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Diffraction and refraction calculations for waves 
incident on an island 

by Ivar G. Jonsson', Ove Skovgaard1 and Ole Brink-Kjaer 2 

ABSTRACT 

An island of circular cylindrical shape, situated on a paraboloidal shoal (Fig. 1 and Table 1) 
in an infinite ocean of constant depth is attacked by small regular waves of long period and 
of plane incidence. The wave field around the island is calculated according to two different 
approaches, viz. a diffraction theory and a refraction theory (i.e. geometrical optics). The solu-
tions are compared for those (tsunami) periods, where the Coriolis force can be neglected. It 
is found that in a certain range, the refraction solution can predict the criti cal wave periods 
quite well , and to some extent also the regions of the shoreline where the wave amplitude is 
large. For L . smaller than (say) 0.4 r. (L. is the wave length at the shoreline, and r. the 
island radius) the amplitudes at the middle of the front face of the island are rather well 
predicted by the primary orthogonal. However, this cannot predict the critical wave periods, 
nor the more exposed shoreline regions, but up to L . = 2.5 r. it can give the right order of 
magnitude of the amplitudes, in the sense that it gives an approximation to an amplitude 
versus period diffraction curve, where the undulations are smoothed out. For L . larger than 
about 2.5 r. both the primary orthogonal and the complete refraction solution give quite 
absurd results. 

The conflicting data in the definition of a similar island by Vastano and Reid (1966, 1967) 
are clarified. For another set of data the diffraction solution is given with a more complete 
description of the wave field over the shoal, and two test solutions are tabulated (Table 2). 
For the first time, the diffraction solution is given for an island of this form using intermediate 
depth theory and a newly introduced mild-slope wave equation. 

1. Introduction 

When a tsunami (typical period 5-60 min) reaches an island it is often drastically 
amplified due to the sea bed topography, and at the coast this is a highly nonlinear 
phenomenon. As formulated by Smith and Sprinks (1975): "Although tsunamis 
are dramatically nonlinear in their final run-up with amplitudes as high as 10 m, out 
at sea their amplitudes are considerably smaller and it is reasonable to assume that 
the topographic modification prior to run-up can be accurately described by linear-
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Figure I. Sketch of the idealized island on a paraboloidal shoal with h = ar; (a) vertical, 
(b) horizontal. 

ized equations." In accordance with this, both the refraction theory and the diffrac-
tion theory, which are used below to describe the wave field near the coast, are 
based on linearized equations. 

In the last decade a number of computer programs have been developed for the 
calculation of depth refraction; see the survey in Skovgaard et al. (1975, 1976). 
From the point of view of economy and numerical accuracy these programs have 
today reached a satisfactory level. Within a few years we will no doubt also see 
many computer programs which will account for diffraction of water waves over 
a varying sea bed, i.e. diffraction in an inhomogeneous medium. Initial steps in this 
direction, based on finite element methods, have been taken by Berkhoff (1973, 
197 5) and by Chen and Mei (197 4 ). These programs, which essentially solve a 
boundary value problem (the reduced wave equation) or the equivalent variational 
formulation, are not yet developed for general use and are today much more ex-
pensive to use than refraction programs which solve an initial value problem. 
Therefore both approaches will be used in the coming years, although as this paper 
demonstrates, the latter has severe limitations. (In this connection it should be re-
marked that Berkhoff, although he presented a fundamentally new wave equation, 
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Table 1. Geometrical data for island and paraboloidal shoal. 

Shoreline radius r. 
Outer radius of shoal 
Depth h, . 
Shoreline depth h. = h, (r. l r.) 2 = 4,000/ 9 = 444 m 
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10,000 m 
30,000 m 
4,000 m 

did not use a correct functional (Berkhoff (1973), p. 478 and (1975), p. 255), as 
pointed out by Chen and Mei (1974).) 

The physical limitations of refraction programs are seldom discussed. A major 
problem is: How (in)accurate is a refraction solution when there are large variations 
in depth over one wave length? The best way to study this effect is to make a com-
parison between wave amplitudes calculated on the basis of simple refraction theory 
and those emerging from the complete solution of the reduced wave equation (dif-
fraction). Another problem is that the presence of structures, peninsulas and islands, 
yields areas of "geometrical shadow" which indicate that the refraction theory is 
insufficient. 

In this paper we shall study an idealized island of circular cylindrical shape situ-
ated on a paraboloidal shoal (Fig. 1 and Table 1) in an infinite ocean of constant 
depth, attacked by small, monochromatic, plane, incident waves. The water depth 
his 

h= ar2 and 0° 0 < 360° 
(1.1) 

h = hb (= ar2b) for rb r < + co and 0° 0 < 360° 

where the factor of proportionality a for the data in Table 1 becomes a =4,000/ 
30,0002 = 4/9 x 10-5 m-1 • Subscript a denotes values at the shoreline and sub-
script b denotes values at the outer boundary of the shoal. 

This type of island is seemingly accepted as being representative for some real 
cases (Homma, 1950; Vastano and Reid, 1966 and 1967). A discussion of tsunami 
amplification over other depth profiles is given by Meyer (1971). 

In the shallow water approach the paraboloidal shape of the shoal acts as a 
special "wave guide", since here the phase velocity is proportional to distance 
from the center of the island, see Section 4.a. 

The purpose of the paper is threefold. First and foremost we will present an in-
termediate depth diffraction solution in detail and compare it with the shallow 
water diffraction solution. We hope that this will be useful for those who work on 
general numerical schemes for diffraction problems. Second, we will present the 
refraction solution, attaching the greatest importance to qualitative considerations. 
Third, we will present the results of a comparison between the diffraction and 
refraction solutions, and so demonstrate that a refraction calculation is quite mean-

ingless in a wide range. 
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The wave field around an island similar in shape to the one in Fig. 1 was first 
investigated in the pioneer works by Homma (1950), and Vastano and Reid (1966, 
1967). Homma presented the analytical solution to the shallow water wave equa-
tion for the island in Fig. 1 for plane wave incidence. He also took steps to calcu-
late a refraction solution. Since the differential equation for the wave separation 
factor was not published until two years later (Munk and Arthur, 1952), and since 
electronic computers were not available at that time, only a few numerical results 
could be presented in broad outline. Furthermore, these calculations are inaccurate 
as regards the wave amplitude. Pure depth refraction of surface gravity waves about 
circular islands was first studied by Arthur (1946) and Pocinski (1950). 

In the short-wave limit (here the wave length is compared with horizontal scales, 
not depths) Keller's geometrical diffraction theory (see Keller, 1962; Christiansen, 
1975; and Larsen and Christiansen, 1975) presents an alternative to the finite ele-
ment methods. Keller's theory, the so-called ray (tracing) method, is especially 
advantageous when the boundaries are but weakly reflecting. 

The problem of scattering due to a transient wave motion has been considered 
by Shaw (1975). 

