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1. Introduction 

Calculation of equatorial currents 

by Yu. L. Demin1 and A. S. Sarkisyan1, 2 

Many calculations of the stationary and seasonal currents in the nonequatorial 
regions of the oceans have been done using an earlier model published by Sarkisyan 
(1969). The references list several new publications in this series (Bulatov et al.; 

Demin, 1975). The detailed analysis and survey of the diagnostic calculations 
were published recently in English (Sarkisyan, 1977). These investigations show the 
efficiency of the method and make some improvement in the calculation technique. 
The model allows us to take into account the nonlinear terms and effect of the 
horizontal viscosity only when these effects are sufficiently small (Sarkisyan and 
Pastuchov, 1970; Seidov, 1975). 

At the equatorial belt, this model is not applicable because the nonlinear terms 
are larger. The calculations show that the width of this belt is about 4-5° (Holland 
and Hirschman, 1972; Demin and Sarkisyan, 1974). For this region we propose 
another calculation method based on the work of Sarkisyan (1970). Some pre-
liminary calculations using this model were performed by the authors (Sarkisyan 
and Serebryakov, 1974; Demin, 1975b). 

The calculations of the currents for both hemispheres are performed in two 
stages. a) First, we calculate the large-scale currents of both hemispheres using the 
linear quasi-geostrophic model, omitting the local details of the equatorial currents; 
in this stage there are no grid points at the equator itself. For example, the points 
nearest to the equator are situated at 2.5°N and 2.5°S if the grid mesh equals 5°. 
b) We consider the equatorial belt where calculations must be made with high 
accuracy. In the northern and southern liquid boundaries of this belt, the current 
velocities are specified from quasi-geostrophic large-scale calculations, the nonslip 
boundary conditions are given on the solid side boundaries. In the equatorial belt, 
all the nonlinear terms and horizontal viscosity effects are taken into account. These 
two regions overlap each other, resulting in a feedback effect of equatorial currents 

on the surrounding regions. 

1. Institute of Oceanology, USSR Academy of Sciences, 1, Letnaya, Moscow j-387, USSR. 
2. In part supported by Geophysical Fluid Dynamics Laboratory / NOAA and by The Geophysical 

Fluid Dynamics Program/ Princeton University. 
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2. The statement of the problem and the calculation methods 

Let us consider a narrow equatorial belt with arbitrary bottom relief and side 
boundaries. The three-dimensional stationary density field in this basin, as well as 
the wind stress, is specified from observed data. Our problem is to calculate the 
current velocities in this basin. The basic system of hydrodynamic equations is as 
follows: 

u + V _!!!_ + w _!!!_ - fv = - _1_. aP + _aa V aauz + Az ,J2u ' 
ax ay az Po ax z 

av av av 1 aP + _a_ av 
u ax + V Ty + w Tz + fu = - Po ay az V Tz + A, 'y72v ' 

P = pog{ + g f : p' dt , 

.§!!_ .i!:._ + aw =O 
ax + ay az ' 

(1) 

(2) 

(3) 

(4) 

where u, v, w are current velocity components along the x, y, z axes respectively. 
The axis x is directed eastward, y-northward, z-vertically downward. The cen-
ter of the coordinate system is situated on the undisturbed sea surface, f = 2wsin 
(y / R) is the Coriolis parameter, where R is the radius of the earth; P, p' are the 
anomalies of pressure and density; p0 is the maximal value of the density; { = {1 + 

Pa , where { 1 is the physical sea surface level, and { is the relative surface level. 
Pog 

Pa is the atmospheric pressure on the sea surface, A 1, v are the coefficients of hori-

zontal and vertical turbulent viscosity, v7 2 = :;2 + :;2 • 

The boundary conditions are as follows. On the sea surface wind stress is known 
and the "rigid lid" condition is given (w=O) . On the ocean bottom the nonslip con-
ditions for all of the velocity components are taken. The horizontal components of 
the current velocity are specified on the liquid side boundaries, and are equal to 
zero on the solid sides. 

