency / estimation-wavenumber pair. 

Comparison of the computational difficulties of a priori and data adaptive meth-
ods depends on the number of different cross-spectral matrices to be analyzed. 
Since the weighting coefficients for the a priori methods need be evaluated only 
once, these methods are more economical when the number of observations is large; 
the number of coefficients can become large enough that storing them is a problem 
if several frequency bands of data from a large array are to be examined. 

In order to explore and compare the performance of the various processing 
methods we have selected an array geometry, generated simulated cross-spectral 
matrices from a known directional spectrum and portrayed the estimated spectra 
obtained from the three a priori processing methods and the two data adaptive 
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l--1om---' . 

Figure 4. Top view of FLIP and the six element array used for measurements and testing the 
processing methods. The elements are shown as dots. In operation FLIP was oriented with 
prevailing wind parallel to the x, axis. The angle O = 0 referred to in simulations corresponds 
to waves propagating parallel to the x, axis. 

methods described above. This exercise was carried out in conjunction with an 
experimental program to observe the directional spectrum of surface waves using 
an array deployed from the spar buoy FLIP; the results are described in the com-
panion paper by Regier and Davis (1977). The six element array employed in the 
experiments and the one used in examinations of processing method performance 
is shown in Figure 4. All test data were generated to obey the linear surface wave 
dispersion relation so that 

1 
S(k,w) = JkT o(lkl - ko) S(0,w) 

where k0 is given by the dispersion relation k0 = w 2 I g, 0 is the direction of the 
wavenumber vector, and S(0,w) is the directional frequency spectrum. 

All estimated spectra have been normalized to produce the correct total variance. 
The OAP and SAP estimators were optimized with respect to both resolution and 
noise rejection according to the methods outlined in §3. Specifically, the simplified 
measure of noise sensitivity (10b) was used and, as discussed in §3, the noise 
parameter was increased to the point where noise rejection began to decrease 
slowly. Regier (1975) provides quantitative measures of noise rejection which show 
all methods to have approximately the same noise sensitivity. The OAP estimator 
was optimized using in (11) H(k,k') = o (k-k') and G(k,k') = 1 for lk-k'I < 2.5 
ko and G = 0 outside that region. The SAP estimator was optimized using H(k,k') 
= o(lk'I - k0) and G(k,k') = o(lk'I - ko) [0 - 0']2 where 0 and 0' are, respectively, 
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Figure 5. Estimated directional spectra for a true spectrum consisting of a single wave with 
frequency 0.1 Hz. 

Figure 6. Estimated directional spectra for 0.1 Hz waves having a true directional spectrum 
proportional to cos1"(8/2). 

the directions of k and k'; this choice of G was made to provide a seemingly de-
sirable balance of side-lobe suppression and sharpness of the central peak (see §3) 
and the choice of H insures an exact representation of an isotropic spectrum. 

Here the estimated spectra found by the five processing methods are shown for 
six true spectra, all symmetric about the x 1 axis of the array shown in Figure 4. 
The estimated spectra were computed along the circle lkl = k0 and are portrayed 
as a function of propagation angle 0; values were computed in 12 degree steps. 
Since the array and the true spectra are both symmetric about the x 1 axis, the esti-
mated spectra are also; consequently, in some figures the estimated spectra are 
shown only over a 180° range. 

Two of the examples were chosen to represent low frequency swell which were 
expected to have a relatively narrow directional spectrum as compared with higher 
frequency waves. It is unfortunately true that the directional resolution of long 
waves is generally lower than for waves whose scale is of the order of the array 
itself whereas long waves tend to have a narrower directional spectrum (see Regier 
and Davis, 1977). The two low frequency test spectra consisted of a single plane 
wave propagating along 0 = 0 (parallel to the x 1 axis) and a narrow directional 
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Figure 7. Estimated directional spectra for a true spectrum consisting of a single wave with 
frequency 0.3 Hz. 