2. Assumptions 

The incoming waves are assumed plane, monochromatic, irrotational, and of 
small amplitude. There are no currents. The Coriolis force is neglected, so we 
assume tsunami periods T smaller than (say) 30 min. The spherical form of our 
planet is also neglected. 

All governing equations for both a diffraction and a refraction approach are 
given for the intermediate depth dispersion relation 

c = ! tanh kh (2.1) 

where k is the wave number 21r/ L, L (= cT) is the wave length, c is the phase 
velocity, and g is the gravity acceleration. In addition to the numerical solutions of 
the equations with the dispersion relation (2.1), the equations are solved analyti-
cally, using the shallow water relation 

c=ygh (2.2) 

Disintegration into minor waves of shorter period is neglected. If the bottom is 
steep, this assumption is questionable for long waves of appreciable height. Such 
waves show a tendency to be unstable in this sense under shoaling conditions; see 
e.g. Madsen and Mei (1969). 

Bottom friction and other dissipative mechanisms are disregarded. The Danish 
Refr action Program (Skovgaard and Bertelsen, 1974, and Skovgaard et al., 1975, 
1976) can include this effect. 
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It was excluded from the present study, however, since it is not contained in the 
diffraction solutions. Furthermore, the bottom friction model was based on waves 
of rather short period, i.e. where the wave boundary layer is thin as compared with 
the depth (see Jonsson, 1967, 1975, 1976, and Jonsson and Carlsen, 1976). Fric-
tional coefficients for long-period waves, on the other hand, were calculated by 
Kajiura (1964). 

So, summing up, it can be stated that all nonlinear effects are neglected. 
Only one island is examined; see Fig. 1 and Table 1. The incident wave or-

thogonals are propagating in the direction of the positive x-axis. The vertical sides 
of the island are assumed fully reflecting. 

In the refraction approach, energy transport across the "geometrical optics 
orthogonals" is excluded. 

Let it be stressed for completeness that our use of the word refraction is different 
from that of Lautenbacher (1970) who uses the word refraction for what we call 
diffraction (over a varying bottom). 

3. The diffraction solution 

Rewriting Berkhoff's linear two-dimensional differential equation (Berkhoff, 
1973, Eq. 20) for the calculation of the combined effects of refraction and diffraction 
for a simple harmonic surface gravity wave motion over a water area of gradually 
varying depth, Jonsson and Brink-Kjaer (1973) introduced the following reduced 
mild-slope wave equation 

C 
"v • (c Cu "v rJ) + - 9 w2 7J = 0 . (3.1) 

C 

In this expression "vis the horizontal gradient operator (a/ax, a/ay) or (a/ar, ,-1 

a;ae), cg is the group velocity 

where 

Cg=½ c (1 + G) 

2kh 
G= sinh 2kh 

(3.2) 

(3.3) 

1J = 1J(x,y) or 7J(r,0) is the complex wave amplitude, and w(= 2n/D is the angular 
frequency. Note: The instantaneous elevation of the water surface is 7J exp(- iwt), i 
being the imaginary unit and t the time.3 It also was shown by Jonsson and Brink-
Kjaer (1973) that the one-dimensional version of (3.1) in fact is identical with the 
wave equation derived by Svendsen (1967), which confirms that (3.1) is correct to 
the first order in both wave amplitude and bottom slope. A full report is being 
prepared by Svendsen and Jonsson (1976). Using rather intuitive arguments, Smith 
and Sprinks (1975) independently proposed (3.1), but they only solved the well-

known long-wave version of (3.1), see (3.18). 

3. The letter i is used as subscript and as V-1. 
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In order to calculate the wave field we must solve the partial differential equa-
tion (3.1). 

The wave field outside the shoal is composed of two parts, viz. the incident wave 
field 'Y} i and the scattered wave field 'Y},sc• Both 'Y} i and 71,0 satisfy (3.1), separately. 
This equation reads in polar co-ordinates on the constant water depth hb 

2 a271 + aYJ + k2 2 + a2YJ o 
r ar2 ra, b r 'YJ a02 = (3.4) 

where kb (= 2n/ Lb) is the wave number corresponding to the constant depth. The 
plane incident wave field is ( omitting the harmonic time variation) 

co 

'Y} i = A iexp(ikbx) or YJ• = A i L En N n (kbr)cos(n0) (3.5a,b) 
n=O 

substituting x = r cos 0 and expanding. A i is the real amplitude, J,. is the Bessel 
function of nth order and first kind, and €n is the Neumann factor or the Jacobi 
symbol, i.e. En = 1 for n = 0 and €,, = 2 for n =!= 0. Using the method of separation 
of variables, (3.4) gives for the scattered wave field 

co 

'Ylsc = L CnHn (l) (kbr)cos(n0) (3.6) 
n=O 

where we have used the radiation condition for scattered waves, i.e. the scattered 
wave field must be outgoing (and so vanishing) for r oo (see Sommerfeld, 1964, 
p. 188ff.), and that the solution must have a period 21r in 0. Hn (ll (= l n + iYn) is the 
Hankel function of the nth order and first kind, Y n is the Bessel function of nth order 
and second kind, and Cn are integration constants. 

For the wave field over the shoal, (3.1) reads in polar co-ordinates 

r2 a2YJ + _r_[ 1 + 7G- 4Gkh ] aYJ + k2r2 + aaYJ = 0 
ar2 I +G (I +G) tanh kh ar 71 a02 

The method of separation of variables gives here 
(3.7) 

00 

71 = L R ,. (r)cos(n0) (3.8) 
n=O 

where Rn(r) (n = 0,1,2, ... ) is the solution to the following linear ordinary differ-
ential equation 

r 2 
-- + --- 1 + 7G - - ----- -- + [k 2r 2 - n 2] Rn = 0 d2Rn r [ 4Gkh ]dRn 

dr2 1 +G ( 1 +G) tanh kh dr 
(3.9) 

where ra =f= r =f= rb , In order to determine Cn in (3.6) and to solve (3.9), we need 
three boundary conditions. At r = ra the island is fully reflecting, i.e. 
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or 
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[d;n] =0 

BT} =0 
Br 

n = 0,1,2, .. . 
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(3.10) 

(3.11) 

At r = rb we have the two remaining conditions, viz. continuity in 'Y/ and in the first 
derivative of 'Y/ with respect to r 

'Y/ = 'Y/i + 'Y/so 

BT} ·- B'Y}i + B'Y}sa ar - ar ar 

(3.12) 

(3.13) 

Inserting (3.Sb), (3.6), and (3.8) in (3.12) and (3.13) gives two infinite sets of 
equations 

(Rn) r=rb = A ie,,inf n(T) + C,Jln(T) n = 0,1,2,... (3.14) 

(dRn) = A ;Eni" kbl'n(T) + CnkbH'n(T) n = 0,1,2,. . . (3.15) 
dr r=rb 

where primes indicate derivatives with respect to the argument, r = rbkb, and we 
have dropped the superscript (1) on Hn and its derivative. J',, and H',, are calculated 
according to standard formulae, see e.g. Olver (1964), equations 9.1.27-28. 