The above mentioned four equations contain five unknown functions u, v, w, P 
and { (p is specified). We use the above mentioned additional boundary condition 
for w and construct an equation for {. For this reason we integrate the equations 
(1) and (2) by z from O to ocean bottom H, then differentiate the first by x and the 
second by y, then add these two equations to each other. We use the listed equa-
tions (3) and (4) and after some simple transformations receive the equation 

+ _1_ aH ..!l_ + _I_ aH ..!l_ 
H ax ax H ay ay 
~---- II -------J 
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= _ _!_Hf H (H-z) v72p' dz - _1_( aH f H op' dz+ aH f H ap' dz) 
Po o PoH ax o ax ay O ay 

I ___ ___, '----------II ________ __, 

diVT l f H ( a2u2 a2uv +---- --+2--PogH gH o ax2 axay 
'-- III_) ~------- IV _______ _; 

+ f ( ~: -*) dz 
V 

f3 f H divr A 1 ( aH 2 aH 2 ) 
- gH O udz + PogH + gH ax V ulz=H + iJy V vlz=H -V2wlz=H 

'--- VI --1 '-- VII --' 
(5) 

where r ,., Ty are the components of the wind stress, r 0 <HJ = Po ( v aau) , r/Hl 
Z tz=H 

= Po ( v aav ) the components of the bottom stress, {3 = ddf . A scale analysis 
Z lz=H Y 

reveals that the main terms of equation (5) are the terms of Group I, generated by 
pressure anomalies in the ocean. On the left side of this equation the terms of 
Group I represent the effect of sea surface topography, and on the right side, the 
integral of the pure baroclinic part of the pressure anomaly. 

We emphasize the principal difference between equation (5) and its counterpart 
in a quasi-geostrophic model. In a quasi-geostrophic model, we treat an equation 
for vorticity, but (5) is an equation of divergence. In vorticity equations the non-
linear terms would be dominant at the equator. In equation (5) we impose the pres-
sure gradient (the terms of Group I) to the nonlinear terms, and it aids in construct-
ing a stable finite difference scheme for {. In equation (5), the /3 effect, (the term 
VI) is not the dominant one, it is smaller than the terms of Group I and makes it 
possible to keep this term on the right side of equation (5) and take it into account 
using a method of successive approximations. Finally, it is possible that in middle 
and high latitudes where f is large enough, equation (5) will not be convenient for 
numerical calculations because Group V is too large. 

We tum now to boundary conditions for the function {. Generally, we have to 
construct the relations for the calculation of { on all boundary lines, but the north-
ern and southern liquid boundaries are in the region of geostrophic balance, where 
all the characteristics, including { were calculated by the quasi-geostrophic model. 
We have only to calculate this function on the solid (eastern and western) side 
boundaries. Because of the nonslip boundary condition on the side boundaries we 

have 
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u=v=0 

[35, 2 

(6) 

If the side boundaries are vertical, the vertical derivatives of u and v are also equal 
to zero. 

Taking into account these simplifications, we integrate equation (2) by z from 
0 to ocean bottom H and for the meridional part of the boundary very easily derive 

it = -~1-f H (H-z) ap' dz +~s H a2~ dz (7) 
ay p0H o ay gH o ax-

By the same method we derive from equation (1) the equation for the zonal part 
of a solid boundary. The right side of equation (7) is considered to be known, 
because p is specified and v is taken into account by the method of successive ap-
proximation. Equation (7) enables us to calculate { on the solid side boundaries. 
The specific method of such calculations was given earlier (Sarkisyan, 1969, 1976). 

We now have five equations (1)-(5) for the five unknown functions u, v, w, p, {. 

The boundary conditions for these functions are also specified. Let us make a pre-
liminary evaluation of terms on the right side of equation (7). For this reason we 
specify the characteristic horizontal and vertical scales respectively L0 = 107 cm, 
H 0 = 105 cm. The characteristic density anomaly and flow velocity at the equatorial 
region are (op')o = 5 X 10-4 g/ cm3, V 0 = 50 cm/ s. Then characteristic values of 
the first and the second terms are respectively 

and 

(op)oHo = 2.5 X 10-0 
2poLo 

AiVo = 5 X 10- 9 if A = 101cm2/ s gL20 ' l • 

We see that the main term on the right side of (7) is the first term. Of course the 
second term could be larger if we were considering the small scale currents near 
the side boundaries, but it is not the subject of our investigation. For our purpose 
then, it is possible to take into account the second term by the method of successive 
approximation. 

