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Forced baroclinic ocean motions. I. The linear 
equatorial unbounded case 

by Mark A. Cane1 and E. S. Sarachik2 

ABSTRACT3 

A method is developed for calculating the response of an unbounded inviscid ocean to wind 
stress and thermal forcings. Although emphasis is on equatorial baroclinic motions, the mathe-
matical technique is first illu strated in detail for the motions described by the simil ar but sim-
pler barotropic vorticity equation. This serves to clarify the significance of the asymptotic ap-
proximations made for the baroclinic planetary modes. We describe in detail response to forcings 
switched on at t = 0 and steady thereafter and that are independent of longitude or step func-
tions of longitude. The response to a zonal wind stress grows linearly in time in the vicinity 
of the equator. The response to a meridional wind stress tends to be less equatorially confined 
and exhibits secular growth only at a forcing discontinuity, such a discontinuity acting as a 
line source of vorticity. Unlike a zonal wind stress, a meridional wind stress cannot excite 
equatorial Kelvin waves. A buoyancy source bas less of a tendency to excite gravity waves 
than a wind stress, though the response to such a source qualitatively resembles that to a zonal 
wind. In a subsequent paper, the effects of boundaries are treated using the methods discussed 
in the present work. 

1. Introduction 

An important consequence of the vanishing of the vertical component of the 
Coriolis term is that equatorial motions have time scales which are very much 
shorter than those of mid-latitude motions: the baroclinic time scale is weeks at the 
equator, compared to years at mid-latitudes. The most impressive instance of this 
short time scale is the reversal in direction of the Somali Current within a month of 
the onset of the Southwest Monsoon (Leetmaa, 1973). In general, time-dependent 
oceanic motions with time scales longer than a few days have received relatively 
little attention. Equatorial regions are rewarding areas for the study of such time 
variations because of the rapidity of the ocean's response to atmospheric forcings 
and the large seasonal component of equatorial wind systems. 

1. Goddard Institute for Space Studies, Goddard Space Flight Center, NASA, New York, N.Y., 

10025, U.S.A. 
2. Center for Earth & Planetary Physics, Harvard University, Cambridge, Mass., 02138, U .S.A. 
3. Some of the results reported in this paper were presented at the Woods Hole Summer Geophysi-

cal Fluid Dynamics Program, see Cane (1974). 
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In this paper we are concerned with calculating the linear, inviscid, time-depen-
dent baroclinic response to switched on atmospheric forcings with long time and 
space scales. We have in mind the monsoonal systems which vary seasonally and 
whose spatial scales are on the order of 1000 km or more. Since equatorial currents 
are relatively swift and narrow, nonlinear advective effects will usually be signifi-
cant. Neverthless, in the real ocean the linear model is useful because it provides 
insight into the more realistic nonlinear case which will be discussed in future 
papers of this series (see also Cane, 1975). In particular, it provides information 
about time and space scales of the oceanic response. Moreover, there are a number 
of important special situations where the linear theory may be expected to apply 
directly. For example, it should be applicable to the initial response of the Indian 
Ocean to the onset of the monsoon. 

The equations appropriate to our study are the linear inviscid shallow water 
equations (Veronis, 1963a, b). 

au ah at - fv + gax = F (la) 

av ah 
at+ fu + g By · = G (lb) 

ah + H ( au + ~) = Q , (le) 
at ax ay 

where f = {3y on an equatorial f3 plane. 
The symbols on the left-hand side of these equations have their conventional 

meanings: x is zonal distance, y is meridional distance; u and v are the velocity 
components in the x and y directions respectively; h is the deviation of the ocean 
depth from its mean value H; g is the acceleration of gravity; f3 = 2.0,/ a, where n 
is the rate of rotation and a the radius of the earth; and subscripts denote differen-
tiation. In the parlance of tidal theory Eqs. (1) describe the horizontal structure of 
the vertical mode with equivalent depth H . The equivalent depths for the equa-
torial baroclinic modes are on the order of .5 m or less (Moore and Philander, 
1976). For such shallow oceans the equatorial beta plane is an excellent approxima-
tion to the more correct spherical geometry in the sense that the solutions to the 
unforced version of (1) are close to the eigenfunctions on a sphere (Lindzen, 1967; 
Longuet-Higgins, 1968). 

The forcing functions which appear on the right-hand sides of Eqs. (1) are the 
projections of total atmospheric forcing onto the baroclinic mode of equivalent 
depth H. F and G are the projections of the zonal and meridional components of 
the wind stress, respectively, while Q is the projection of a buoyancy source (e.g., a 
heating function). A method for calculating these projections is given in detail in 
the Appendix of Lighthill (1969). This method models the wind stress as a body 
force uniformly distributed over the depth of the surface mixed layer. 
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There is a natural scaling for the system (1) chosen by the dynamics of the mo-
tions. Specifically, no nondimensional numbers will appear on the left-hand side of 
the nondimensional equatorial form of (1) if the length-scale L and time-scale T 
are given by 

L = (gH / f3 2)l 

T = (f3L)- 1 = (gH /32)-l (2) 

L is referred to as the equatorial radius of deformation. Recall that the usual 
definition of the Rossby radius of definition Ln(y) for a shallow water system 
(Rossby, 1938) is 

Ln(y) = (gH)!/f(y) , 

where f(y) is the Coriolis parameter at latitude y. 
Since near the equator f = f3y, it follows that 

L = Ln(L) = (gH)l/f3L , 

which says that the equatorial radius of deformation L is just the usual Rossby 
radius evaluated at a latitude equal to L. As the equator is approached from higher 
latitudes the radius of deformation increases until a latitude equal to the radius of 
deformation is reached. The radius of deformation may be interpreted as the scale 
over which the motions of an ocean of depth H rotating at a rate f /2 adjust to a 
geostrophic equilibrium. The limit on its size as the equator is approached says that 
motions at y < L must feel the effect of the Coriolis parameter at latitude y = L if 
they attempt to adjust over a distance Ln(y) > L. 

It may be seen from (2) that T = f(L)- 1
; that is, T is the inverse of the Coriolis 

parameter at the equatorial radius of deformation. For H = .5 m, L = 320 km and 
T = 1.6 days. Wave speeds are scaled by 

LT-1 = f3Ln2 = (gH)I = 2.2 m sec-1 • 

This speed, which is external gravity wave speed for an ocean of depth H, scales 
both the equatorial gravity waves and the equatorial Rossby waves. For mid-latitude 
motions the gravity wave speed is still (gH)~, but the Rossby wave speeds are scaled 
by the local value of f3Ln2

• At 45° f3Ln2 = .8 cm sec-1 • The difference in equatorial 
and extraequatorial time-scales for planetary motions may thus be traced to the 
order of magnitude difference in the radii of deformation. For Rossby waves at any 
latitude the principal restoring force is the gradient of planetary vorticity, [3. This 
varies little between the equator and mid-latitudes. The inertia of a baroclinic 
Rossby wave depends on Ln-2 so the mid-latitude waves move along more slowly. 

We can see all this by deriving a single exact equation for v from the homogene-
ous form of (1) [Rattray, 1964; Moore, 1968]. Applying the equatorial scaling this 

is, for u, v, h ~ exp i(k x-wt) 
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The solutions that go to zero at y = ± oo are 

v,. = 1/J,.(y) = 7r-l (2nn!)-! e-11•12 Hn(y) 

where the Hn's are the usual Hermite polynomials and with 

k w2 - k2 - -- = 2n + 1 . 
(t) 

[34, 4 

(3) 

(4a) 

(4b) 

Equation (3) has a turning point at y = (2n + 1)! (dimensionally, y = (2n + 
1)! L). The mid-latitude analog of (3), equatorially scaled, is 

v1111 + [ ( w2 
- k2 -+) -e] v = 0 (5) 

where E = and / 0 is the mid-latitude Coriolis parameter specific to where our 

mid-latitude beta plane is centered. Eq. (5) is derived from the homogeneous part 
of the exact equation (3) by simply replacing f by /0 • 

Eq. (5) admits simple trigonometric solutions e ily which, it should be noted, have 
no turning points. It is known from an analysis of the exact modes on a sphere 
(Longuet-Higgins, 1968, Munk and Phillips, 1968) that small k mid-latitude modes 
do have turning points at the local inertial latitude, i.e. the frequency equal to the 
local Coriolis frequency. We preserve this feature of the mid-latitude modes by 
working on an equatorial beta plane, but at high mode number 2n + 1 ="" E. 

S. . . 11 h L b ( 402 az )! . h h 1 f rnce E 1s essentia y t e am parameter gH , 1t as t e va ue o 

about 100 for the first baroclinic mode. We can therefore either think of mid-lati-
tude modes as equatorial modes with n = 0(I 00) so that the turning latitudes lie in 
mid-latitudes, or equivalently as equatorial modes of low mode number whose 

scaling is Tm = (c(3)-! c!, Lm = c! ; . In either case, the mid-latitude 

time scale is an order of magnitude slower, and the baroclinic radius of deforma-
tion an order of magnitude smaller, than the equatorial. Mid-latitude velocities are 
then two orders of magnitude smaller than equatorial, namely e-1 c instead of c. 
In what follows, we will concentrate on equatorial modes-a simple transposition 
to high n will yield valid baroclinic mid-latitude results. 

