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Doppler effects of inertial currents on subsurface 
temperature measurements 

by T. H. Bell, Jr.1 

ABSTRACT 

In the presence of inertial oscillations, temperature measurements from a moored sensor 
will be contaminated by advected spatial structure. The degree of contamination is comparable 
to that induced by steady currents of the same magnitude, and its effect resembles that of a 
discrete linear filter acting on the spectrum, with filter response contributions at the sum and 
difference frequencies w ± nf, where w is the sample frequency and f the inertial frequency. 
Strong inertial currents may induce spectral peaks at harmonics of the inertial frequency. If 
the spectrum includes discrete components such as the internal tide, secondary peaks will be 
induced at the sum and difference frequencies wo ± nf, where w. is the frequency of the dis-
crete component. 

1. Introduction 

The oceanic temperature field is a random function of space and time. In recent 
years, a considerable amount of work has been devoted to the problem of modeling 
the statistical properties of this random field. Of particular interest are problems 
relating to the interpretation of data from moored temperature sensors in the range 
of frequencies characteristic of internal wave motions (that is, between the local 
inertial frequency and the Brunt-Vaisala frequency, see Garrett and Munk, 1972). 
A number of authors (Phillips, 1971, and Garrett and Munk, 1971, among others) 
have considered the problem of contamination of data from moored temperature 
sensors by the kinematic interaction of internal waves and vertical microstructure. 
Others (White, 1972, and Garrett and Munk, 1972, for example) have considered 
the Doppler smearing of internal wave spectra by steady currents. Here, we consider 
the Doppler effect of inertial oscillations on data from moored temperature sensors. 

Pure inertial oscillations involve only horizontal motions, and as such do not 
contribute directly to the temperature variability, which is generally related to verti-
cal motions. However, inertial currents will advect the random temperature field 
past a moored sensor, so that the temperature variability seen by the sensor will not 
reflect the true temporal structure of the random field, but will in fact be contami-
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nated by advected spatial structure. The effect of this contamination on the fre-
quency spectrum is shown to resemble that of a discrete linear filter, whose response 
includes contributions from the sums and differences of the sample frequency and 
the inertial frequency and its harmonics. The relative weights of the contributions 
are determined by the horizontal coherence of the temperature field. The distortion 
of a representative model spectrum (Garrett and Munk, 1972, 1975) has been cal-
culated for several magnitudes of the inertial frequency current, and is found to be 
comparable to that induced by steady currents of the same magnitude. Strong in-
ertial frequency currents (> 20 cm/sec) may induce sensible peaks (> 1 dB above 
the continuum) in the spectrum at harmonics of the inertial frequency. The effect 
of inertial oscillations on discrete spectral components such as the internal tide is 
also considered. The inertial frequency currents are found to induce secondary 
spectral peaks at the sum and difference frequencies w0 ± nf, where w0 and f are 
the tidal and inertial frequencies. For strong inertial currents (> 20 cm/sec), more 
than 50% of the tidal energy may be transferred to these sidebands. 

2. General Theory 

The temperature field T(x,t) is assumed to be a stationary, homogeneous random 
function of space and time. If this random field is advected past a moored sensor 

at a velocity U(t), then the time series of temperature sampled at the sensor, T(t), 
is given by 

T(t) = T[x(t),t] 

where 

x(t) = - f : U(t) dt 

The sample correlation function is then given by 

R(t) = < T(o) T(t) > 
= R[x(t), t] 

(2.1) 

(2.2) 

(2.3) 

where R(x,t) = < T(0 ,0) T(x,t) > is the space-time correlation function of the 
homogeneous random field T, angular brackets being used to denote probability 
averages. The sample power spectrum is related to the Fourier transform 

(2.4) 

with inverse 

R(t) = - 1-f "' P(w)ei"'1dw . 
27T -o:, 

(2.5) 

As normally plotted, the power spectrum would be given by 2P(w/ 21r) where 
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w/21r is circular frequency (cycles per unit time) and the temperature variance 
< T2 > is equal to the integral of the spectrum over all positive circular frequencies. 