We calculate the components of horizontal velocity directly from equations of 
motion (1) and (2), the numerical scheme constructed on the basis of importance 
of the nonlinear terms. Two versions of numerical schemes have been performed 
in the calculations. We describe them here on the basis of equation (1). The first 
version is 

u(n) - u(n-I ) au<n) au<n) ______ + A/v2u<n> _ u <n -1> ____ v <n-1> (8) 
ot 

=g..il + ...Lf z 
ax Po o 

ap' au<n-l) 
ax d( - fv< n-1> + w<n-1> az a 

az 
V 

au<n-1) 

az 
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n and 8t being the number and the value of the time step. 
The second version is 

u<n> -u<n - l) au<n) au<n) a au<n) 
8t + AiV2u<n> -u<n -1> -- - v<n -1> -- + -- v --

ax ay az az 
(9) 

au<n ) ar g f z ap' 
-w<n-1>--=g-c,,- + -- --dt-fv<n - 1> 

ax O ax 

au a au 
where the terms w -a- and -- v -- are treated implicitly and therefore put 

z az az 
on the left-hand side. 

The first version is useful only when the terms w _!_!!_ and-a- v _!_!!_ are suffi-
az az az 

ciently small, otherwise, a large value of Ai will be required for stability. Although 

the second version will remain stable for much larger values of w _!_!!_ and-a- v 
az az 

, it requires more complex computer code. Experience with actual numerical 

experiments will indicate which method is preferable. 
Equation (2) is transformed to the form (8) or (9) in the same manner. We see 

that a linearization (in a finite difference sense) was made when passing from equa-
tion (1) to equation (8) or (9), because the linear finite difference scheme allows 
economy in the computer's storage. The addition of the terms with time differences 
brings us to the initial value problem and so essentially simplifies the construction 
of a stable numerical scheme. 

The preliminary calculations, made by scheme (8) but without first terms of the 
left part of this equation (Deroin, 1975b) showed that the numerical scheme for 
(8) succeeded only with an overestimated value of A 1 > 109cm2 / s. As for equation 
(5) for {, its finite difference scheme possessed a large " reserve of stability," it suc-
ceeds with any small value of A i and does not need the addition of terms such as 

_if_ or _a_ V 2{ • 

at at 
By method of direct differences and using the above mentioned boundary condi-

tion, it is easy to transform the effect of the vertical turbulent viscosity on the sea 
surface in equations (8) and (9) to the form 

a au 1 ( Ta, + au ) (lO) az 1) Tz lz= O = Zi Po 1) Tz 1z=Z1 

where z, is the depth of the shallowest level of the model. It is easy also to make a 
more decisive approximation of this term by expanding the term in a Taylor's 

series. 
We obtained a formula for the vertical component of velocity by integrating the 

continuity equation and using the boundary condition w/z=o = 0: 
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w<n> = - f : ( a~;> + a~~n>) dg (11) 

We now have all relations for calculation of the four functions u, v, w, and (. The 
pressure field is calculated easily using formula (3). The relation (11) is also a 
simple formula; the main process of the numerical calculations is connected with 
equations for u, v, and (. It is possible to present all three relations for these func-
tions in a unified form. For simplicity we present this unified equation for the first 
numerical scheme: 

1 8 aF<"> aF<n> l-8 v 2p<n> _ ~p<n> + c cn-1> __ + c .cn-1> __ = G<n-1> ____ 1 pcn-1> 
A 18t 1 ax - ay A18t 

(12) 

where G = 0, cpu/ Ai, cpv /A I for F = {, u, v respectively. 0, cpu, cpv are the right-
hand sides of the (, u and v equations; and 

C <n-1> = 81 aH - (l-8) u<n-1> . C <n-1> = 81 aH - (l-8) 
l H ax l Ai ' 2 H ay l 

81 = 1 for the equation for {, and 81 = 0 for the u, v equations. 

v<n-1) 