From (3.14) and (3.15) we can eliminate Cn, and thereby get the second bound-
ary condition for (3.9), (3.11) being the first, 

2 
=-- n = 0,1,2, ... 

1T 

(3.16) 

where we have used the Wronskian formulae, see e.g. Erdelyi et al. (1953), equa-
tion 7.11.29: 

H ,.(T)l'n(T) - l n(r)H'n(T) = - _3j__ . 
1TT 

(3.17) 

Before we in Section 3.b present a numerical solution of the diffraction problem 
using intermediate depth theory we will first present the analytic solution for shallow 

water. 

a. The diffraction solution using shallow water theory. In shallow water, i.e. for 
h/ L smaller than (say) 1/20, we can solve the diffraction problem analytically. In 
this case, c is given by (2.2), and G = 1. The reduced wave equation (3.1) becomes 
equal to the well-known linearized long-wave equation 

w2 
V • (h'VTJ) + - 'Y/ = 0 

g 
(3.18) 
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Figure 2. Relative amplitude A l A, at shoreline vs. azimuth 8° •. (a) (left) Corresponding to an 
analytical shallow water diffraction solution. (b) (right) Corresponding to a numerical inter-
mediate depth diffraction solution and two curves from (a). 

For this case, Homma (1950) solved the infinite set of linear two-point boundary 
problems (3.9), (3.11), and (3.16). With our symbols Homma's solution reads 

2 [( T)-1+a. a-1 ( T )-1-"•] co -- €,. in+ 1 p - + _n __ -- cos(n0) 
_]___ = "" 'TT' . Ta an+l Ta 
A, an-1 

n=O p".[(1-an)Hn + rH',,.] + p-a. an+l [TH'n + (l+a n)Hn] 

(3.19) 

where an= y'l + n2 - 72, p == rb/ra and we have dropped the argument r of the 
Hankel function and its derivative. 

Vastano and Reid (1967) presented the solution at the island boundary (T = r,. 
in Fig. 1) in graphical form for one set of the geometrical constants, which define 
the island (their Table II) . However, this table is a little confusing in two respects. 
Firstly, their Figs. 7-8 correspond in fact to shoreline radius To = 10.5 km, and not 
to T0 = 10 km as written in Table II. The correct value of , 0 was implied on p. 134 
of their paper. The reason for using T0 = 10.5 km in the analytical solution was 
simply to make a fair comparison with the numerical one, since the effective bound-
ary in the numerical model is midway between the first two grid points. Secondly, 
their shoreline depth Do is in fact 4,000 x (10.5/30)2 = 490 m, and not 400 mas 
stated in the table. (Nor does it correspond to r0 = 10 km.) This was confirmed by 
Professor Reid (1973). 

As Figs. 7 and 8 (relative amplitude and phase lag at the shoreline) in Vastano 
and Reid (1967) have been reproduced in other papers (Lautenbacher, 1970, p. 
659; Berkhoff, 1973, pp. 485-486; and Shaw, 1974, p. 1358) it was found perti-
nent to publish similar figures, which really correspond to an inner radius of 10 km. 
These are reproduced in this paper in Figs. 2 and 3. The relevant geometrical data 
are given in Table 1. Note that Vastano and Reid (1967) only present results for 
T = 240 sec, 480 sec, and 720 sec. 

Fig. 2a presents the relative amplitudes A I A, at the island (T = r a) versus azi-
muth 0°, as defined in Fig. 1. On account of the symmetry only one half of the flow 
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Figure 3. Phase lag cf, 0 • at shoreline vs. azimuth 8° •. (a) (left) Corresponding to an analytical 
shallow water diffraction solution. (b) (right) Corresponding to a numerical intermediate 
depth diffraction solution and a curve from (a). 

plane is considered (0° "'= 0 "'= 180°). Note that the maximum amplitude does not 
necessarily occur for 0 = 180° (T = 410 sec). The horizontal "wave length" of 
the undulations on the curves (fixed T) increases for increasing T. The "wave 
height" (fixed T) increases for decreasing T. As the fixed parameter for each curve 

one can instead of T use the relative wave length Lalra (= Tyga for shallow water 
theory). As expected, A / A i approaches 1 for all points along the circumference 
for T co (a vertical staff in the ocean). However, the equations are not valid for 
such high values of T, as the Coriolis force cannot be neglected for T higher than 
(say) 30 min. From Fig. 7 we see that A I Ai still is 25 % above the limiting value 1 
for the highest value, where we can use the equations. 

Fig. 3a presents the phase lag <p O versus azimuth 0°. The angle <p is by definition 
the phase lag relative to the waves in the far field at 0 = ± 90°, and it is identical 
with the phase lag in Vastano and Reid (1967), p. 131. (Note that point P at the 
middle of the front face of the island corresponds to 0 = 180° and not to 0 = 0° .) 
So, if the far field at 0 = ± 90° is 

g = A i exp(- iwt) 

then the amplitude at the shoreline is 

g = A exp[i (cp-wt)] 

(3.20) 

(3.21) 

A being real amplitude. In Figs. 2a and 3a we have given the curves for 6 values 
of period T. The value of 410 sec (more accurately with 9 significant digits (9S): 
410.471895 sec) corresponds to hb! Lb = 1/ 20, using (2.1). So, for larger values 
of T, the shallow water wave assumption is justified in the whole area considered. 
The smallest period used in Figs. 2.a and 3.a (T = 240 sec) is thus, according to 
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Figure 4. Constant phase lag curves cf, 0 for r. ""' r ""' 1.4 r. vs. azimuth 8° corresponding to 
an analytical shallow water diffraction solution. T = 240 sec. The difference between the cf, 

curves is 30°. Relative amplitude A l A, at r = r. and 1.4 r. vs. azimuth 8°. 

normal conventions for h/ L, too low; in this case, hb!Lb is as high as 0.0883 = 
1/ 11. However, the shallow water solution for T = 240 sec is not dramatically 
off ; see Figs. 2b, 3b, Sb, and 6. This is in accordance with the fact that the phase 
velocity for this period, as calculated from (2.2) is off by not more than 5 % for 
h=hb. 

For a fixed time Fig. 4 depicts curves with constant phase lag cf> for ra ""' r ""' 1.4 
ra versus azimuth 0°. The difference between the cf> curves is 30°, and Tis 240 sec. 
In the same figure also is given A / A i at r = ra and 1.4 ra versus azimuth 0. We 
see that around a minimum in A/ Ai the constant cf> curves are relatively close, 
corresponding to a big gradient in cf>. The reverse is the case around a maximum 
in A / Ai, i.e. a small gradient in cf>. Comparing the situation around the minima we 
see that the smaller the minimum is, the greater is the gradient in cf> . 