The plan of the remainder of this paper is as follows. In Sec. 2 we will review 
the complete equatorial free wave solutions. Sec. 3 deals with a barotropic 
analog of the forced problem in which the approximations to be used in the full 
problem are explored. The general unbounded forced problem is formulated in Sec. 
4 and the general method of solution is given. The method is illustrated by giving 
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explicit solutions for certain piecewise constant forcings in Sec. 5 and Sec. 6. Sec. 7 
completes and summarizes our results. 

Further papers in this series will use the methods and results of this paper to deal 
with responses in bounded basins, a numerical model to illustrate the transition to 
nonlinearity, and finally a numerical simulation of a highly nonlinear feature: the 
equatorial undercurrent. 

2. Free wave solutions 

The free wave solutions of (1) have been discussed in the literature (Matsuno, 
1966; Blandford, 1966; Moore and Philander, 1976). Since our method of solution 
to the forced problem makes use of the properties of the free wave solutions they 
will be quickly reviewed here. This will also serve to establish notation. We assume 
that Eqs. (1) have been scaled using the relations (2). Then the free wave solutions 
to the unforced version of (1) (i.e. F = G = Q = 0) for an infinite ocean with the 
boundary conditions 

u, v, h 0 as IYI oo 

may be written 

(u, v, h) = <}>n ,/k,y) exp i[kx - Wn,lk) t] . (6) 

As a rule, n indexes the meridional structure (it is analogous to the meridional 
wave number) and j , the wave type (inertia-gravity or Rossby). The subscript pairs 
(n, j) may take on the possible values 

j = 1 for n = -1 

j = 1 or 2 for n = 0 

j = 1, 2 or 3 for n > 0 

We denote this set of possible values of (n,j) by J. For n > 0, the Wn,lk)'s satisfy 

the dispersion relation 
Wn,/ - k2 - kl Wn,j = 2n + 1 . (7a) 

For a given n and k there are three real roots to this equation, indexed by j = 1, 2 
or 3. For definiteness we distinguish among these by their values 0 : 

Wn,1 (2n + l)l, Wn,2 -(2n + 1)~, Wn,3 -k/ (2n + 1) . 

Then j = 1 and j = 2 label inertial-gravity waves with phase speeds to the east and 
west, respectively, while j = 3 labels the Rossby waves. When n = 0 the root w = 
-k of (7a) must be rejected because the corresponding u and h functions become 
unbounded at infinity. The acceptable n = 0 mode is referred to as the mixed mode 
or Yanai wave. The dispersion relation (7a) simplifies to 

W0 ,J - Wo,J-l = k • (7b) 



634 Journal of Marine Research 
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2 K 

Figure 1. Dispersion relation for waves on an equatorial /3 plane for w > O. The relation w(k) 

= -w(-k) may be used for w < 0. The points A and D are described in the text. 

For definiteness take Wo1 > 0; then W o2 < 0. We have labeled the equatorial 
Kelvin wave by n = -1. Its dispersion relation is simply 

(i)_l = k . (7c) 

(We drop the redundant second subscript.) The dispersion relations (7) are displayed 
in Fig. 1 for w > 0; since w(-k) = -w(k), the values for negative w may be ob-
tained by reflecting the graph through the origin. 

The vector functions <Pn,lk,y) specify the meridional structure of u, v, and h for 
each wave. First define three vector functions of y only: 

Wn(y) = (y t/Jn(y), 0, - d t/Jn(y)/dy) 

Vn(y) = (0, t/Jn(y), 0) 

M,.(y) = (- d tf,,.(y)/ dy, 0, y t/Jn(y)) 

where t/Jn is the nth (normalized) Hermite function defined by (4a). For n :!,: 0 

(8) 



1976] Cane & Sarachik: Forced baroclinic ocean motions 

q>,.,J(k,y) = w,.,J(k) W,.(y) + k M,,(y) - i(wn](k) - k 2) V,.(y) 

For the Kelvin wave, n = -l, 
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(9) 

(10) 

Having established our notation, we wish to note some of the characteristics of 
these solutions important to what follows. (See Moore and Philander, 1976, for a 
more complete account). The higher frequency branches in Fig. 1 are the inertia-
gravity waves, the lower frequency curves for n > 0 are Rossby waves. The Rossby 
waves all have a westward phase velocity. The dotted line 2 kw= -l divides those 
waves with eastward group velocity from those with westward group velocity. For 
a given zonal wavenumber k the larger the n the smaller the group velocity. For 
the Rossby waves v and h are in approximate geostrophic balance for large k, 
while as k 0, u and h approach geostrophic balance. The large k Rossby waves 
are approximately nondivergent. The mixed mode (n = 0) behaves like a Rossby 
wave for small wavelength waves with westward phase speed; it behaves like a 
gravity wave for k > 0. Both the Kelvin wave and the mixed mode have eastward 
group velocity for all wavelengths. The Kelvin wave is purely hyperbolic while all 
other wave solutions to (1) are dispersive. 

3, Forced barotropic response 

We have discussed the free solutions and the dispersion relations for the equa-
torial beta plane equations. The kinematics of these waves are quite involved and 
make a direct attack on the initial value problem almost byzantine in its complexity. 
To illuminate our important points in a simpler context, we will, in this section, 
examine a problem which exhibits many of the same features of the equatorial beta 
plane problem. The model chosen is the barotropic vorticity equation. It can be de-
rived from the single v equation by making two assumptions viz. the time scale is 
long compared to a half pendulum day, and the depth is large enough so that the 

( 
f 2 L2). . rotational Froude number gH 1s no larger than order uruty. (See Anderson and 

Gill, 1975, for a more extended discussion). The resulting equation can be written 
in terms of a stream function tJi such that v = t/J.,, u = -t/111 : 

(11) 

where C(x,y;t) = F 11 - G., is the curl of the wind stress and LB is the radius of 

deformation. 
We will confine ourselves to longitudinal forcing of the form e'111 since this case 

gives a purely zonal propagation, in analogy to the baroclinic equatorial case. The 
equation we will look at is therefore 

it,.,.,t - m 2 it,, + /3 t/1. = C(x;t) (12) 
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w 

B 

B 

Figure 2. The barotropic dispersion relation w = -{3k(k' + m')-1_ The points A, B, C, D are 
described in the text. 

where m2 = l 2 + LR-2• [Note that m2 corresponds to the 2n + l of Eq. (4b)]. 
North-South propagation can be recovered by Fourier analyzing the y dependence 
of a forcing, solving for each l, and summing the response. 

We will be particularly interested in forcing functions switched on in time, in the 
form H(t), where His the Heaviside step function. Previous studies have examined 
periodic time behavior (Veronis and Stammel, 1956), and impulsive time behavior 
8(t) (Veronis, 1958, exactly; and Longuet-Higgins, 1965, approximately). Dickinson 
(1969) has examined the general problem of impulsive and switched-on sources in 
a mostly atmospheric context. The seminal paper of Lighthill (1969) has treated 
many of these same problems: it is to clarify the approximations made in that paper 
that this section is written. After much of this work was completed, the paper of 
Anderson and Gill (1975) appeared. Many of the features to be described below 
can be observed in their numerical simulation although, as with Lighthill's paper, 
the nature of the approximations they made in describing their simulations is here 
clarified. 

Eq. (12) is dispersive and admits free wave solutions of the form e'<ka,-wt> if the 
dispersion relation 

w = -(3k(k2 + m2)-1 (13) 

is obeyed. 
Fig. 2 shows a plot of the dispersion relation. Note how similar this curve is to 

the baroclinic Rossby wave dispersion relations shown in Fig. 1. Since we will be 
interested in H(t) forcing, we might expect the zero frequency points A and D to 

have special significance-we will see that this is true. The point B ( coordinates k = 

± m, w = ± L) is a point of zero group velocity (w'( ±m) = 0). Point C 
2m 
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•=O j 

x-l f:Jt 
• 8 m2 

Figure 3. Sketch of asymptotic barotropic response to ll(x) 8(t) forcing. Not to scale. 
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( k y3f3 ) . f . . ( -= ± 1s o a maxmmm eastward group velocity w" (±y3m) = 0, 

w' ( ± 3m) = ¼ L) A is, in addition to being a point of zero frequency, also a 
m2 

point of maximum westward group velocity -/3/m2• We will see that it is this dual 
property that A possesses, being both a point of zero frequency and an inflection 
point of the dispersion relation, that accounts for its asymptotic dominance. 

Longuet-Higgins (1965) has investigated the long time behavior of the impulse 
Green function 

Gtc/lJt< 1> - m2 G/1> + f3 G/l}< 1 > = 8(x) 8(t) (14) 

by looking at the asymptotic properties of the Fourier transformed solution. Asymp-
totically the response may be summarized by the sketch in Fig. 3. The response 
arises primarily from the inflection points ("caustics") of the dispersion relation. 
After a very long time, the t-! wake will die away and nothing will remain. This is 
in contrast to the f plane analog in which a geostrophically balanced flow over a 
radius of deformation would remain. 