Ai 

A stable difference scheme with diagonal dominance is readily constructed with 
directed differences. For the regular grid interval in both x and y coordinates, the 
final form of the finite difference equation (12) is as follows: 

p (n) - l {[ 8Y + C (n-l) ( 1)8 ] F " k,i,i, - a .(n-l) 8x 1 k,i,i m1- Y k,J,i-1 
k,j,i 

+ (i~ + C 1k,J, i(n-l) m1 8y)Fk,i,i+1(n) + [:; + C 21,,J,i(n-l) (m2-l) 8x]Fk,J-1,/ "' 

+ ( ~; + C2k,J,i(n-l ) m28x) Fk,1+1,i(n) - G k,j,i(n- l) + ~~;: Fk,J,i(n-1)} 

(13) 

where k, j, i are grid point indices for the z, y, x axes respectively, and 8x, 8y are 
the grid intervals, 

{ 1, if Cs k,J}n-l) > 0 
ms= 0, if C, k,J}n-l) < 0, (S = 1,2) 

n-1 - 81 H1 ,+ -H-. u <n-1> C1kJ/ ) ___ ,, 1 J,1-1 -(1-8) k,j,i . 
'' H1,i 28x 1 Ai ' 

8 H-+ • -H V (n-1) C .(n-1) = _1_ / 1,, J-1,i _ (l-8) k,J,i . 
2k,J,, HM 28y ' Az ' 

a (n-l) _ (l-8,)8x8y + 28y + 28x + C ( ) (2 k,J,i - Ai 8t 8y lk,J,i n-1 m1-l) uy 

+ C2k,1,/" - 1> (2m2-l) 8x. 
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The differentials on the right sides of the equations are approximated by centered 
finite differences, and the integrals are calculated by the trapezoidal rule. 

The implicit linear finite difference scheme of first order of approximation is 
used for the solution of the problem. Such a scheme does not make high demands 
on computer storage. The scheme is stable and very efficient, even when the value 
of Ai is relatively small (5 X l01cm2/ s for the first scheme and 106cm2/ s for the 
second). The calculation is as follows: First, we make one inner iteration and cal-
culate the first approximation ,(1 > by given density p' and wind stress Ta: , T y, using 
any initial fields for ,, u, v, w; then calculate the first approximation u< 1 >, v< 1 > for 
all of the levels, using ,<1 > and initial approximations for u, v, w. At last we cal-
culate w<1 >, from u<1 l, v<1>. Afterward we calculate the second approximation ,< 2> 
in the same manner and so on. The calculations are carried out until steady state 
is reached. The criterion is max (iu< n> - u<n- 1 > I, lv<n> - v<11- 1 l I) < €. Practically, it 
is enough to put e = 10-a - 10-2cm/ s. 

3. The results of calculation 

The calculations have been carried out for the equatorial belt of the Atlantic 
ocean situated between 3°N to 3°S and 32°W to 4°E. The density field used in these 
calculations was taken from data of the international program EQUALANT II for 
the levels of 0, 75, 100, 150, 200, 400, 600, 800, and 1000 m and the wind stress 
from the paper of Shalaveyus (1966). The grid of steps in the main numerical ex-
periments was 8x = 2°, 8y = 1 °. In some experiments the grid mesh 8y was made 
as small as 0.5°. The minimum value of the vertical mesh in the upper 100 m layer 
was 25 m. The density field had a mean value for each 2 ° X 2 ° square, available 
for the region 11 °N to 11 °S. Earlier, the authors made calculations of the tropical 
region currents, using this density field (Demin and Sarkisyan, 1974, Demin, 
1975a). The results of these calculations were used here as a boundary condition 
for u, v, and, on the northern and southern boundaries (3°N and 3°S). The merid-
ional boundaries of the region considered are liquid, therefore we construct the 
necessary boundary values here by interpolation. The density field for the high 
resolution grid mesh was also obtained by interpolation, because we had no precise 
data. Because of the density field deficiencies we consider this work to have theo-
retical rather than oceanographic interest. The analysis of the relative role of hydro-
dynamic factors in this model is considered to be the main interest. 