In each point at the shoreline the curves corresponding to constant phase lag cf> 
are perpendicular to the shoreline. If we, therefore, in each point decompose the 
calculated "wave" into two formal components, viz. an incident and a reflected 
component of equal amplitude, the angles a 1 between the propagation directions of 
the components and the normal to the shoreline are identical. As cf> is known along 
the circumference, we can calculate a "local resulting phase velocity" Crea parallel 
to the shoreline as wr,,/ldcf>a/d0I . If we determine the phase velocity of the inci-
dent and reflected component by (2.2), we then formally can define a 1 by arcsin 

(ygha/Crea), assuming that C,es > ygha at least for certain parts of the circumfer-
ence. From Fig. 4 we see that Crea has its maxima around the maxima of A/ A , 
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Figure 5. Phase delay 1/1° a at shoreline vs. azimuth 0° •. (a) Corresponding to an analytical shal-
low water diffraction solution. (b) Corresponding to a numerical intermediate depth diffrac-
tion solution and a curve from (a). 

(ld</>a/ d0I small), i.e. a1 has its minima at the maxima of A/Ai as would be ex-
pected intuitively. (See also the comments to Table 4 and Fig. 7 in Section 4.a.) 

Figs. 3a and 3b depict the situation for a fixed time; the phase lags are so to 
speak simultaneous; see (3.20) and (3.21). However, for some considerations it 
might be more descriptive to study how much the wave at the island is delayed 
compared to the far field, for the same value of x (Fig. 1). In other words, the 
phase-delay (= "local phase lag") tells us how much the presence of the island (or 
more correctly: shoal plus island) has retarded the "undisturbed" wave field. This 
latter is, at the (imaginary) shoreline 

(3.22) 

From (3.21) and (3.22) it thus appears that the phase-delay at the shoreline is 

(3.23) 

The results are presented in Fig. 5.a. It is repeated that time is not constant along 
a t/J(0)-curve, in contrast to a ¢(0)-curve (Fig. 3). 

In order to facilitate the checking of more general computer programs two 
numerical test solutions are tabulated in Table 2. In the table A I A i and 4> are 
given for two periods, for 7 values of 0, and for 3 values of r, viz. T = 410.47 sec 
(rounded A 05S) and T = 120 sec, 0 = 0° (30°) 180°, and r/ ra = 1, 2 and 3. The 
values in Table 2.a are calculated using shallow water theory, and the values in 
Table 2.b are calculated using intermediate depth theory; see Section 3.b. 

In this paper the comparison between a diffraction and a refraction solution will 
be made primarily for one point of the island, viz. for point P at the middle of the 
front face of the island, i.e. 0a = 180°. For waves below a certain period, part of 
the rear part of the island will be in a "geometrical shadow," and so a refraction 
solution will literally be one hundred percent wrong here. It is more difficult im-



Table 2. Diffraction solution for island on a paraboloidal shoal. The values of cf, are chosen in the interval 0° cf, < 360°. 
Integers in parentheses indicate powers of 10 by which the following numbers are to be multiplied. 

(a) Using shallow water theory, T = 410.47 sec. 

0 = o· 0 = 30° 0 = 60° 0 = 90° 0 = 120° 0 = 150° 0 = 180° 

(A l A ,)r=•a 3.2021 2.0974 2.0115 3.7047 4.0197 3.6878 3.5719 

(cp•)r=•a (+2)1.8753 (+2)1.6778 (+1)7.3163 (+1)3.6224 (+1)1.3778 (+2)3.5138 (+2)3.4064 
(A I A ,),:2,

0 2.2182 1.3142 1.2792 2.1593 1.7325 1.1709 1.1193 
(cf, •),=2ra (+2)2.0852 (+2)1.8828 (+ 1)7.6237 (+1)4.0100 (+1)1.1791 (+2)3.3017 (+2)3.0684 

(A l A ,)r=llra 1.6998 (-1)8.8778 (-1)9.1434 1.1876 (- 1)3. 1524 (-1)7.8144 1.0058 
(cf, •),=lira (+2)2.3750 (+2)2.1720 (+1)8.1964 (+1)4.4105 (+2)3.3123 (+2)2.2010 (+2)2.0986 

(b) Using intermediate depth theory, T = 120 sec. 

0= o· 0 = 30° 0= 60° 0=90° 0 = 120° 0 = 150° 0 = 180° 

(A l A,)r=•a 3.6932 2.6044 1.1589 2.0652 2.4398 3.1314 2.1950 

(cp•)r=•a (+2)1.4091 (+2)3.1459 (+1)7.3373 (+2)2.2080 (+1)9.2018 (+2)3.5820 (+2)3.5608 
(A I A,),=2ra (-1)1.1337 (-1)6.6582 1.7337 1.4507 (-1)2.2952 1.5422 (-1)6.7209 
(cf, 0 )r:!!r

0 
(+2)1.7030 (+2)1.2988 (+2)3.1049 (+2)1.3636 (+1)3.3566 (+1)1.8833 (+2)3.1337 

(A I A,),:,i,
0 

(-1)8.9702 (-1)6.9695 (-1)1.0274 1.6081 (- 1)8.4291 1.1834 1.2761 
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Figure 6. Relative amplitude A / A , at point P (8. = 180°) vs. wave period T and relative wave 
length L .lr •. Analytical shallow water diffraction solution, numerical intermediate depth 
diffraction solution, and numerical intermediate depth refraction solution for the primary 
orthogonal. 

mediately to evaluate the error in the "illuminated zone". For one value of the wave 
period (T = 410.47 sec) we will also study the variation along the island circum-
ference. 

These comparisons are made in Figs. 6, 7, and 8, which will be discussed in de-
tail in Section 3.b and Chapter 4. It should be noted that in Figs. 6 and 7 the 
amplitude varies rather rapidly with the wave period ("oscillates") when the wave 
length at the shoreline (La) becomes smaller than about the island diameter (2ra), 
The "peaks" in this region correspond nearly to the island circumference, being an 
integer times the wave length at the shoreline. For the shallow water refraction 
solution this relation becomes exact, see Section 4.a. This effect cannot be detected 
from the figures by Vastano and Reid (1967), since they only consider the wave 
periods 240 sec, 480 sec, and 720 sec. The shallow water diffraction calculations 
are not pursued below T = 160 sec, since the shallow water approximation be-
comes increasingly inaccurate (as seen in Fig. 6). Using (2.1) we have that ha/La 
= 1/ 20 corresponds to T = 136.82 sec. From Fig. 6 we conclude that the shallow 
water diffraction solution should not be used for T ::; 300 sec, or Lal ra ::; 2. For 
T > 300 sec the maximum error in peak amplitude at point P, using the shallow 
water diffraction solution, is only about 5 % . 

b. The diffraction solution using intermediate depth theory. This theory also 
covers periods below the normal tsunami range. We consider periods from (say) 
1 sec to 1800 sec, but for (say) Lal ra > 3.5 or T > 530 sec the difference between 
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the shallow water solution and the general solution is negligible; see Fig. 6. The 
numerical solution method described gives the wave field in all points (see Table 
2.b), but we will depict solutions only along the island circumference. 