Figure 8. Estimated directional spectra for 0.3 Hz waves having a directional spectrum pro-
portional to cos'(0/2). 

spectrum proportional to cos1 6(0/ 2) both with frequencies of 0.1 Hz. The 156 m 
wavelength of these waves is considerably larger than the overall dimensions of the 
array so rather poor resolution might be anticipated. The estimated spectra are 
depicted in Figures 5 and 6. In both examples the a priori optimized methods fail 
to resolve these long, highly directional spectra. As might be expected from the 
relative sophistication of the optimizing criteria, the SAP estimate is best resolved 
and the BF estimate is the poorest. The two data adaptive methods both resolve 
exactly the plane wave. In this case the two methods are equivalent because the t:,. 

associated with the DASE approaches zero (see §4). It is a simpler matter to show 
·that data adaptive methods of this general type can almost always perfectly resolve 
a single wave since it is possible to find weights 'Yn which reject completely the 
single wave while maintaining the constraints (14b) or (16b). The surprising result 
is that the data adaptive methods both over-focus the finite width spectrum in 
Figure 6; the MLE appears worse, in this respect, than the DASE. 

Four more examples, considered representative of the spectrum at higher fre-
quencies, are shown in Figures 7 through 10. All examples correspond to a frequen-
cy of 0.3 Hz and a wavelength of approximately 17 m. Since the spatial extent of 
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Figure 9. Estimated directional spectra for 0.3 Hz waves having a true directional spectrum 
proportional to cos' 0(0/ 2) + 0.18 cos' (0-1r)/2. 

Figure 10. Estimated directional spectra for an isotropic true directional spectrum of 0.3 Hz 
waves. 

these waves is more nearly matched to the array size than are the 0.1 Hz waves, 
an improved resolution of all processing methods is anticipated and found. Figure 
7 depicts the responses of the various estimation methods to a single wave from 
0 = 0. Again the data adaptive methods resolve a single wave exactly and SAP 
method is the best of the a priori methods. Figure 8 represents the estimates for a 
narrow directional spectrum proportional to cos4(0/ 2). The most faithful representa-
tion appears to be the SAP estimate but the DASE performs nearly as well; the 
primary failings of the DASE are a slight over-focusing of the peak and some 
spurious angular structure. The OAP and BF methods are significantly less accurate 
at large angles, where the estimates are negative, but it is the data adaptive MLE 
which is most disappointing; the MLE seriously underestimates the peak while 
introducing large spurious peaks. A similar case, corresponding to a true spectrum 
proportional to cos8(0/ 2) + .18 cos2((0 - n)/ 2) is shown in Figure 9. Again the 
SAP estimator and the DASE are best and the MLE, which produces quite large 
spurious peaks, is the least faithful. The fin al example (Fig. 10) is an isotropic 
directional spectrum. By design the DASE and SAP estimates are exact. The re-
maining estimates show significant spurious peaks; the MLE and OAP methods 
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show a range of variations in directional spectrum of nearly half the value of the 
true spectrum. 

7. Summary 

The fidelity of wavenumber-frequency or directional-frequency spectra estimated 
from multi-element arrays depends on both the array and the method of processing 
the data. The resolving power of an array is determined by its coarray, the collec-
tion of separations between all element pairs. Resolution of waves large compared 
with the extent of the coarray is limited and there are significant side-lobes in the 
response window for waves comparable to or smaller than the smallest separations, 
leading to an analogue of aliasing. 

Methods of processing array data to form estimates of wavenumber or directional 
spectra may be classified as a priori optimized or data adaptive depending on their 
design criteria. Both types of processing methods produce spectral estimates which 
are weighted linear combinations of the frequency cross spectra of various array 
element pairs. 