The optimal value of the time step was defined by test calculation 8t = 5 X 104s. 
The spin-up process was controlled by the above mentioned criterion and by the 

behavior of mean kinetic energy. 
The time for spin-up equals one to three months depending on initial approxima-

tion and parameter values. The final results do not depend on the initial approxi-
mation. The greater part of the calculations were carried out by the second numeri-
cal scheme, the reason for which will be seen later. 
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3 cm/ He 

fu.1 

Figure 1. The zonal mean intensity of currents for different values of A, at the depth of 0, 
100 and 1000 meters. Full lines correspond to A,= 1o•cm2/ s, - ----- to A,= 107

, - • -•-

to A,= 108
, -11-11- 11- to A,= 10°, • •••to Al = 1010

• 

The first calculation series was carried out for the grid steps 8x = 2 °, Sy = 1 ° 
and parameters v = 10 cm2 / s, p0 = 1.028 cm2 / s, the value of Ai varying between 
101 0 and 106 cm2/ s. The dependence of the solution on the value of Ai is illustrated 
in Figure 1. The solution is highly smoothed and there is practically no equatorial 
intensification when Ai is as large as 109 

- 1010 cm2 / s. Table 1 shows that the 

Table 1. The "weights" of the nonlinear and turbulent terms in the equations (1) and (2) (ab-
solute values in relative units of the latitudinal mean and average for the whole region). 
The upper figures correspond to A, = 10° cm'/ s and the lower ones-to A, = 107 cm'/s; 
a) at the seasurface, b) at the depth of 400 m. 

Table la. 

Om 

Latitude A,!:J.u A, !:J.v u au u au av a au a av 
V V - -- V-· - V-

ax ax ay ay az az az az 

2°s 158 613 62 84 55 76 463 666 
19 15 43 64 219 157 472 667 

10 194 295 34 43 42 43 268 519 
11 22 103 81 279 274 271 523 

oo 234 345 28 23 45 34 213 558 
20 19 180 85 131 354 214 557 

10 236 358 24 16 87 63 246 592 
17 21 105 67 280 241 242 590 

2°N 348 409 18 16 98 64 290 664 
13 13 28 41 256 101 291 660 

average 234 404 33 36 66 56 296 600 
16 18 94 67 233 226 298 601 



t, 
(1) 

Table lb. s· 
R,, 

400 m 
..., 
;,:;-

Latitude A, t:i.u A, t:i.v au av au av a au a av au w av ~-
u u -- V V - - -JI - J) w 

ax ax ay ay az az az az az az l:l 

2°S 108 153 6 2 4 7 0.4 0.4 2 1 

6 3 7 7 25 8 0.3 0.6 5 11 l:l 

1· 146 115 5 4 5 7 0.4 0.8 7 3 
C) 
.:: 

8 9 16 23 26 58 0.5 1.1 55 36 s 
6· 

o· 142 193 6 5 5 11 0.5 0.9 9 7 ;:s 

16 13 41 34 75 119 1.0 0.7 107 68 Cl -1· 126 155 5 5 7 4 0.7 0.8 5 6 (1) 

7 16 26 15 124 78 1.0 1.0 42 43 
>t:l 
.:: 

2°N 98 193 3 5 6 0.7 0.5 3 3 
l:l 

3 
.... 
Cl 

6 5 10 6 18 26 1.0 0.6 20 13 
..., 
[ 

average 124 162 4 4 5 7 0.5 0.7 5 4 
I') 

9 9 20 17 53 58 0.8 0.8 46 34 .:: ..., ..., 
(1) 
;:s 
.:;-
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Figure 2. The zonal mean intensity of currents for the nonlinear (full lines) and linear (broken 
lines) versions to the depth of O(a), IOO(b) and IOOO(c) meters for A,= 5Xl07cm'/s. 

effect of horizontal momentum diffusion is one order greater than the nonlinear 
terms when Ai= 109 cm2/s. Actually in the case of such a large value A 1 one deals 
with an essentially linear problem. We claim that the value of A 1 has to be suffi-
ciently small so as not to suppress the nonlinear terms. At best the solution is con-
trolled greatly by boundary conditions, if A 1 is as large as 109 - 1010 cm2/ s. 