The switched-on forcing is quite different even on the /3 plane because at long 
time, a steady response endures. The Green function for this case satisfies 

G,,:r; t< 2> - m 2 G/2 > + /3 G,,<2 > = 8(x) H(t) . (15) 

An immediate solution may be obtained by Fourier transforming in space and 
Laplace transforming in time, with initial condition G<2 > = 0 for t < 0. The result-
ing transform denoted by the argument, p, is 

0<2> (k· ) - 1 1 
' P - p (- k2 - m2) p + ik /3 (16) 

There are two interesting and seemingly incompatible limits to this equation. If 

G< 2>(k,p) (mp)-2 and G<2 > (x,t) - t m-2 H(t) . (17a) 
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If, however, we take the long time limit p 0 first, 

0< 2> (kp) (ik f3 p)- 1 and G<2 > (x,t) 13-1 H(x) H(t) (17b) 

Both limits (17a) and (17b) are valid long-time solutions. The first represents secu-
lar growth due to resonant forcing at k = 0, w = 0 and the second represents the 
steady (we will call it Sverdrup) long-term forced response. In terms of the original 
equation (16), the first solution has -m2 G/2>, and the second /3 G ,,<2>, being bal-
anced by the forcing. We will first present the correct asymptotic expansions and 
than a heuristic argument that will explain the asymptotics and the transition from 
(17a) to (17b). 

The complete solution to (15) with explicit time dependence is expressed in terms 
of the inverse Fourier transform as 

0< 2> (x,t) = 11 c2J + 1/2> ' (18a) 

where 

/ 1 <2> = (21r)-1 5:
00

(ikf3)- 1 exp[ikx] dk = 13-1 H(x) (18b) 

and 

(18c) 

with 

x(k) = k{ + /3 k (k2 + m2
)-

1 
• 

Two immediate comments can be made about G<2 >. First, that an exact solution 
can be obtained by first Laplace transforming (15) in t and suitably inverting the 
transform, as in the method of Veronis (1958). The exact solution is a complicated 
double integral from which it is impossible to extract much useful information, just 
as in Veronis' case. (The interested reader may apply to the authors for this solu-
tion-it is not worth giving here). The second comment is that it appears at first 
sight that the integral (18c) is easily performed since the integral has three isolated 
singularities (the pole at k = 0 and essential singularities at k = ± im), and the 
contour can be closed at infinity. The residues at the essential singularities, how-
ever, are only expressible as multiple infinite sums and it has proven impossible to 
extract any useful information from the integral this way. 

We therefore proceed to analyze the integral (18c) by approximate methods. The 
short time behavior can be obtained by expanding the integral in powers of t, the 
first term yielding 

G< 2> (x,t) - t e-m 1°1 as t 0 . 

We note that the initial response grows linearly with t arbitrarily far from the forc-
ing. The source of this curious behavior is that the approximations leading to (16) 
have idealized the ocean as infinitely deep. There are therefore infinitely fast waves 
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("precursors") which allow a small growth before any planetary wave response can 
have sizeable amplitude. 

The large t response ( t > > ; ) is obtained by applying the method of station-

ary phase to the integral (18c) for constant values of 1: = _3_ For almost all 1: t . ~. 
the method will yield a t-! behavior. Anything larger than 1-! will then clearly 
dominate the asymptotic behavior. 

It proves illuminating to consider g = T = e where e is very small. This arises, 

for example, in considering the long-time behavior at a fixed point in space. 
The wavelengths contributing to the stationary phase solutions are solutions of 

w'(ki) = E and are found to be k = ± m, with no restrictions on x, and k = ± 

when x > 0. We expect the behavior at a fixed point to be dominated by 

the zero group velocity points and a glance at Fig. 2 shows that these are indeed 
points B and D. The restriction x > 0 attached to point D simply means that the 
group velocity, no matter how small, is always positive, so that for t > 0 only points 
to the east of the forcing point x = 0 will be affected. 

The contribution from the points B on the dispersion curve is easily found to be 

J/ 2
> (B) ({37tY cos ( mx + + ; ) (19a) 

while the contribution from the points D, k = ± ({3e- 1)!, is 

v 2 > (D) -
1 -

1
-

1 
cos ( 2 v/3 x t - __!!.___) y1T {3 (x{3t)l 4 

(19b) 

Note that the contribution from point D goes as t-l and is therefore expected to 
make a major asymptotic contribution. Note, also, that the limit x 0 in (19b) is 
not defined. The source of this difficulty can be found by looking at (18c) for ex-

tremely large k: 

[(2) (D) - _l_f"° l~k 
21rf3 -oo 

it ( kE + _I}_) 
e k dk . 

This integral can be evaluated exactly by changing variables, expanding the ex-
ponential in Bessel functions and then evaluating by contour integration at the pole. 
The result is an ordinary Bessel function of zero order (this solution first appears in 

Rossby, 1945): 

//2 l (D) - -
1
- J0 (2 y{3xt) 

/3 
and this is the uniform asymptotic result for t large, x 0. 

(19c) 
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The large t expansion of (19c) is identical to the stationary phase result (19b). 

The local wave number is and so increases with time, and the local fre-

quency is ~x which decreases with time. The width of the main peak about 

x=Oiso(+). 
The asymptotic response due to the inflection point C of the dispersion curve 

(maximum eastward group velocity) can be uniformly expanded near the wave front 
80 = g - t /3/ m2 = 0 as 

v¾m (:~y Ai[(
3!t 2

)½ 80 ]sin[ v3( mx+ :~)] 

(20) 

where a= 3 /3 m- 4
• This behaves as t-A at the wavefront, t-! behind the wave-

front (to blend in with the general residual t-! decaying motion), and e-t ahead of 
the wavefront. 

The major response to the switch-on forcing arises from the point of maximum 

westward group velocity ( - !
2 

) , point A in Fig. 2. The method of Chester, 

Friedman, and Ursell, 1957; (see also Friedman, 1959) breaks down in this case 
because k = 0 is a pole of the integrand as well as being a double zero of the phase. 
This problem can be avoided by formally differentiating 12 <2J with respect tog and 

uniformly approximating the derivative near the wavefront 8A = g + = 0 : 
m 

(21) 

Asymptotic series can be integrated term by term so that we are assured that the 
integral of (21) is indeed asymptotic to l / 2 J (A): 

12< 2> - -
1-f ifo-i aA Ai(-z) dz - - 1- . (22) 
/3 0 3/3 

The response (22) is plotted in Fig. 4. As the front propagates, its slope steepens as 
t J and its width narrows as t- J. The wake consists of the -1/{3 steady response 
plus wiggles ("postcursors") which decay as t- ! . At very long times the response 

(22) essentially (to within wiggles) becomes a step function about x = _Ii_ t so that 
m2 

G<2J [ H(x) - H ( x + !
2 

t ) ] - / 0 ( 2yf3 x t) + O(t-A) . 

(23) 
The higher order contributions come from the previously derived (19c) and (20) 
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Figure 4. Behavior near the hyperbolic wave front 8A = g + {3tl rn' = 0. The dashed line is 
H(8A)-

with the t-l behavior of the Bessel function response (19c) formally being next 
most important. A sketch of the total asymptotic (t > > m/ {3) response is given in 
Fig. 5. 

We may interpret these results for G <2 l using an argument implicit in the work 
by Anderson and Gill (1975). If we scale the time derivative in the exact Eq. (15) by 

, the equation should go asymptotically as 
G <2i 2 G <2i 

"':r - m T + /3 G ID( 2 ) = o(x) H (t) (24) 

The large T limit reduces the order of the equation from second to first (in space) 
so that we may appeal to the methods of singular perturbation theory. We therefore 
first look at the "interior" equation 

- m2 G/2,H) + /3 G ID ( 2,H ) = o(x) H(t) . (25) 

Eq. (25) is purely hyperbolic (hence the superscript H) and supports discontinui-
ties on characteristics. The solution to (25) is 

Figure 5. Sketch of asymptotic barotropic response to 8(x) H(t) forcing. Not to scale. 
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G< 2
,H> = [ H(x) - H ( x + !

2 
t ) ] (26) 

which is the behavior already found in (23). 
It should be noted that the approximate integral that led to the asymptotic results 

(21) and (22) can be written 

J2 <2> (A)= - -
1-f"' -. l_ exp { it ( g + ~) k - itak3

} dk . 
21r -co zk/3 m 

The k 3 term in the exponential gives all the asymptotic dispersion. If it were absent 

the integral would simply be - -
1
- H ( x + L t ) . It is in this sense that 

/3 m2 

the integral of the Airy function is the (asymptotically) dispersed form of the step 
function, and it is in this asymptotic sense that the approximations of Lighthill 
(1969) and Anderson and Gill (1975) leading directly to the step function must be 
understood. Similarly, the Airy function solution to (14) is the dispersed form of 

the corresponding solution to the hyperbolic part of Eq. (14), 8 ( x + !
2 

t ) . 

The effects of dispersion are more pronounced in the 8(t) forcing case in the sense 
that the Airy function resembles the delta function less than the integral of the Airy 
function resembles the step function. This difference is due to the lack of a sus-
tained forcing in the 8(t) case: all the response simply disperses and propagates 
away, while in the H(t) case a steady response remains. 