A priori optimized methods seek to optimize the weights in this estimate to pro-
vide a wavenumber resolving window (9) with characteristics which are desirable 
according to pre-specified measures of merit which include insensitivity to instru-
mental or statistical noise and desirable spectral resolution. A quantitative measure 
of these characteristics can be defined as in (12) and this measure optimized by 
adjustment of the weights. Three such methods, optimized according to various 
criteria, were described in §3; these were the conventional Beam Former (BF) 

method, a relatively simple method optimized without regard to array orientation 
(Omnidirectional A Priori, or, OAP) and a more sophisticated method (Steered A 
Priori, or SAP). 

Data adaptive techniques are based on optimizing the estimation weights accord-
ing to criteria which depend on the data itself. The two methods examined here 
were the Maximum Likelihood Estimator (MLE) and the Data Adaptive Spectral 
Estimator (DASE). Both methods attempt to create a wavenumber filter which re-
jects as much of the observed input as possible while passing a certain prescribed 
input unattenuated. The MLE is designed as a signal estimator and consequently is 
constrained to pass a single plane wave with unit gain. The DASE, designed specifi-
cally to estimate continuous spectra, is constrained to have an average unit gain to 
waves within a prescribed passband; the passband is determined from the data and 
in the limit of a single wave input the passband becomes focused and the DASE 

becomes equivalent to the MLE. 
The estimated spectra resulting from the various processing methods have been 

examined for a number of input spectra consisting of both narrow and wide direc-
tional distributions and wavelengths which are large compared with the sampling 
array and wavelengths comparable to the array size. In summary, the most sophisti-
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cated a priori method (SAP) generally outperforms the other a priori methods 
which are operationally much simpler to apply. The data alaptive MLE produces 
very high resolution of narrow spectra but tends to introduce spurious fine structure 
and artificial peaks when the input spectrum is broad. The DASE, over a wide 
range of conditions, generally outperforms both the MLE (particularly for broad 
input spectra) and the a priori methods (particularly for narrow input spectra). 

Acknowledgment. We wish to acknowledge the patient support of the Office of Naval Re-
search under Contract N00014-75-C-0152. 

APPENDIX. The error matrix 

As discussed in Section 2, the fidelity of WF spectral estimates is degraded by errors in 
Qnm, the estimated cross-spectrum between elements n and m. In that section it was suggested 
that adequate reduction of noise sensitivity is achieved by assuming the cross-spectra to have 
independent errors of equal magnitude. In some cases it is worthwhile to use more sophisticated 
estimates of the error matrix. Here the error matrices associated with the two most common 
types of noise are discussed. 

Let the frequency Fourier transform of the signal, 'Y)(x.,t), from element n be 

Hn +hn 

where h. is due to instrumental noise. The cross-spectral estimate !:lnm of (4) is then formed by 
sample averaging products of Fourier coefficients. If { } denotes the sample average while 
< > continues to denote the true average then 

When the errors, h, result from instrumental noise which is independent between elements 
and the statistical errors vanish ( { } = < > ) then 

The noise parameter <r appearing in (12) is then given by 

<r = I anna « <h">' . 
"·' 

A more complicated, but probably more generally useful, case occurs when the instrumental 
noise is negligible (h= O) but the sample average is not equal to the true average. In this case 
of statistical noise the error matrix is 

In general this expression cannot be determined from two-point statistics. But if the statistics 
of H are approximately Gaussian, so the H values have approximately joint normal probability 
distributions (see Cramer, 1962), and M is the number of (independent) realizations from which 
th~ sample average is constructed, then 

< q, jqnm> = ! <H ,H m*> < H! * H.> + ! < H,Hn> < H1*H m*> + O(M-2). 

the sample statistics are reasonably accurate the last term is negligible; if the process is sta-
tionary the second term vanishes. Then 
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1 
<q,Jqnm> == Q,., Q.1 • 

A plausible way of estimating this error matrix is to substitute the observed sample cross-

spectra !:2 in place of Q, committing an additional error of 0(M-2). This, however, prevents 
truly a priori design prior to acquisition of the observations. For truly a priori design which 
seeks to minimize accurately statistical noise, an estimate of the cross-spectra (or equivalently 
the WF spectrum) must be made in advance of any observations. 
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