We have other results when A 1 equals or is less than 108 cm2/ s. In these cases 
we have clearly expressed the equatorial peak of intensity of zonal currents, and, 
in intermediate levels (75-200m), there is an equatorial minimum of meridional 
currents. The effect of nonlinear terms is essential now. For example, when A 1 = 
107 cm2/ s, the average value of nonlinear terms is one order greater than the effect 
of horizontal turbulence (see Table 1). The "weight" of almost all the nonlinear 
terms is growing from the northern and southern boundary regions toward the 
equator. There is practically no such effect for the large values of A 1• At last the 
solution does not depend so much on boundary conditions for the small A 1- Further 
decreasing of Ai below 107 cm2/ s practically does not affect the calculation results. 
Let us note that the numerical viscosity is predominant, when Ai is too small. 
Therefore the question arises how much is the numerical viscosity. For the first 
rough estimation we obtain the value of the order of the viscosity coefficient Anum = 

u2h to be between 107 and 108 cm2/ s. But the essential differences of the calcula-

tion results obtained for Ai = 5 x 101 cm2 / s and A1 = 101 cm2 /s indicate that the 
effective value of Anum is nearly 107 cm2 /s. The most important is that the numeri-
cal viscosity is not so much as to suppress the nonlinear terms. This conclusion will 
be confirmed below, when discussing the additional calculation results. 

To make a clearer comparison with general nonlinear versions, we performed a 
full linear version of the problem (the nonlinear terms were excluded both in the 
equations of motion and in the equation for ,). When Ai 109 cm2 /s the results 
are practically the same. The difference between the two versions increases (espe-
cially at the equator) when decreasing the value of A1, and becomes very pro-
nounced for the Ai= 5 x 107 cm2/ s (Fig. 2a,b,c). In the linear version the inten-
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Figure 3. The water circulation in the equatorial region. 
a) sea surface topography in cm. 
b) sea-surface currents (•• • > ~ 2 cm/ s, 3-5, >---,+11-15, :»,-----+16-20, 

~21-30,~31-50,~51-75). 
c) the vertical profiles of the current's zonal component at four points of the equator 

1-30°W, 2-20°W, 3-14°W, 4-4°W. 

sity of the meridional component of the sea surface currents is larger than the 
zonal one, and it is an unrealistic result. Also, the meridional drag of velocity seems 
to be too large, and in the intermediate levels we have equatorial maximum of the 
meridional velocity component instead of minimum. It is interesting to note that 
the difference between linear and nonlinear versions is larger in the eastern part of 
the basin, where the density field is less smooth. On the whole, the difference between 
the two versions increases toward the equator and decreases with depth. In the upper 

layer the "weight" of the terms v :: , v :~ is the largest in comparison with 

other nonlinear terms. The values of these terms decrease with depth, and at the 

levels where z > 75 m, the terms w :~ , w !~ become quite sufficient. We should 

mention here that the importance of the nonlinear effects in the undercurrent region 
was shown by Knauss (1966) mased on the observational data. Gill (1975) has 
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analyzed simplified models of the equatorial currents and discussed the possible 
physical reasons for the nonlinear equatorial intensification of the zonal flow. 

Short notes on the role of other factors (for the case of v = 10 cm 2 / s, A 1 = 5 X 

101 cm2/s): The importance of T 111 and Ty for determining the surface currents is 
obvious. When excluding this factor, the meridional component of the surface 
gradient current becomes larger. The direct wind stress effect decreases with depth 
and becomes unimportant at the level of z = I 00 m. The role of the vertical tur-
bulence itself becomes small at the levels z = 150-200 m if v = const. At a distance 
of 1 ° from the equator, the Coriolis acceleration effect is so important that it is im-
possible to exclude it even in the case of investigation of currents in a narrow equa-
torial belt. The role of the bottom relief is relatively small. In the case of a flat 
bottom ocean (H = 4 km), the mean relative difference of current velocity from 
the main version is only 2-4% at the sea surface, and about 10% at a depth of 
1000 m. 