The full Eq. (15) with forcing 8(x) H(t) has the following jump conditiolli at the 
forcing point: 

[G<2 >] = 0, [G.,/ 2 >] -m2 [G/ 2>] = 1 , (27) 

where the bracket indicates the difference of G< 2 > at 0+ and 0-. The hyperbolic 
solution (26) satisfies the jump conditions 

[G(2,H)] = - _1_, [G/2,H)] = [G.,1(2,H)] = 0 
/3 

(28) 

which clearly violate the correct conditions (27). 
A boundary layer correction to the interior solution must be added to aatisfy the 

correct jump conditions. The boundary layer equation for (24) is 

G.,,,t< 2,J> + {3 G/l/< 2,J> = 0 . (29) 

The boundary layer width is expected to be O(t-1). The exact solution to (29) is a 
sum of Bessel function terms of the form 

( 
{3X )n/Z 
_t_ J,. (2y {3 x t) for - oo < n < oo . 
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It can easily be seen that n = 0 is the correct choice. The correct correction 

G<2
,J) = - ]0 (2\J/3 X t) 

satisfies the jump conditions 

[G<2,J>J = - , [G.,/2,J> J - m2 [G1<2,J>J = 1 

and does have a peak of width O(t-1) . 

The sum 

643 

(30) 

(31) 

G<2
J = G<2

,HJ + G<2,J> = [ H(x) - H ( x + !
2 
t)] - ; ]0 ( 2\J/3 x t) 

(32) 

gives a complete solution satisfying the correct jump conditions at x = 0. If G<2,H> 

is understood as the limit of (22), it is smooth about the wavefront. Understood this 
way, (32) is the correct asymptotic interior-plus-boundary-layer solution to (15) 
and agrees with the dominant asymptotic behavior previously derived in (23). 

The effects of a distributed forcing can be understood by considering the equation 

Ga:a:tcs,4) - m2 G/8,4J + /3 G.,<a,4) = H(±x) H(t) 

where the superscript 3 will refer to the H(x) forcing and 4 to H(-x). 

The solution to (33) is 

where 

/1<8,4) = + -- ---eik111 dk =--x H(±x) 1 SO() 1 1 
21r - oo k 2 /3 /3 

and 

(33) 

(34a) 

/2(8,4) = ± _l_foo _1_ eit x(k) dk . (34b) 
21r -00 k2 /3 

Care must be exercised in the interpretation of (34a,b). The poles are to be slightly 
displaced into the positive and negative imaginary plane in performing the integra-
tion in order to guarantee the existance of the integrals. 

The stationary phase evaluation of (34b) for g = E (small) yields 

J2(s,4J (B) = _ 2 (/33 mt)-! cos ( mx + __§!_ - _!!_) (35a) 
1r 2m 4 

from k = ± m, and 

1 -J2 (8,4J (D) = ± - -11 (2\jf3xt) 
/3 f3t 

(35b) 
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cos ( 2y,8xt + ; ) 

from k = ± ! . Also, as before, we find 

J/ 8
,
4

> (C) = ± 
3 

,8
2 

m2 ( :: y Ai [ ( 
3:-y t ~ 80 ] 

(35c) 

near the wavefront 80 = 0. For the hyperbolic wavefront 8A = 0, the integral (34b) 
has a double pole at the point k = 0. A partial integration gives 

( x+L t ) 
/ 2(8,4) = + m2 f "" 

21r,8 - oo 

_1_ e itx( k ) dk 
ik 

and if care is taken in keeping the locations of the pole (or equivalently the contour) 
straight, the integrals may be done as before. 

1 ( ,8 )[f8A a- A t i! ] 
/ 2 <8> (A)=_ 13 x + m

2 
t 

O 

Ai(-z)dz + t 

(35d) 

(x+L t )H(x+L t). ,8 m2 m2 

//4> (A)= - ( X + !2 [ )[ - s:A a-A I~ Ai(-z)dz + J ] 

(35e) 

-+( X + ! 2 t ) H ( - ( X + ! 2 t ) ) · 

Sketches of the response G <3 > and G <4> are given in Fig. 6. 
Two points are important in these distributed forcing cases. The first is that the 

hyperbolic response now by itself satisfies the jump conditions at x = 0: 

[GC8,4)] = [G.,t(S,4)] = 0 

[G.,.,tcs,4)] + ,8[G.,<s,4)] - m2 [Gt <a,4)] = ± 1 

so that no boundary layer correction is needed at x = 0. This is why the Bessel re-
sponse (35b) is of order t-1 and therefore below the t-~ background noise in the 
system. The Bessel boundary layer correction is only needed, to 0(t-l), at a forcing 
discontinuity when the hyperbolic response is discontinuous at the discontinuity. 



1976] Cane & Sarachik: Forced baroclinic ocean motions 645 

Figure 6. (a) Sketch of asymptotic barotropic response to H(x) H(t) forcing. Not to scale. (b) 
Same for H(-x) H(t) forcing. 

The second point involves the secular growth, -t/m2, that shows up in both G<8 > 

and G<4 >. We can now explain the two possible long-time limits we found previously 
in Eq. (17). The essential explanation of secular growth is that it is the resonant 
response to forcing at w = 0, k = 0. That the ultimate frequency is w = 0 is guar-
anteed by the nature of the forcing H(t). The k = 0 is harder to achieve; in fact it is 
the existence of forcing discontinuities that prevent k = 0 from being achieved. If, 

at a point x, at a time t, there is also an equal forcing at point x' = x + t, the 
m 

point x will have no way of knowing that there is a forcing boundary somewhere 
out to the east of x'. The growth will then be secular in t. As soon as the point x' 
falls beyond a forcing region, the secular growth will cease. Thus, in Fig. 6a and 

6b, there is secular growth for all x at time t such that x + 13
2 t also lies in the 

m 
forcing region and the growth ceases when the condition no longer holds. The ex-
planation of the transition from secular growth to Sverdrup for a switched-on forc-
ing is in essence related to our previous result that the steady response is signalled 
by the hyperboliq group velocity -/3/ m2 • 
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4. Forced baroclinic response: general formulation 

In this section we give a general formulation for the solution of the forced shal-
low water equations on an equatorial beta plane. Our approach is along the lines 
suggested by Matsuno (1966). The first task is to separate out the meridional de-
pendence by an eigenfunction expansion. In doing so we rely on the information 
about the free solutions that was reviewed in Sec. 2. Once this first task has been 
accomplished we are left with the problem of finding the temporal and longitudinal 
structure of the response. This latter task is simplified by making use of the knowl-
edge gained from the asymptotic analysis of Sec. 3. 

If, in the shallow water equations (la,b,c) we take f = /3Y and apply the equa-
torial scaling (2) we arrive at the equations 

u,-yv + h,,=F 

Vt+ yu +h 11 =G 

h, + u,,+ v11 = Q 
These may be written in the compact form 

auT + .Q uT = FT 
at 

(36a) 

(36b) 

(36c) 

where u = (u, v, h) and F = (F, G, Q). Superscript T indicates transpose and .Q is 
an operator depending only on the spatial variables x and y. Fourier transform o 

and F from (x, y, t) space to (k, y, t) space by applying the operator 

f:
00 

( ) e-'k,i dx to each component. Then 

auT (k,y,t) n(k ) T (k T 
at + ~" ,Y u ,y,t) = F (k,y,t) 

where 

0 -y ik 

.Q(k,y) = y 0 a 
ay 

ik 
a 

0 
ay 

It now follows immediately that the free wave solutions (6) ff. yield the vector 
eigenfunctions of .Q(k,y); i.e., 

.Q(k,y) q,,.,l(k,y) = iw,.,J(k) q,,.,l(k,y) 

where the eigenvalues iw,.,1 are given by the free wave dispersion relations (7). 
We now define a scalar product by 

(37) 
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where * denotes complex conjugate. In the Appendix it is shown that the eigen-
functions <Pn,;(k,y) are orthogonal and complete. This means that any vector forcing 
may be expanded in the <Pn./s if its components may be expanded in Hermite func-
tions. As a general rule, a function may be represented as a convergent series of 
Hermite functions if it is square integrable in the interval (- oo, + oo ). Questions of 
convergence make for some nice mathematical problems, but in view of our pur-
pose such questions may be circumvented. We are concerned with ocean basins in 
equatorial regions of limit ed latitudinal extent. The form of the forcing function (or 
the response) beyond the limits of the basin should make no difference to the basin 
response so the forcing may always be taken to go to zero sufficiently rapidly as 
jyj oo. For example, any physically reasonable forcing may be multiplied by exp 
(- b2 y 2

) , b2 < < 1 to guarantee convergence without changing its value near the 
equator; the projection of this forcing onto the modes with n small will be un-
changed (since these modes have small amplitude away from the equator). 

Explicitly, expand 

co 

e-b• 11• = L f n lf,,.(y) 
n=O 

where the coefficients are f,. = s:
00 

e- 0' II" tf,11(y) dy. The integral is easily per-

formed-only even coefficients enter 

1rl (2(2m)!)i (1 - 2 b2)m 
f 2m = 2"' m! (1 + 2 b2r +1 

For a forcing extending far beyond L, b2 < < 1 so that 

f 2m ~ (1 - (4m + 2)b 2) 

and we conclude that only those modes that have their turning points lying within 
the half width of the forcing will be significantly excited. For b2

( 4m + 2) < < 1, the 
result is identical to the result for a constant forcing. 