The linear two-point boundary value problem, (3.9), (3.11), and (3.16), is solved 
numerically by interior orthogonal collocation, see Skovgaard (1973), Sec. 4 and 
App. A. Note that because the dependent variable Rn is complex, we have used 
complex versions of the programs which are listed in Skovgaard (1973), App. A. A 
basic idea of orthogonal collocation is that the solution of the differential equation 
is represented by a finite series of orthogonal polynomials. The unknown coefficients 
in this representation are found by satisfying the associated conditions and the dif-
ferential equation at an appropriate number of selected points. In this project 
shifted Jacobi polynomials were used. All the calculations were performed with the 
simplest form of Jacobi polynomials, namely Legendre polynomials. The necessary 
number of terms in the series in order to obtain a prescribed accuracy was decreas-
ing with T increasing. 

A finite number of solutions Rn(r) (n = 0,1,2, . .. , nmax) was then used to cal-
culate 'Y/ over the shoal (3.8) 

nmate 

'Y/ = R,.(r)cos(n0) 
n=O 

(3.24) 

The number nmax necessary to obtain a prescribed accuracy was decreasing for in-
creasing period. 

Figs. 2b, 3b, and 5b present A / A i, cp, and If, at the island (r = ra) versus azi-
muth 0°. The curves are similar to the corresponding ones in Figs. 2.a, 3.a, and 5.a. 
The amplitude A / A i is given for three values of T (410.47, 240, and 120 sec), and 
cf:> and If, are given for two values of T (240 and 120 sec). In the same figures are 
also given the curves corresponding to the analytical shallow water theory for T = 
410.47 and 240 sec. For T = 410.47 sec the maximum difference between the two 
A / A i curves is 4 % , and for T = 240 sec it is 20% . 

For point P the relative wave amplitude A / A i is depicted in Fig. 6. For Lair a 
> 1.8, or T > 275 sec, we see that the shallow water diffraction solution predicts 
higher values of A / A i than does the diffraction solution using intermediate depth 
theory. The "peak values" predicted by the shallow water diffraction solution be-
come increasingly too large for decreasing period. 

Since the solution of (3.1) is more diffi cult than the solution of the long-wave 
equation (3.18), it would be useful if one could give the range of periods for which 
(3.1) must be used for an accurate estimate of the wave amplitude at the shoreline. 
However, only one island has been investigated here, and so general answers can-
not be given. On the other hand, in the case of islands being similar to that in 
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Fig. 1, the conclusions for the periods found in Figs. 2b, 3b, 5b, and 6 may be 
extended, using Froudes scaling. 

It is possible, though, to give an estimate of the smallest period, for which (3 .18) 
suffices. If we accept that the water depth around ocean islands is seldom more than 
4 km, the usually accepted (linear) shallow water limit h/L = 1/20 gives a limiting 
period of 410 sec, as stated in Section 3.a. So it can be expected that (3.18) will 
give a rather accurate estimate of the amplitudes for tsunami periods bigger than 
7 min (with the reservation, naturally, that linear theory holds). This conclusion is 
substantiated by Figs. 2b and 6. (Summerfield, 1972, p. 362, proposes a shallow 
water condition, which implies that hb/L0 should be smaller than 1/(677) = 1/19, 
L 0 being the deep water wave length gT2 /(277). This condition corresponds to 
hb!Lb 1/10, which is a higher value than normally accepted. In the present case 
(hb = 4 km) this gives T > 220 sec, and it turns out (see Figs. 2b and 6) that the 
errors in amplitude grow rapidly when we approach this limiting period.) 

4. The refraction solution 

Refraction theory for waves propagating over a varying sea bed is only applicable 
when the relative change in water depth is small over a wave length, i.e. 

IVhl << h/L (4.1) 

since jv'hl is the maximum bed slope. Using (2.2) for simplicity, we find the re-
quirement for the present shoal to be 

2Tyga << 1 (4.2) 

For T = 136 sec (ha/La = 1/20) we find 2T yga = 1.8, and for T = 410 sec 

(hb!Lb = 1/20) 2T yga = 5.4. This shows that for the present shoal (4.1) is in 
fact only fulfilled for waves of rather small period. It can be shown, however, that 
in practice (4.1) need not be followed very strictly. Thus for plane waves it can be 
shown that the reflection coefficient (amplitude) will only be about 3 % if jdh/ dxj 
equals h/L. So (4.1) might read "somewhat smaller than" instead of "much smaller 
than". We still have a dilemma here, though. Equation (4.1) requires T smaller 
than (say) 50 sec (see the end of this paragraph in connection with Fig. 6), while 
the shallow water theory used in the "complete" refraction solution (see later) re-
quires T larger than (say) 400 sec. Fortunately, as it appears from Fig. 6, the dif-
ference between the shallow water and the true diffraction solution is not dramatic 
for T ;;::: 200 sec. This makes it worth while to compare a shallow water refraction 
solution with a diffraction ditto in an (unspecified) range about 200 sec. 

A more consistent evaluation of the refraction approximation can be made along 
the lines of Vastano and Reid (1966), pp. 37-38. They have omitted, though, the 
term y'2A/ A at the right-hand side of their equation (53). 
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The wave orthogonals are determined by three first-order ordinary differential 
equations, see e.g. Skovgaard et al. (1975), equations (2)-(4) 

Dx 
Ds = cos v 

Dy . 
--= Sill V 
Ds 

Dv = _l_ de (~ sin v - cos v ) 
Ds c dh ax ay 

(4.3) 

(4.4) 

(4.5) 

where D = operator for differentiation along the wave orthogonal (s), and v = 
angle between x-axis and wave orthogonal (positive counterclockwise). For the 
present shoal we furthermore have 

ah ax= 2ar cos 0 (= 2ax) (4.6) 

:~ = 2ar sin 0 (= 2ay) 

a2h a2h -- = -=2a 
ax2 ay2 

a2h 
axay = O • 

After some trivial manipulation we get from (4.3)-(4.7) 

Dv 
Ds 

2G D0 
l+G Ds . 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

The wave amplitude along an orthogonal can be calculated using the differential 
equation for the wave orthogonal separation factor /3, derived by Munk and Arthur 
(1952). This equation reads 

D2/3 D/3 _ 
D • + Ps -D + q, /3 - 0 s- s 

(4.11) 

in which we for the present shoal have 

2 G 
Ps = - -r- l +G cos (v-0) (4.12) 

q, = _l:__2_ [ 1 4gh sin2 (v-0)] 
r 2 1 +G c2(1 +G)2 

( 4.13) 

The quantity /3 is defined as the distance between two neighboring orthogonals at 
an arbitrary point, divided by the corresponding distance at some initial point. The 
modified refraction coefficient therefore is 