In the versions listed above, the sea surface topography does not change much 
in spite of essential alterations of the flow velocity. The balance of the forces in 
equation (5) is the cause of such differences between the behavior of , and flow 
dynamics in the equatorial currents system. The absolute mean values of the terms 
of the right side of equation (5) are as follows (in CGS units): Direct wind stress 
(Group IID 2 X 10-11, the main effect of baroclinicity (Group D 3.2 X 10-15, the 
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joint effect of baroclinicity and bottom topography (JEBA n, (Group II) 0.3 x 
10-15, all the terms containing flow velocity which are taken into account by meth-
ods of successive iterations (Groups N-VI) 0.3 X 10-15

, the effect of bottom stress 
(Group VII) and the effect of horizontal mixing (Group VIII) being very small. So 
either linear or nonlinear terms containing flow velocities are about one order less 
than the main factor (Group I); that is why the finite difference scheme for , is very 
stable. The smallness of the listed terms means that the explicit dependence of the 
pressure on the velocity is small in the equatorial region (the implicit dependence 
exists in the given density field). 

For the first approximation let us avoid all the listed and other smaller terms on 
the right-hand side of (5). The simplified equation has a solution 

l f H {r1=-- p' dz 
Po o 

(14) 

The formula (14) was obtained earlier from the nonequatorial model (Peredery and 
Sarkisyan, 1972; Sarkisyan, 1977). We see now that it is applicable to the equa-
torial region too. So the dynamic method of the sea surface topography calculation 
is a good first approximation also for the equator itself, but the quasi-geostrophic 
method of calculating the flow velocity is not applicable here. 

We now consider some details of the sea surface topography and flow velocity 
in the region. The sea surface maximum displacement is not large here; it equals 
only 13 cm. The general west-east slope was obtained correctly, but as shown on 
Figure 3a, this slope is not regular. The sea surface currents are formed mainly by 
trade winds and are directed from east to west. The maximum flow velocity equals 
74 cm/s, its average being about 30 cm/s. The equatorial divergence is clearly 
shown in the western part of the region (Fig. 3b). 

The velocity, as a rule, reverses its direction with depth because the wind drift 
decreases rapidly, and the predominant slope generates eastward currents at the 
equator (Fig. 3c). But as a result of irregularity of the sea surface slope, the under-
current does not exist everywhere; there are regions of stream "discontinuity," and 
vortices exist there. Therefore, the question arises, is this undercurrent irregular be-
cause of the specified density field, or is it the peculiarity of the model? To answer 
this question, one could make numerical experiments with different versions of a 
smoothed density field. We chose other ways here, because we know it is easy to 
prepare the density field which would express any known gradient current. The 
experiment that was made is as follows: 

The equatorial region was made homogeneous (p' = 0). However, the boundary 
conditions for the sea surface topography were retained from the previous model. 
That is, the sea surface along the liquid boundaries was prescribed from the quasi-
geostrophic, baroclinic, extraequatorial model. We obtained a regular west-east 
sea surface slope (Fig. 4a) and, as a result, a clearly defined continuous under-
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c) 

Figure 4. The current velocities for an idealized model version (p = 0 in the interior of the 
basin, with baroclinic boundary condition on side boundaries). 
a) sea-surface topography in cm 

b) currents at z = 75m ( -----~ 5 cm/s,-6-15,~16-25.-26-50). 
c) vertical velocity field at z = 200 m, isolines interval equal to 2 X 10---ocm/s, upwelling 

regions are dotted. 

current (Fig. 4b). This undercurrent is convergent; thus there is an equatorial belt 
of downwelling, surrounded by upwelling regions on the north and south (Fig. 4c). 

In the upper layer a region of upwelling predominates, connected with divergence 
of the equatorial trade wind currents. This artificial version is used only to test the 
model. We do not consider the full homogeneous ocean model (including boundary 
conditions), because in this case the sea surface slope and gradient flow velocities 
would be unrealistically small. By our earlier experiment, the maximum amplitude 
of tin the latitude range 11 °S-11 °N for the homogeneous ocean was equal to 0.8 cm 
(Demin and Sarkisyan, 1974). 

In the above mentioned baroclinic versions sea surface anomalies are determined 
mainly by the first term of the right-hand side of equation (5), i.e. mainly by the 
equatorial water baroclinicity. As for this special case, the right-hand side is very 
small (p = 0) and the solution is determined mainly by the baroclinic boundary 
conditions. So the undercurrent in this case is mainly generated by the extraequa-
torial water mass baroclinicity. 
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Figure 5. The zonal mean intensity of currents for different versions of the model and different 
resolutions for A, == 5 X 101 cm2/ s; Full lines == the second scheme, high resolution, v = 
10 cm2/ s; -IHI- The second scheme, high resolution, v == 10° cm2/s; • • • • The first scheme, 
coarse resolution, v == 10 cm2/s; - - - The second scheme, coarse resolution, v == 10 cm2/ s. 