The fact that modes with n large might be affected by this alteration i5. an indica-
tion of the fact that these infinite beta plane modes are not the eigenfunctions for a 
bounded basin. (The correct modes involve the parabolic cylinder functions which 
give v = 0 at the zonal walls). Those modes which have their turning latitudes 
equatorward of the latitudes bounding the basin will be essentially unaffected by 
the walls. For an ocean bounded at ± 15° with a baroclinic radius of deformation 
of 300 km this means those modes with n ""' 12. Higher modes must be corrected 
by considering the effects of walls at a finite distance from the equator. Such 
changes will make little difference near the equator where the amplitude of these 
modes is small. In summary, since our problem is to calculate the equatorial re-
sponse, we needn't concern ourselves much with questions of convergence or the 
influence of northern and southern boundaries. The chief exception to thi5. 5,tatement 
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is the possibility of fast moving boundary trapped modes which may turn the cor-
ners at the bounding meridians and propagate into the equatorial region (e.g., 
coastal Kelvin waves; see Moore, 1968). 

The completeness of the eigenfunctions means that for any (physically interest-
ing) forcing function we may write 

F(k,y,t) = L bn,/k,t)q>,.,;(k,y) (38) 
(n, j)fJ 

where J is again the set of permissible subscripts. The bn,; may be computed as 
follows. Since the q,n,; are orthogonal it follows from (38) that 

(39) 

where 
N,.,J(k) = (q>n,J, q,,.,1) = (2n+l)(wn,/ + k2

) + 2kw,.,;2 + (wn,l- k2
)

2 (40) 

Then with the notation (A),.= s:: A tfln dy , 

and for n 0 

where 

and 

b_ 1(k,t) = 2-1 (F + Q)0 , (41a) 

dn(k,t) = (yF + Q11),. 

en(k,t) = (F11 + yQ)n 

gn(k,t) = (G)n . 

(42a) 

(42b) 

(42c) 

Once the bn,J has been obtained, one may proceed in the manner usual with 
eigenfunction expansions: 

Let 

U = L lln ,;(k,t) <Pn,;(k,y) (43) 
(n ,j)EJ 

Then 

a~,j + i W n,j a,.,, = bn,J for all (n,D E J ' 

or 

-l w I f t iw,.J(s-1) 
a,,,;(k ,t) = a,,,1(k,O) e 

nd + 
0 

b. ,iCk ,s) e ds . (44) 

This equation is familiar from the linear harmonic oscillator problem. If the initial 
conditions are that u = 0 at t = 0 and the forcing is at a single frequency cr so that 
bn,;(k,t) = bn,/k)e-t rr t , then 
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b ·(k) a -(k t) = n,, [e- i er t _ e-iw 1 ] 
n , J ' i(Wn,; - CT) nd 

• 

As with the linear oscillator, the first term in the square brackets has the same 
time behavior as the forcing, while the second is the free wave response needed to 
satisfy the initial conditions. Clearly, the closer the forcing frequency is to the nat-
ural frequency the larger the response. At resonance CT = w , and n . = tb ·(k)-nJ -n ,J n ,J 

secular growth. For a steady forcing CT = O so that 

b (k) -i liJ t 
an,l k ,t) = . n,; (k) [1 - e •. , ] . 

l Wn,J (45) 

In a formal sense the problem of finding the ocean's response to an arbitrary 
forcing is now solved-one need only invert the necessary Fourier transforms. 
That is 

where 

u(x ,y ,t) = [u(x,y,t), v(x,y,t), h(x,y,t)] = L U,,,;(x,y,t) 
(n,J)<J 

1 5+00 

Un,;(x,y,t) = 21T - oo an,i k,t) q> ,.,;(k ,y) eikw dk . (46) 

As a rule the integrals in (46) are very difficult to evaluate, primarily because 
both a..,; and q>,.,; depend on w,,,1 and the latter has a very complicated dependence 
on k [see Eq. (7a)]. Some simplifications are clearly in order. To begin with, we 
consider only the case where F is switched on but otherwise steady and the initi al 
conditions are u = v = h = 0. This amounts to seeking the response to a step func-
tion in time; the response to other time structures may be found by a convolution. 
In thls case (45) applies so that (46) becomes 

1 5+00 

U,,,; = - 2 
1T - co 

b,,,1(k) 

iw,,,1(k) 

- iwn 
1

( k ) t 

[1 - e · ] e'kw q,,,,1(k,y)dk . (47) 

Let us for the moment restrict ourselves to forcings F which do not have singulari-
ties which contribute to the integral (47), except perhaps at k = O; we thus focus 
on the nature of the response. Among the forcings with this property are those with 
appreciable amplitude only at long wavelengths, lkl < < 1 (cf. Lighthill , 1969). 
This is a useful parameter range to consider because the baroclinic length scale L 
is small compared to the scale of the atmospheric forcings. Since the Kelvin wave is 
nondispersive (w = k) (47) is easily calculated for n = -1. It will be sufficient for 
our purposes to evaluate the asymptotically less important inertia-gravity (j = 1,2) 
versions of (47) by using the long wave approximations 

Wn,l = (2n + 1)½, Wn,2 = -(2n + 1)! . 

The integrals for the Rossby mode case are still complicated but we will obtain 
approximate asymptotic solutions using the results found in Sec. 3. [Note that for 
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Rossby waves the dispersion relation (7a) is well approximated by w,.,s = -k/(k2 

+ 2n + 1) which has the same form as the barotropic dispersion relation (13).] In 
particular, only the hyperbolic part of the dispersion relation 

Wn,3 = -k(2n + 1)-1 (48) 

is needed to give the dominant asymptotic response. It must be remembered that 
any step function response should be interpreted with its appropriate Airy function 
smoothing as in Fig. 4. [Compare Eqs. (22) and (23); also see Eq. (35d)]. Also, in 
the infinitely deep barotropic ocean the precursors can travel infinitely fast, whereas 
the baroclinic system has a finite depth H so that no signal will travel faster than 
(gHP (=1 in nondimensional units). We also note that because of the way that 
b,.,3 and CJ>n,a depend on k the directly forced part of the integral (47) has a more 
complicated form that the barotropic analogs, Eqs. (18b), (34a), considered in 
Sec. 3. [The directly forced part arises from the "1" in the square brackets in ( 4 7) 

as opposed to the e-i"' •. ,, term which gives the free motions.] However, it is still the 
case that the only contribution to this part of (47) comes from the pole at k = 0 so 
that ( 48) may be used. 

Hence the dominant asymptotic response that arises from point A (w = k = 0) 
may be obtained by using (48) in (47). We may write b,., 3 = k- 1 rn(k) where r,. 
depends only on the vector of forcings F. From (41) 

r,.(k) = e,.(k) - (2n+ l)- 1 d,.(k) 

In addition, cp,.,3 = k R,. + i k2 (2n+ l)- 1 V ,., where 

R,.(y) = [4n(n+l)]- 1 [(2n+l) M,,-W,.] 

(49a) 

(49b) 

is a multiple of the k = 0 Rossby mode with v = 0 and u and h in geostrophic 
balance. Eq. (47) now becomes, with g = x + (2n+ 1)-1 t 

f +"' r (k) 
U..,3 (x,y,t) = 21T ~k [elk€ - eik"'] 

-oo l 

x {(2n+ 1) R,.(y) + ik V,.(y)} dk 

= (2n+l) R,.(y) s: r,.(x') dx' + V,.(y) [r,.(g) - r,.(x)] (50) 

Since the long wave assumption is equivalent to asserting that !BF/ axl < < IFI it 
follows that ar,./ax << r,.. Hence the long wave Rossby modes described by (50) 
have v components which are much smaller than their u and h components. Further, 
these modes have u and h in geostrophic balance. Eq. (50) also shows that the total 
response U..,s at a point x consists of a locally forced part and a part that has propa-
gated in from a point x' = x + t(2n+ l)- 1

• The latter is a synthesis of free waves 
that arises from the need to satisfy the initial conditions (recall the discussion pre-
ceding Eq. (45)). 
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5. The response to x-independent forcings 

The procedure used in obtaining (50) is equivalent to obtaining the leading 
asymptotic behavior of (47) from the pole at k = 0. If Fis truly independent of x 

then the b,.,; are all proportional to B(k) and the solution is exact. It may be written 
as a sum 

00 00 

u = UK + L U..,1 + L 0..,A (Sla) 
n=O »=1 

where, with m = (2n + 1 )l 

U,,,1 = U..,1 + U..,2 = [m-s d,. sin mt+ m-2 g,.(l - cos mt)]W,.(y ) 

+ [m- 2 d,. (cos mt - 1) + m-1 g,. sin mt]V,.(y) (51b) 

0..,A = U,.,3 =tr,. Rn(y) (Slc) 

uK = u_1 = t b_1 W _1(y) (Sld) 

The subscripts I, and K denote inertia-gravity and Kelvin modes, respectively, while 
A denotes the Rossby mode contribution from point A. (We exploit the one-to-one 
correspondence between the eigenfunctions cp,,,1 and the free waves cp,.,1 exp i(kx -
w,.,1 t) to carry over the free wave nomenclature.) The solution is of course qualita-
tively similar to the approximate long wave solution. The inertia-gravity modes of 
the latter are exactly like (Slb) except that d,. and g,, are functions of x; the similari-
ties in the Rossby modes are evident from a comparison of (Slc) and (50); the 

Kelvin mode would have f 11 

b_1(x')dx' in place of tb_1 in (Std). 
IJ-t 

We now wish to consider the solution (51) in some detail. Suppose first that the 
forcing consists solely of an east-west wind stress (i.e., F = F(y) ; G = Q = 0). The 
response consists of secularly growing u and h fields, plus a steady v component: 

(u, v, h) = (t U(y), V(y), t H(y)) . (52) 

In addition, there is a series of inertia-gravity waves which are required to satisfy 
the initial condition v = 0. From a mathematical point of view the solution is best 
explained in terms of Eq. (45) and the dispersion diagram Fig. 1. The forcing func-
tion has zero frequency and zonal wavenumber so it lies at the origin of the disper-
sion diagram. This is a point of resonance for the Rossby and Kelvin waves resulting 
in a secularly growing solution. The discussion following (50) shows that this secu-
larly growing part of the solution may be viewed as the sum of a locally forced 
part which goes like -x, and a propagating free wave part (required by the initial 
conditions) which goes like x + t (2n+l)-1 • This point of view clearly reveals the 
way in which the secular growth depends on the assumption that the ocean is un-
bounded. The propagating part of the solution which arrives at the point x at time t 
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Figure 7. Unbounded baroclinic response to a westerly wind F =I= 0, G = Q = 0. (a) F(y) = 1; 
(b) F (y) = exp(-y'/4); (c) F(y) = y exp(-y'/ 4). 

started at x' = x + t (2n + l)- 1 at t = 0 ; as t oo Ix'! oo . Secular growth is 
maintained by waves which propagate in from infinity. A boundary at x" < x' would 
cut off the source of these waves and prevent this growth from continuing. 