K l -13-1 ra- (4.14) 

see Skovgaard et al. (1975, 1976). 
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The initial values for (4.3)-(4.5) and (4.11) at the outer radius of the shoal are 

(4.15) 

in which 90° < 0b < 270°, and Ktb is the curvature of the wave front for r = rb--
From simple geometrical considerations we find, using also (4.10) 

2 G . 
0 Ktb = - ,:;: 1 +G sm b tan 0b (4.16) 

Note, that the wave front curvature is discontinuous for r = rb. For r = rb + we 
have Ktb = 0 (plane incidence). 

a. Refraction solution for shallow water waves. In this limit the phase velocity is 
determined by (2.2) and we have G = 1. The wave orthogonal direction is deter-
mined by (4.10), which now reads 

D(v-0) = O 
Ds (4.17) 

i.e. all orthogonals over the shoal are logarithmic spirals. This means that all inci-
dent orthogonals in the interval -rb < y <rb will reach the shoreline sooner or later, 
some of them first having "whirled" many times around the island. 

The orthogonals are independent of the wave period, being determined exclusively 
by 0b. Using (4.15) the solution to (4.17) becomes 

_ [(O O) 0 ] {0 < 0b for 90° < 0b < 180° r - rb exp b- cot b 
0 > 0b for 180° < 0b < 270° 

(4.18) 

or 

(4.19) 

Equations (4.18) and (4.19) do not give a unique solution for 0b for a given set 
(r,0). In fact, for every (r,0) on the shoal there is an infinite number of roots Ob,. 
(n = 1,2, ... ) in (4.18) or (4.19). This means that the (complex) amplitude every-
where is a sum of an infinite number of complex amplitudes, each one correspond-
ing to its logarithmic spiral. The roots were found numerically, using the Newton-
Raphson iterative method (see e.g. Hamming (1973), p. 68) which converges 
quadratically. A selection of roots is given in Table 3 for point P (Fig. 1). It appears 
that the spirals tend to lie infinitely close as 0b tends to 90°+ (or 270°-). In the 
table, n is the number of the root. Every odd root (except the first one) is sym-
metrical with the preceding even one, i.e. Oba + 0b2 = 360°, Obs + 0b4 = 360°, etc., 
corresponding to spirals which are symmetrical about the x-axis. Observe that the 
roots are independent of T, in accordance with the spirals being independent of 

this quantity. 
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Table 3. Refraction solution ( extract) for point P at the island (Figure 1) using shallow water 
wave theory. The two columns to the right correspond to T = 410.47 sec. Integers in paren-
theses indicate powers of 10 by which the following numbers are to be multiplied. The 
values of cf,. are chosen in the interval 0 ~cf,.< 360°. 

n 

n oo •• /3 2K', K',. ,. cf, on A;-11 A 1 exp(icf,1)1 
/=l. 

(+2)1.8000 (-1)6.9954 4.1418 (+1)1.3100 4.1418 
2 (+2)1.0256 8.0787 1.2188 (+2)2.8232 4.3013 
4 (+1)9.5655 (+1)3.8045 (-1)5.6162 (+1)2.7953 5.1859 

10 (+1)9.2106 (+2)2.7163 (-1)2.1019 7.5031 5.1356 
100 (+1)9.0201 (+4)2.9648 (-2)2.0118 (+2)1.2653 5.1343 

1000 (+1)9.0020 (+6)2.9916 (-3)2.0028 (+2)2.6082 5.1238 

Since dissipation is neglected, the individual amplitudes An at the shoreline are 
determined from 

~n = K'ra,n K's(l +Kr) 
i 

(4.20) 

in which the modified shoaling coefficient K's (see Skovgaard et al., 1975, equation 
28) and the reflection coefficient K, are both independent of n, and are given by 

K's = (hb/ ha)l = (rb / ra)~ 

K,= 1 . 

(4.21) 

(4.22) 

Having found the paths of the orthogonals, K'ra,n can now be found, solving (4.11) 
for /3,. and substituting the result into (4.14). Using from (4.17) and (4.15) that 

v - 0n = - 0bn, (4.11) becomes with G = 1 and c = ygh 

d•/3 d/3 
r 2 
-- - r -- + f3 = 0 
dr2 dr 

(4.23) 

since dr = ds cos 0bn• This equation is of the Euler type. With the initial conditions 
for r = rb, /3 = 1 and d/3/ dr = - (1 / rb) tan20b, see (4.15) and (4.16), the solution 
to (4.23) reads for the shoreline 

/3n = :: [ 1 - In ( :: ) sec2
0bn ] (4.24) 

where /3,. (n = 1,2, . . . ) corresponds to 0bn• As 01m is independent of T , this applies 
also to /3,.. Using (4.14) we therefore find 

K'ra = [ :: ( 1 - ln ( :: ) sec2 0bn)] - i . (4.25) 

It appears from the above development that in the shallow water limit, An/ Ai 
only depends on which point of the shoreline we consider. So it is the differences in 
phase that make the resulting relative amplitude A I A i at a fixed point a function 
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Figure 7. Relative amplitude A l A , at point P vs. wave period T and relative wave length 
L.l r •. Analytical shallow water diffraction and refraction solutions, and numerical inter-
mediate depth refraction solution for the primary orthogonal. 

of period. Some examples are shown in Figs. 9-11. With the chosen definition of 
phase lag we find for the individual amplitude at the shoreline 

'f'n - - COS bn 
,1,. _ _ w_ [ 0 + ln(ralrb)] 

y ga COS 0bn 
(4.26) 

The resulting relative shoreline wave amplitude is then 

:i = I ,t j : exp(i<pn) I (4.27) 

A solution is given in Table 3 for point P. K', is constant along the shoreline and 
equal to y 3 according to (4.21). The values of 0bn, f3 and 2 K'ra,nK', are indepen-
dent of T for shallow water waves. 

From Figs. 9 and 11 it is seen that after the summation of a certain number of 
terms on the right-hand side of (4.27), the sum becomes a damped oscillation. 
Therefore we did not develop a general criterion for determining the value of n maa, 

at which the series (4.27) could be terminated. For each period a value for n,,.a., 

was guessed, and if the sum for large n did not oscillate around one value, nmaa, was 
increased. Note that near the peaks, see Figs. 7 and 11 , where nma., is of the order 
ten thousand, it is necessary to use a very high precision in the calculation of 0bn • 

This is done in order to get a solution which for high values of n contains enough 
significant digits. Some of the calculations were done with 32 significant digits (32 S). 

The relative wave amplitudes for point P are presented versus period in Fig. 7. 
The peak values are infinite for shallow water waves, and correspond to 
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Table 4. Phase angles for point P at the island for different peak periods, calculated according 
to shallow water refraction theory. 