An additional numerical experiment was carried out with high resolution. In this 
case the meridional grid step was equal to 0.5°, the minimal vertical grid step equal 
to 25 m (in upper 100 meters). The basic density field was interpolated to this ir-
regular grid. The result is presented in Fig. 5. We can see that the sea surface cur-
rent is much more intense. There are more points now with westward currents. It 
is interesting to note that the local minimum of the meridional current component 
appeared at the sea surface as well. This minimum is shifted 0.5° from the equator 
and may be because the horizontal grid step is still large. The differences between 
the fine and coarse resolutions decrease with depth and at the level of 100 m are 
relatively small. We found that the main differences are due to splitting of the 
vertical grid mesh. The sea surface and deeper layer currents depend differently on 
the grid resolution, because the balance in momentum equatorial depends on depth. 
In the surface layer the vertical turbulent viscosity and the horizontal momentum 

advection ( v ;; and v ;; ) are essential. In the deeper layer the vertical viscosity 
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is very small (see Table la,b) and the vertical advection ( w and w ~) az az 
becomes relatively larger, though on the whole the effect of the nonlinearity fades 
with depth. Let us mention that the rough approximation of '\72 does not lead to 
essential errors because the horizontal turbulent viscosity does not play an essential 
role in the momentum balance. 

In spite of essential quantitative variance, the results qualitatively are the same. 
The jet of the undercurrent still has a discontinuity at the same regions considered. 
The curves of zonally averaged flow velocities for the case of an over-estimated 
v = 100 cm2/s are also presented in Figure 5. It results in a strong smoothing of 
the sea surface currents. But even in this case, the difference rapidly decreases with 
depth, and the shape of the undercurrent does not noticeably change. 

So, the improvement of the resolution and the interpolation of the initial density 
field did not lead to the qualitative change of the undercurrent. One could obtain a 
detailed picture of the undercurrent only from the precise density field. Because of 
the decisive character of the density field we did not make calculations with high 
resolution. The effect of the high resolution in the diagnostic calculations with the 
inaccurate density field could be illusory. Finally, we dwell on the comparison of 
two numerical schemes. The first scheme is technically simpler for programming 
because it does not need a large computer storage. But as it appears now, it makes 
high demands on the original parameters, especially on A 1• The results of the cal-
culations using both schemes are presented in Figure 5. They are near each other in 
the upper layers. The difference in lower layers is due to diverse methods of ap-

proximation of the terms w , w ~v because the role of these terms increases 
dZ uZ 

with depth. The calculation also shows that the spin-up time is less for the second 
method. 

For these reasons almost all the presented calculations were done by the second 
scheme, and we recommend it for future calculations. This method can be easily 
transformed into the method of second order approximation in the horizontal by 
the technique given in Marchuk (1973) and Sarkisyan (1977). 

4. Conclusions 

1. The balance equation (5) seems to be very useful for equatorial region pressure 
anomaly calculations. The dynamic method of sea surface topography calculation 
by formula (14) is applicable for equatorial regions too. 
2. The second version of the numerical method considered makes it possible to 
calculate equatorial currents and does not suppress the effect of nonlinear terms. 
3. In any calculations of the equatorial currents the horizontal grid mesh in the 
meridional direction has to be no more than 0.5°, the vertical grid mesh in upper 
100-150 meters has to be no more than 25 m and the coefficient of horizontal vis-
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cosity (turbulent or numerical) has to be no more than l01cm2/s. Otherwise, the 
nonlinear terms are being suppressed by overestimating horizontal mixing. 
4. The density field is the main indicator of equatorial gradient currents; moreover 
this field has to be more accurate here than in nonequatorial regions. The wind 
stress is important for calculation of the sea surface currents, but its effect fades 
with depth and becomes unimportant at the level of 100-150 m. 
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