The steady part v = V(y) is the forced response of the inertia-gravity modes at 
k = 0 (not on resonance), while the oscillating part is made up of inertia-gravity 
waves with k = 0. At the equator the Coriolis term is absent and the wind stress 
causes a steady acceleration in the direction of wind U(O) = F(O). Note that x-inde-
pendent zonal winds off the equator do not contribute to the zonal current at the 
equator. Note too that U and H of (52) are in geostrophic balance so that dH/ dy 
is zero at the equator. As a general rule, the time growing part of the response 
tends to be more equatorially confined than is the (smooth) zonal wind system that 
forces it, while the steady v field asymptotes to the wind drift value -F(y) / y as y 
increases and the Coriolis balance becomes dominant. An illustration of these fea-
tures is given in Fig. 7. (The solution for the case F = 1 was first obtained by 
Yoshida, 1959). A somewhat special instance of these general rules arises when F 
is the simplest continuous odd function, i.e. F(y) = y. In this case U = H = 0 and 
V = -1 everywhere. 

The response to a purely meridional wind stress (G = G(y), F = Q = 0) is very 
different, consisting of steady u and h components and a series of inertia-gravity 
waves of zero zonal wavenumber which are required to satisfy u = h = 0 at t = 0. 
There is no steady (or other non-oscillating) v component. Extra-equatorially, the 
steady part of the solutions U8(y), Hs(y) tends to approach the wind drift if G is 
smooth; i.e. 

as oo Us(y) G(y) / y, H 8(y) 0 . 

At the equator the Coriolis term vanishes and the wind stress is balanced by the 
"sea-surface setup"-that is, by dHs/dy. U8 need not vanish at the equator even if 
the stress does. The solution is of course not geostrophic. Mathematically speaking, 
the response comes from the inertia-gravity modes at the points on the axes k = 0 
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Figure 8. Unbounded baroclinic response to a southerly wind F = 0, G eJ= 0, Q = 0. (a) G(y) 
= I; (b) G(y) = exp(-y'/4); (c) G(y) = y exp(-y2/ 4); (d) G(y) = y. 

of Fig. 1. While the forcing is again at k = 0, w = 0, there is no resonant response 
in the Rossby and Kelvin modes because these modes have no meridional com-
ponent at k = 0. Fig. 8 shows U, (y) and H 8 (y) for a number of cases. u . = 0 at the 
equator and asymptotes to 1/y as y oo; these constraints determine its general 
shape. 

With a meridional wind stress the only meridional motions are those associated 
with the inertia-gravity waves. These are the motions which accomplish the redis-
tribution of mass required to set up a non-zero H. (y). The partition of energy be-
tween the steady part of the solution u., H 8 and the inertia-gravity waves thus de-
pends solely on the initial conditions; for u = v = h = 0 at t = 0, the energy is 
equally divided. By contrast the amount of energy going into the secularly growing 
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solution for F =I=- 0 is independent of the initial conditions. The difference between 
the two cases is reflected in the fact that if one tries a solution of the form (52) in 
Eqs. (1) for G = Q = 0 and F = F(y) the solution is determined; whereas with F = 
Q = 0 and G = G(y) choosing the forms U = u. (y), H = H. (y) , v = 0 leads to 
an indeterminate set of equations. 

Finall y, we remark that the response to only a heating function forcing (F = G 
= 0, Q = Q(y)) has the same general components as the case of a zonal wind stress; 
that is, a form like (52) plus inertia-gravity waves. Of course, on a less superficial 
level of description, it is very different. For example, the response to Q = 1 is sun-
ply u = v = 0 and h = t; no gravity waves are excited. 

From (42a) and (51b) it may be seen that the amplitude of the gravity wave part 
of the response depends on the gradients of the external heating Q11 and the latitude 
tunes the zonal wind stress yF. Hence a large-scale heat source excites little gravity 
wave response, while a large scale zonal momentum source has a large gravity wave 
response. This is consistent with the well-known results for a mid-latitude /-plane 
or ,8-plane (e.g., Blumen, 1972). In addition, consideration of the coefficients in (51) 
shows that the response to a large-scale heating source tends to be no more equa-
torially confined than the source itself; the case Q = 1 is the simplest example of 
this. 

Before considering forcings which vary with x we wish to consider briefly a prob-
lem closer to the classical Rossby geostrophic adjustment problem: the response 
when the forcing is impulsive in time [F(y) 8 (t)]. Since our solution is for a step 
function forcing, and since the left-hand side of (36) is independent of tune, the re-
sponse to an impulse forcing may be obtained by differentiating the solution (51) 
with respect tot. Letting m = (2n + l)l the result is 

00 

o=b_1W_1+LrDR,. 
R=l 

00 

+ {[m- 2 dn cos mt+ m- 1 8n sin mt] Wn 
n=O 

+ [- m-1 dn sin mt+ g,. cos mt] V,.} . 

As compared with the longer time forcing, the gravity wave response is enhanced 
and the planetary mode response is reduced. This is to be expected, since the unpul-
sive forcing has, in effect, a higher frequency. If the forcing consists only of a 
meridional wind stress, there is no response in steady or slowly varying planetary 
modes; only free inertia-gravity waves are excited. In this case (Un,r, Un,r) = gn2 so 
that the energy in the nth mode depends only on the projection of the forcing func-
tion onto t/J,. and not on the nature of the medium; in particular, the more equa-
torially confined modes are not preferentially excited. The response to a zonal wind 
stress F or a heat source Q consists of free inertia-gravity waves together with a 
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steady response (u, v, h) = (U(y), 0, H(y)) where U and H are the same functions 
which appear in (52). The latter have been discussed above. The nth inertia-gravity 
wave has (2n + 1)1 times the amplitude of the nth wave in response to the step 
function forcing, but it is still true that the amplitude depends on yF + dQ/ dy. 
These waves are excited by a large scale momentum impulse, but are barely present 
in response to a smooth large scale heat source. (The response to Q = 1 x 8(t) is 
simply h = l for t > 0). Again, this is qualitatively similar to the mid-latitude 
result. 

6. The response to step function forcings 

In this section we solve for the response to a forcing which is again turned on at 
t = 0 and steady thereafter but whose zonal dependence is also a step function; i.e. 

F(x, y, t) = F(y) H(t) H(x) . (53) 

(The response to a forcing with arbitrary zonal structure could be obtained by a 
convolution). The solution of this section provides information about the effect of 
switching off a forcing in space that will prove very useful in understanding the 
effects of meridional boundaries. (See Cane and Sarachik, 1976). The solution may 
be obtained by applying the methods of Sec. 3 and 4. In doing so we note that for 
a meridional wind stress G proportional to H(x) the curl of the wind stress is pro-
portional to 8(x). This promotes the asymptotic importance of contributions arising 
from the points D where k -oo and w = -k- 1 0 [cf. Eqs. (19c) and (35b)]. 
These contributions may be calculated by noting that as k - oo 

_b_n,_3 - <Pn,3 = gn {M,.(y) + ik V n(y)} 
iwn,3 

so that the contribution to (47) from point Dis 

U..,s(D) = - (21r)-l [M,.(y) + Vn(y) _a_]f + oo gn e iCkQJ + t/k) dk . (54) 
ax -<» 

Hence, with gn(x) = H(x) so gn(k) = (ik)- 1 

u,. g(D) = -[ M,.(y) + Vn(y) _a_] l o(2y xt) 
· ax 

- ( t )! '/-= -M,.(y) lo (2yxt) + Vn(y) -;- l1(2 y xt) (55) 

The similarity of (55) to (19c) is even more striking when one realizes that if, = 
tfln(y) ] 0 (2yxt) is a stream function for u,.,g(D) with (u, v, h) = (- o/11, o/3), Yt/J). We 
note further that (55) can hold only for O < x < C,.t where C,. is the maximum east-

aw . C h ward group velocity, i.e. the value of ak at pomt w ere 

C,. = max ~% = [8(2n + l)]- 1 (56) 
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In interpreting the asymptotic solution (55) we recognize that there is no discon-
tinuity in the full solution because the asymptotic term (55) "blends" in with the 
asymptotically less important contribution arising at the wavefront where x = Cnt 
(cf. Eqs. 20, 35c). 