21r r. 
p=== La T sec 

l 951.72 
2 475.86 
3 317.24 
4 237.93 

21rra = p (p = 1,2, ... ) 
La 

270 
180 
90 
0 

(4.28) 

The latter observation can be rendered probable in the following manner. We have 
seen previously that Ob,. is arbitrarily close to 90° (or 270°) except for a finite num-
ber. For n suitably large the orthogonals whirl around the island many times, and 
the logarithmic spiral can be approximated by a number of circles with a slowly 
decreasing diameter. Now, the interesting thing is that the time of travel t. for a full 
circle is independent of the circle radius, since 

21rr 21r 
t.=-=-=---=-

ygh yga. 
(4.29) 

Two neighboring orthogonals, which both reach the shoal for x = 0 (Fig. 1) and 
meet at the same point of the island, will therefore be nearly in phase at the shore-
line and so amplify each other, if the travel time for one circle is a multiple of the 
period, i.e. if 

27T 
---=p 
Tyga. 

(p = 1,2, ... ) . (4.30) 

The left-hand side of (4.30) (which is recognized as the outer factor in (4.26)) is 
easily seen to be equal to the left-hand side of (4.28), so conditions (4.28) and 
(4.30) are in fact identical. This can also be shown analytically, since for large n 
the following expression is found for the phase lag of the individual amplitude at 
point P 

cf>n = w ( n 21r - _!!__ + O(n- 1)) 

yga. 2 
(4.31) 

so for p in (4.30) being an integer, the individual amplitudes tend to be in phase. 
It can also be shown that in this case the series (4.27) becomes divergent. This 
observation together with ( 4.31) furthermore shows that the phase lag for the re-
sulting amplitude at point P is p(-90°). This "phase lag limit" can also be found 
from a simple, geometrical consideration similar to that which led to condition 
(4.30). The predicted peak periods and the corresponding phase lags are given in 
Table 4. Note, though, that for p larger than (say) 2, the prediction becomes in-
accurate because of the shallow water wave approximation. It is interesting to note 
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Figure 8. Relative amplitude A l A, at shoreline vs. azimuth 0°. for wave period T = 410.47 
sec. Analytical shallow water diffraction and refraction solutions. 

that the peaks in A/ Ai (Fig. 7) at the "resonance" periods (Table 4, (4.28), and 
(4.30)) are located to the right of the corresponding peaks in the shallow water 
diffraction solution. Using this observation, and the fact that the "wave length" in 
the two solutions is identical, we have in the shallow water diffraction solution a 

mean Cres (see Section 3 .a) which is greater than y gha. The agreement between the 
"resonance" periods is more significant for p = 3 (T = 317.07 and 317.24 sec) than 
for p = 4 (T = 221.86 and 237.93 sec) and is absent for p = l and 2. We remark 
that the "resonance" period for p = 2, which is absent in the shallow water theory 
diffraction solution, is present in the intermediate depth theory diffraction solution 
Gust discernible in Fig. 6). Here too the diffraction "resonance" period T = 450.38 
sec is smaller than the refraction "resonance" period T = 475.86 sec in Table 4. 

Although the critical periods are rather well predicted for p = 3 and 4, the re-
sulting wave amplitudes from shallow water wave refraction at these points have 
no connection with reality. The minimum refraction amplitudes come for some 
unknown reason close to the diffraction solution. The primary orthogonal (A / A 1 = 
4.1418) is seen to give a poor representation of the complete refraction solution. 

In Fig. 8 one of the shallow water diffraction solutions from Fig. 2a (T = 410 
sec) is compared with the shallow water refraction solution. The undulations of the 
refraction curve are larger than those of the diffraction curve. The point where the 
relative amplitude has a minimum (0a = 45°) is seen to be reasonably well pre-
dicted by the refraction solution. The primary orthogonal in the refraction solution 
gives only a "moving average" variation of A / A i and thus cannot predict the more 
exposed regions of the shoreline of the island. Referring to Fig. 7 it can be seen 
that if in Fig. 8 we had chosen a period close to a peak value, the deviation from 
the diffraction curve would have been much larger. 
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Figure 9. Vector addition of wave surface displacements 11t point P due to a shallow water 
refraction solution; (a) T = 240 sec, (b) T = 410.47 sec, (c) T = 720 sec, (d) T = 1440 sec. 

Fig. 9 presents the vector addition of surface displacements in the complete re-
fraction solution for point P due to shallow water waves. Four periods (T = 240, 
410, 720, and 1440 sec) are considered. For the three latter values of T we come 
very close to the final magnitude of A / A , after the addition of 5-10 ortbogonals, 
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Figure 10. Vector addition of wave surface displacements at point Q (0. = 0°) due to a shal-
low water refraction solution; (a) T = 240 sec, (b) T = 410.47 sec, (c) T = 720 sec, (d) T = 
1440 sec. 
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Figure 11. Vector addition of wave surface displacements at point P due to a shallow water 
refraction solution; (a) T == 317.15 sec, (b) T == 317.30 sec. 

although we deal with an infinite (complex) series. For T = 240 sec, however, we 
need 50-100 orthogonals. This is because this period is close to a peak period = 
238 sec, see Table 4 and Fig. 7. For T = 720 sec the waves from the three first 
orthogonals are in phase, and the resulting A I A i is rather high. For T = 1440 sec 
the waves from the second and third orthogonal are in opposite phase with the 
waves from the primary orthogonal, and the resulting A/A i becomes rather low. 
Note, that the moduli in the four sets of vectors are the same, while the phase lags 
are different. It can also be seen that because of symmetry (A2,<p2) = (A 3,<p3), 

(A 4,<p4) = (A 5,<p5), etc. 
Fig. 10 is similar to Fig. 9 but depicts conditions for the opposite point of the 

island, point Q in Fig. 1. We remark that the first waves for T = 720 sec are not 
in phase as they were for point P, nor are the first waves for T = 1440 sec in op-
posite phase as they were for point P. For T = 240 sec we find the same tendency 
as in Fig. 9. This is so because the peak periods (but not the phase lags) are inde-
pendent of 0a. Note, that at point Q we have two equal primary orthogonals, two 
equal secondary orthogonals, etc. 

Fig. 11 is a supplement to Fig. 9 (point P) showing two periods (T = 317.15 
sec and 317.30 sec) on either side of the peak at T = 317.24 sec (Table 4). To the 
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i=n 

left in the figure T = 317 .15 sec is considered. The curve for the termini of L 
J=l 

A Ji A ;exp(icp1) is here whirling counterclockwise around the final point for increas-
ing n. To the right in the figure T = 317 .30 sec is considered. The curve here whirls 
clockwise around the fin al point for increasing n. For the peak period itself, the 
curves would in the limit degenerate to a straight line of infinite length, and it can 
be inferred from the figure that here the final phase lag would be 90° (Table 4). 

This method of adding up an infinite number of wave ortogonals could justify the 
name, a "vector addition refraction theory". 

b. Refraction solution using intermediate depth theory. When c is determined by 
(2.1) the governing equations (4.3)-(4.5) and (4.11) must be solved numerically; 
see Skovgaard et al. (1975, 1976) for details. 