By making use of previous results, especially (50) and (55), we are now able to 
write down the total response to the forcing (53). Before doing so we digress to 
indicate another method of obtaining the solution. Apply the x-independent solu-
tion (51) for x > 0 and take its Laplace transform in time, thus going from the time 
to the frequency domain. Then find the free solutions needed to eliminate the dis-
continuities in u and hat x = 0. Finally, transform back to the time domain. (For 
details see Cane, 1975). This procedure is similar to that used by Lighthill (1969) 
and later by Anderson and Rowlands (1976a, 1976b) to calculate reflections at 
boundaries. 

The (leading asymptotic terms of the) response to the step function forcing (53) 
may be written as a sum 

00 

U = UK(l) + UK( 2
) + L {Un,/ 1

) + Un,/ 2
) + Un,/ 8 l} 

ti=O 

00 

+ Uo(S) + L {Un,A(l) + U,.,A <2 > + Un,A (S) + Un,D(S)} (57) 
n=l 

where, with m = (2n + l)! , 

UK(l) = UK H(x), u,.,/ 1 > = Un,l H(x), Un,A (l) = Vn,A H(x) (58a) 

U,.,/ 2 > = -d" T (0; x; ½ m-2 t) {m-s sin mt Wn + m-2 cos mt V,.} (58b) 

u,.,/ 5 > = gn T (0; x; ½ m-2 t) {m- 2 cos mt w,. + m- 1 cos mt Vn} (58c) 

uK< 2> = -b-1 T (0; x; t) (t-x) W _1 (58d) 

U,.,A <2
> = r,. T (-m- 2 t; x; 0) {[t + m2 x] R,, + V,.} (58e) 

U n A <3 > = -g [ 
2
n+ l ] T(-m-2 t · x · 0) R (58f) 

' " 4n(n+ 1) ' ' " 

U o<s) = go T (0; x; t) { - l o[2(x{t-xp] M0 + [ t~xT ] 1 [2(x{t-x})l] V0 

(58g) 

u,.,D(S) = g,. T (0; x; c,. t) { -lo (2\/xt) M,. + [ + T 11 (2\/xt) vn} . 
(58h) 

The vectors without superscripts appearing in (58a) are the x-independent solutions 
(51). T(xL; x; xR) = H(x - xL) H(xR - x) is the "top hat" function. C,. is the maxi-
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mum eastward group velocity [cf. Eq. (56)]. The terms superscripted with a " 1" are 
the forced solution to the x-independent problem, applied for x > 0. The other 
terms are free solutions required to satisfy the jump conditions at x = 0. Those 
superscripted with a "2" are needed if F(y) or Q(y) is non-zero while those with a 
"3" are required if G(y) is non-zero. As before, the subscripts K and / are used to 
denote Kelvin and inertia-gravity modes, respectively, while A denotes the long 
wave, and D the short wave, Rossby mode contributions. Note that the mixed mode 
(n = 0) appears in the solution both in the role of a gravity wave at high frequen-
cies and in the role of a Rossby wave for low frequencies. 

The presence of the function Tin (58b)-(58h) shows that all the free wave solu-
tions exist only in a region bounded by x = 0 where the forcing switches on, and 
x = Cu t, the farthest point to which a disturbance traveling at the group velocity 
Cu will have propagated in time t. In the interior of the region each of the terms 
given by Eqs. (58b)-(58g) is a solution to the unforced Eqs. (36); that is, a free 
solution of the shallow water equations. This is almost true of (58h) as well but 

here the complete solution is a sum of terms of the form [x / t] 11! 2 J 11 (2y xt); the 
form (58h) is clearly the leading term in the large t expansion. Furthermore, the 
total solution (58) does satisfy the proper jump conditions at x = 0. 

It might then appear that this solution, with the exception noted in the previous 
paragraph, is not only the large t asymptotic solution, but is in fact the complete 
solution. This is almost true. However, some of the free solutions fail to satisfy Eqs. 
(36) at the wave front where x = Cn t. Consider the term U,.,A C2 > defined by (58e), 
for which Cu= - (2n + 1)-1 • To the left of x = -t(2n + 1)-1 the v component 
of this term is zero, while to the right of this point v = rn 1/Jn(y) . The equations do 
not admit this discontinuity. More formally, if (58e) is substituted into the Eqs. (36) 
with F = 0 there is a remainder rn lfin(y) 8(x + t (2n+ 1)-1

) in the second of these 
equations. This term arises from taking the derivative of H(t(2n + 1)-1 + x) when 
av/ at is calculated. If (36) were a pure, nondispersive hyperbolic system this dis-
continuity at x = Cgt would be admissible. As it is, precursors exist ahead of the 
wave front at x = Cut which have the effect of smoothing the discontinuity. These 
precursors can have a velocity equal to the fastest signal in the system (a velocity of 
one in our scaling). The point x = Cut which travels with the group velocity still 
defines a wave front because it marks the farthest penetration of a signal with 
substantial amplitude (see Brillouin, 1960, Chap. 3). We have discussed these issues 
in greater detail in Sec. 3 in connection with the qualitatively similar barotropic 
vorticity equation. The point to be emphasized here is that (57) is an excellent ap-
proximation to the exact solution. 

A zonal wind stress or heating source also gives rise to short wave Rossby terms 
of the form 

Un,D (2
) = -en T(0; x ; Cnt) {( + Y 11 (2yxt) M,. + l o (2yxt) Vn } . (59) 
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Such terms are asymptotically of lower order than the terms retained in (57). [Com-
pare the barotropic example Eq. (35b)]. Note that the u and h components of (59) 
go to zero at x = 0 so no discontinuities in these components are introduced. The 
v component, while also asymptotically small for x > > 0 becomes -en o/n at x = 0 
and thus in a narrow region O < x O(t-1) may be comparable to the v component 
of the retained terms in (57). 

We now wish to show how (57) may be obtained in a simpler and more intuitive 
manner. We again take the solution to the x-independent problem given by (51) to 
apply for x > O; this gives (58a) determining U<1 >. We then seek the free solutions 
needed to make the jumps in u and h zero at x = 0. First consider the inertia-gravity 
wave terms of uc1 >. These are free waves with zero east-west wavenumber; they lie 
on the k = 0 axis and the upper curves of the dispersion diagram, Fig. 1. The nth 
such mode propagates eastward with group velocity C0 = [2(2n + l)J-1 so that the 
motion present at a point x at time t must have originated at a point x0 = x -C0t 
at t = 0. No motion was excited at points x 0 < 0 (since the forcing is present only 
for x > 0). So at time t there will be no nth inertia-gravity mode present at x < 
Cut. Since (58a) specifies the existence of these modes for all x > 0, Eqs. (58b) and 
(58c) are needed to cancel them in the region O < x < C0 t. 

Now consider the planetary wave part of uc2 > defined by (58d,e). As remarked 
above, each Rossby and Kelvin mode piece of the solution U< 1 > was forced on 
resonance at w = O; k = 0 and may be viewed as consisting of a locally forced part 
varying like Cg - 1 x and a propagating part which goes like t - C0 -

1 x. Only the 
latter violates the jump conditions. But since each such propagating part ,is a free 
solution of Eqs. (36), the jump conditions can be matched by considering how these 
modes propagate through x = 0. The nth Rossby mode may be thought of as a 
synthesis of Rossby waves with amplitude 8 (k). It has a group velocity of magni-
tude (2n + 1)-1 to the west. Each such mode continues to propagate westward 
beyond x = 0, so we must add these propagating solutions for x < O; this gives 
(58e). Like the k = 0 inertia-gravity waves the Kelvin wave propagates eastward; 
its group velocity is 1. Since the forcing extends only as far to the west as x = O no 
Kelvin waves originate at points x < 0. The term UK< 2 > of (58d) serves to cancel 
the propagating part of the Kelvin response at points x < Cgt = t. 

The steady forced response to a meridional wind stress does not have a simple 
relation to free wave solutions. As a result the terms (58f, g, h) needed to correct for 
the jump it introduces are more complicated than the other corrections. These 
terms are syntheses of free waves with u and h components, that are independent 
of t at x = 0. Eq. (58f) describes a non-dispersive long wave form which rapidly 
propagates westward. Eq. (58h) is a synthesis of the short dispersive waves which 
lie in the lower left-hand comer of the dispersion diagram ( w < < l, -k > > 1 ). All 
of these n > 0 eastward propagating modes are essentially trapped to the discon-
tinuity at x = O; they have very low group velocities, so the "disturbance" moves 



1976] Cane & Sarachik: Forced baroclinic ocean motions 659 

away from x = 0 very slowly. The mixed mode (Eq. 58g) also has most of its energy 
trapped at the boundary, although there is appreciable amplitude at the rapidly 
travelling wave front at x = t. Since each of the modes (58g, h) has its v and h com-
ponents in geostrophic balance, the entire meriodional current is geostrophic. The 
amplitude of the v component of each mode grows linearly in time at x = 0; the 
mode also becomes thinner in time. Thus the vorticity of the flow increases in re-
sponse to the constant input of vorticity from the wind stress. 