Here we will only consider the primary orthogonal for point P, i.e. 0 = 0b = 180° 
and v = 0°. In this case the equation for /3 simply is 

l+G x2 d
2
/3_ x d/3 +/3=0 -rb===x===-ra . (4.32) 

2G dx2 dx 
In (4.32) G 1s a function of x, and the equation is not of the Euler type, as was 
(4.23). The relative wave amplitude A 1 / A ; due to the primary orthogonal at point 
P becomes 

(4.33) 

where factor 2 is due to the full reflection assumed. The value of A 1 / A ; as a func-
tion of Tis depicted in Figs. 6 and 7. For increasing T the curve approaches asymp-
totically the primary orthogonal solution from shallow water theory. For T smaller 
than about 25 sec, A 1/ A ; is very close to 2.0 (fully reflected deep water waves). 
Now we know that for T 0 the orthogonals tend to become straight lines and in 
this limit every point of the " illuminated" part of the island (90° === 0 === 180°) will 
be reached by only one orthogonal (and the lee side by none at all). On the other 
hand, it was shown in the preceding section that in the shallow water limit every 
point is reached by an infinity of orthogonals. It therefore is expected that point P 
will be reached by 1,3,5, . .. ,m, . . . orthogonals for 0 < T < T1, T1 < T < T 2 , 

T2 < T < T3, .. . , T <m-1)/2 < T < T <m+1>;2, etc., where m oo for T oo. 
Although this has not been investigated further (and thus we do not know when 
Ti is reached and the primary orthogonal is no longer sufficient), it can be seen 
from Fig. 6 that this orthogonal with good accuracy gives a "moving average" of 
the true diffraction solution. And up to (say) T = 50 sec there is no real difference 
between the two solutions for point P. This can be taken as a "numerical proof' 
of the refraction theory being a limiting version of the wave equation. For T = 50 
sec we find for the primary orthogonal along 0 = 180°, Jv'hl/(h/ L) = 0.26 for 
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r = rb, and 0.58 for r = ra. j'vh/l(h/L) = 1 corresponds to T = 80 sec for r = ra 
(where shallow water theory gives T = 76 sec). It appears from Fig. 6 that refrac-
tion theory, using only the primary orthogonal for point P, has broken down for 
this value of T. It might be a future task to investigate whether the inclusion of the 
omitted orthogonals will improve on this, and, if so, what the new limiting period 
would be. 

In summary, the depth varying a significant amount over a distance that is small 
compared to a wave length is believed to be the major cause of the break-down of 
the refraction solution. Another contributing factor might be the discontinuity in 
the bottom slope at r = rb. If we took into account the partial reflection here, then 
the series (4.27) would perhaps not diverge at the points in Fig. 7, and a better 
agreement with the diffraction solution might result.4 

5. Conclusion 

For plane, regular waves of small amplitude, incident on the island in Fig. 1, we 
have calculated the wave field according to two different approaches, viz. a diffrac-
tion theory and a depth refraction theory. The solutions are compared for periods 
where the Coriolis force can be neglected. It is found that for 1.5 Lalra 2.5 
the complete refraction solution can predict the critical wave periods quite well, 
and to some extent also the regions of the shoreline where the wave amplitude is 
large. For Lalra smaller than (say) 0.4, corresponding to rather small periods, 
Fig. 6, the amplitudes at point P (the middle of the front face of the island) are 
rather well predicted by the primary orthogonal. For Lalra higher than this value 
the amplitudes from refraction theory deviate more and more from the diffraction 
solution. The primary orthogonal, however, can give the right order of magnitude 
for the wave amplitude in point P in the sense that it yields a good approximation 
to a "moving average" amplitude versus period diffraction curve up to Lalra = 2.5. 
It cannot in any case predict the critical wave periods, nor the regions of the shore-
line where the amplitude is large. Beyond La = 2.5 ra refraction calculations be-
come quite meaningless. The complete refraction solution (i.e. superposing contribu-
tions from all orthogonals) is only calculated for shallow water waves. 

The conflicting data in the definition of a similar island in Vastano and Reid 
(1966, 1967) are clarified. For another set of data the diffraction solution is given 
with a more complete description of the wave field over the shoal, and two test 
solutions are tabulated (Table 2). 

The shallow water diffraction approach should not be used for Lalra less than 
(say) 2 for the present island/shoal. For the first time the diffraction solution is 
given for an island of this form, using intermediate depth theory and a newly de-
veloped mild-slope wave equation. Generally, this equation may be replaced by 

4. Prof. Erik Hansen, Laboratory of Applied Mathematical Physics (Tech. Un.iv. Denmark) and one 
of the referees are acknowledged for this suggestion. 
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the well-known linear long-wave equation for tsunami periods bigger than 7 min. 
All nonliner effects have been neglected. 

Acknowledgment. Professor Erik Hansen and Dr. Peter L. Christiansen of the Laboratory 
of Applied Mathematical Physics, Technical University of Denmark, are acknowledged for 

stimulating discussions on the subject. 

APPENDIX A: Calculation of the Bessel functions 

The Bessel functions J(x) and Y(x) of order O and 1 were calculated from Chebyshev ex-
pansions, see Clenshaw (1962) and Luke (1969). For higher orders ln(x) were calculated by the 
forward recurrence relation for orders n x, see Olver (1964), equation (9.1.27). For orders 
n greater than x, ln(x) were calculated by a continued fraction, see Blanch (1964). For all 
orders n higher than 2, Yn(x) were calculated by the forward recurrence relation. 

APPENDIX B: Programming 

The numerical methods described were programmed in the IBM OS 360/ 370 implementa-
tion of PL/I. All the floating point calculations were made with at least 15S. All the presented 
results (Tables 2-4) were rounded to 5S. 
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CORRECTION 
in 

"The density of seawater solutions at one atmosphere as a function of temperature 
and salinity," by Frank J. Millero, Agustin Gonzalez and Gary K. Ward, J. Mar. 
Res., 34, 61-93. 
The values of S(%o) and R1 5 given in Table 3 are incorrect. The correct values are 
given below: 

0°C 25°c 

S(%o) Rio S(%o) R,. 

40.447 1.13752 40.049 1.12757 

37.675 1.06791 36.944 1.04943 

35.012 1.00030 35.137 1.00350 

30.221 0.87673 29.772 0.86502 

25.973 0.76482 25.647 0.75614 

25.249 0.74551 24.730 0.73162 

19.998 0.60317 19.632 0.59310 

14.424 0.44731 14.408 0.44685 

6.940 0.22775 6.613 0.21777 

3.338 0.11462 3.017 0.10412 

1.400 0.04975 1.306 0.04650 

These corrections were unfortunately not made in the revised manuscript: 23 
October, 1975. The correct salinities were used in all the density fits , thus equation 

(11) does not need to be altered. 