A few additional remarks about the general shape of the solution (57) may be 
made. As noted above inertia-gravity waves with meridional index n are absent in 
the (expanding) region x < t/ (4n + 2). Eqs. (58a) and (58d) show that the Kelvin 
mode is absent for x < 0 and has amplitude proportional to x for 0 < x < t and to 
t for x > t. Similarly, Eqs. (58a) and (58e) show that the nth Rossby mode gen-
erated in response to a zonal wind stress F or a heat source Q is absent for x < Xn 

= -t/ (2n + 1), has a non-zero v component in the region bounded by x = 0 and 
x = Xn, and its u and h components have amplitude proportional to t-(2n + 1) x 
for Xn < x < 0 and proportional to t for x > 0. Thus at a fixed point x < 0 the 
more equatorially confined modes (i.e., those with small n) are enhanced relative to 
the less equatorially confined ones. The more equatorially confined modes are also 
present over a large area since they propagate more rapidly. In the previous section 
we noted the response to an x-independent F or Q forcing would have u = 0 at the 
equator if F = 0 there. With a forcing which is non-zero to the right of x = 0, u 
may be non-zero at the equator between x = -t/ 3 and x = t, even if there is no 
wind stress at the equator. The features described in this paragraph are shown sche-
matically in Fig. 9. 

The westward propagating modes (58f) that are present if there is a non-zero 
meridional wind stress have no v component. Inertia-gravity waves aside, the only 
meridional flow generated by the step function G forcing is the ever thinning cur-
rent just to the right of x = 0; this is the sum of the modes (58g, h). Each of these 
modes has v growing secularly at x = 0 while u and h are constant. Geostrophy in 
the downstream direction is maintained by having the current become thinner at a 
rate which makes the cross-stream height gradient increase linearly in time at x = 
0. The zonal flow (exclusive of inertia-gravity waves) is the same as in the x-inde-
pendent case to the right of x = 0; Eq. (58f) shows that while the more equatorially 
confined modes extend the furthest to the west of x = 0, their amplitudes are not 
enhanced relative to the less confined modes. The features described in this para-
graph are illustrated in Fig. 10. 

7. Summary and discussion 

If the equations of motion are linearized and viscous effects neglected, and the 
ocean is assumed to be flat-bottomed and stably stratified, then the vertical de-
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Figure 9. Unbounded baroclinic response to a step function westerly wind. (a) The longitudinal 
dependence of the low n modes. (b) The layer, depth h at t = 5 for the case F = H(x), G = 
Q=O. 

pendence may be analyzed into uncoupled vertical modes. The temporal and hori-
zontal spatial dependence of each such mode is described by the linear inviscid 
shallow water equations (1). The subject of this work has been the solution of these 
equations for an unbounded ocean, with particular attention to motions forced in 
the vicinity of the equator. 
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Figure 10. Unbounded baroclinic response to a step function southerly wind (a). The longi-
tudinal dependence of the low n modes. (b) The layer depth h at t = 9 for the case G = 
H(x), F = Q = 0. 

Our method is similar to finding a Greens function. The equations are first 
Fourier transformed in the zonal (x) direction, after which the meridional structure 
is expressed as an eigenfunction expansion. The (x,t) dependence of each mode 
must then be determined. This problem is specialized by considering only forcings 
on a resting ocean that are switched on at t = 0 and remain steady thereafter. The 
solutions obtained are then appropriate for considering the response to forcings 
with time scales long compared to 2 days; for example, the seasonal variations of 
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the wind systems in the tropics. For these time scales the largest response is in the 
Kelvin and Rossby planetary modes rather than the inertia-gravity modes. Since 
the Kelvin mode is nondispersive its (x, t) behavior is readily calculated; the response 
of the Rossby modes is far more complex as a consequence of their dispersive 
nature. Before considering the baroclinic response, an asymptotic analysis is made 
of the structurally similar nondivergent barotropic Rossby modes. It is shown that 
the asymptotically dominant response arises from the point A (Figs. 1,2) in the dis-
persion curve where w = k = 0. This asymptotic dominance is attributed to its dual 
role as both a point of inflection and a point of maximum (westward) group velo-
city. The response is well approximated by considering the modes to be purely hy-
perbolic. The more complete analysis provides an interpretation of the discontinui-
ties in the response resulting from such an approximation. The second most signifi-
cant contribution to the response arises from the points D (w = k- 1 0) where the 
modes are highly dispersive. In particular, the meridional velocity component aris-
ing from this source must be considered in the vicinity of small scale variations in 
the zonal structure of the forcing. General characteristics of the response are de-
scribed for the cases where the forcing is independent of x (Sec. 5) and where it is 
a step function of x (Sec. 6). It is generally sufficient to consider only the dominant 
asymptotic contributions to the response arising from the points A and D in the 
(w,k) plane, contributions that have a relatively simple form. For the barotropic 
case the complete solution is well approximated by (becomes asymptotic to) these 
parts of the total response for times t > > m 13-1 = ½ day for wavenumber m = 
(1000 km)-1

• For the nth baroclinic mode the corresponding time is (2n + l)&T 
where T :;; 2 days is the baroclinic equatorial time scale [Eq. (2)]. While the asymp-
totic time increases with the meridional wavenumber n the distance the nth mode 
travels before becoming asymptotic decreases with n since the propagation speed 
of the mode varies like (2n + 1)-1 • 

It is important to stress the limitations of the model equations that we have 
solved. The equatorial regions of real oceans are characterized by swift, narrow cur-
rents so that neglect of the inertial terms in the equations of motion cannot be rigor-
ously justified. For example, taking a typical undercurrent velocity (80 cm sec-1) 

and half-width (150 km) and evaluating fat y = L gives a Rossby number of 0(1). 
Based on a value of vertical viscosity of 25 cm2 sec-1 (as observed by Williams and 
Gibson, 1974) and a scale depth of 50m, viscous effects will become non-negligible 
in 0(20 days). With these limitations in mind, the linear inviscid shallow water 
equations (1) remain a useful theoretical model. They are analytically tractable and 
can give us a qualitative understanding of the time scales and structures of the 
ocean's response to atmospheric forcing. The analytic solutions to (1) provide con-
ceptual tools that have proven helpful in understanding the response of a viscous, 
fully nonlinear model ocean that can only be studied by numerical methods (see 
Cane, 1975). 
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Before knowledge of the linear response can be usefully applied to either the real 
ocean or numerical models, the role of boundaries must be considered. By making 
use of the approximations developed in the present work the effects of boundaries 
may be calculated by elementary methods. This is the subject of the sequel to this 
paper, Cane and Sarachik (1976). 
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APPENDIX 

Orthogonality and completeness of the eigenfunctions 
for the shallow water equations 

(a) Orthogonality 

From the orthogonality of the Hermite functions If,., it follows that 

(<J>n,J(k,y), <J>m,1(k,y)) = 0 if n 'Fm 

It remains to show that 
Ail" = (<J>n,J, q>n, 1) = 0 if j 'F / 

From the definition of the scalar product (37): 

(i) An°= 1 + _ __:. __ for j cfa l; since wo1, w02 satisfy 

w2 
- kw - 1 = 0 

their product is -1 and 

A!l 0 = 0 for j cfa l 

(ii) For n > 0 AJ!" = w1 w, [2n + 1 + wi w,] 

+ k(w, + w1) + k2 [2n + 1 + k 2 (w, + wi) 2 + 2 w, wi] 

(where we have written w1 for w.i(k), etc.). Now wi and w, satisfy the dispersion relation (7a); 
let the third root be w •. Making use of the relations wi + w, +w. = 0 and w, wi w. = k we ob-

tain 

A n = _k_[2n + 1 + _k_]- k w + k2 
[ 2n + 1 + k• - w • + ..3!_] 

Ji <.t) Ill • (L) w. • • 

= :. [2n + 1 + :. - w:]+ kf : . ] = 0 

since w. satisfies (7a). 
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(b) Completeness 
We wish to show that if all the components of the vector F = (F, G, Q) have expansions of 

the form 
00 

l a.(k,t) tf,.(y) 
n.=l 

then F has an expansion of the form l bn,J q,.,, . 

It is sufficient to show that, for all n, (l, 0, 1) tf,. , (0, 1, 0) tf,n and (l , 0, -1) tf,. have such ex-
pansions. From (8) and the recurrence relations for ytf,. and dtf,.ldy it follows that for n 1, 
the vectors (1, 0, 1) tf,n+1, (0, 1, 0) tf,., (1, 0, -1) tf,. _, have expansions of the form b • . , <J>n,1 + 
b • .• <JI•.• + b •.• q,. ,, if the matrix 

[ n; 1 ]! (w, + k) w,•- k2 [+]! (w, - k) 

[ n; 1 J1 (w, + k) w.'-k' [+J (w, - k) 

[ n; 1 ]! (w, + k) w,• - k" [+J (w, - k) 

is non-singular. After some manipulation it may be seen that this is true if 

[ w,• 

w, w/ 
] 

is nonsingular, or if (w, - w2) (w, - w,) (w, - wa) ¥- 0. This is equivalent to the statement that 
the three roots of the dispersion relation (7a) are distinct, which may be readily demonstrated. 
By making use of the fact that wo,, ¥- wo,2, the remaining vectors needed, i.e., tf,o(l, 0, 1), 
tf,,(1, 0, 1) and t/lo(0, 1, 0), may be expanded in the vectors <J>-1, <J>o,1, <JI•.•· 
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