In the sequel, however, we will simply refer to P(w) as the sample power spectrum. 
Substituting from equation (2.3) into (2.4), then 

P(w) = f :
00 

R[x(t),t]e-i"' 1dt 

The correlation function R(x,t) may be expressed as 

1 s 00 

R(x,t) = -
2 

F(w) C(x,w)ei"' 1dw 
7T - 00 

(2.6) 

(2.7) 

where F(w) is the true power spectrum of the random temperature field which 
would be obtained in the absence of advection currents 

F(w) = f :
00 

R(o,t)e-i"' 1dt 

and C(x,w) is the moored horizontal coherence 

f 00 R(x,t)e-iwtdt 
C(x,w) = -------::,-----00

-----f :
00 

R(o,t)e-i«>tdt 

Substituting from equation (2.7) into (2.6), then 

P(w) = f :
00 

F(w')W(w,w')dw' 

where 

W(w,w') = -
2
1 f 00 

C[x(t),w']ei(w'-w)tdt . 
7T - 00 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

Equation (2.10) illustrates that the Doppler effect of any advective current may be 
modeled by a linear filter acting on the power spectrum. The impulse response of 
the filter is given by equation (2.11). 

The relationship between the filter response and the spatial coherence of the tem-
perature field is best illustrated by considering the case of a steady current. In this 
case, xis directly proportional to time, t, and equation (2.11) takes the form of a 
Fourier transform. Recalling the fundamental properties of Fourier transform pairs, 
it is clear that the "peakedness" of the filter response or the degree of spectral 
smoothing is related to the "peakedness" of the coherence function and the magni-
tude of the current. This relationship is illustrated in Fig. 1. A highly peaked co-
herence function results in a broad filter response and a high degree of spectral 
smoothing, while a broad coherence function results in a peaked filter response and 
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Figure 1. The inverse relationship between horizontal coherence of the temperature field and 
the response of the spectral smoothing filter for Doppler smearing by steady currents. 

less smoothing. This is a manifestation of the fact that the spectral contamination 
is due to the advection of incoherent spatial structure. If there were no spatial 
structure in the temperature field, that is, if it were spatially coherent, then there 
would be no contamination, whereas if the spatial structure were completely in-
coherent, the sample spectrum would be white. Since the magnitude of the current 
determines the scaling of distance, an increase in current speed results in an apparent 
increase in the peakedness of the coherence function, and hence an increase in the 
degree of smoothing. 

The situation is somewhat more complicated when inertial frequency currents 
are considered. In this case, the temperature field is sampled along a trajectory 
x(t) with components 

X1(t) = (2U If) sin (ft/2) cos (ft/2 + cp) 
(2.12) 

xit) = (2U /f) sin (ft/2) sin (ft/2 + cf>) 

where x = (x1,X2), f is the inertial frequency, U is the magnitude of the inertial cur-
rent, and cf> is an arbitrary phase angle. Since the temperature field is statistically 
homogeneous, the coherence depends only on the magnitude of x: 

2U I . ( ft ) I x(t) = - 1- sm 2 . (2.13) 

Since x(t) is periodic, C[x(t), w'] is periodic in time, and the integral in equation 
(2.11) does not exist in the normal sense. We may proceed formally, however, by 
expanding the coherence function in a Fourier series: 

co 

C[x(t) ,w'] = L an(w')einft (2.14) 
n=-oo 

where 

f f tr / I 
a,.(w') = -- C[x(t),w'Je-inftdt . 

21T -tr/ I 
(2.15) 
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The weight function or filter response W(w,w') is then given as a series of 8-func-
tions: 

00 

W(w,w') = L a,.(w') 8(w' - w = nf) (2.16) 
n=-oo 

The sample spectrum is then given by 

00 

P(w) = L an(w - nf) F(w - nf) , (2.17) 
n=-oo 

which describes the effect of a discrete linear filter. The sample spectrum P(w) is 
thus obtained by superimposing weighted, frequency shifted images of the spectrum 
F(w) onto itself. The frequency shifts are in integral multiples of the inertial fre-
quency, and the weights are frequency dependent. At a particular sample frequency 

w, the sample spectrum P(w) is a weighted sum of contributions from the true spec-
trum at the sample frequency and all of the sum and difference frequencies w ± nf. 

3. Continuous spectra 

The moored horizontal coherence C(x,w) of the temperature field has been esti-
mated by Briscoe (1975) for horizontal lags x ranging from 14 m to 1600 musing 
40 days of continuous data from the IWEX array in the western North Atlantic. 
For frequencies less than the local Brunt-Vaisala frequency, the coherence function 
appears to depend on the product wx rather than on w and x independently. Briscoe 
has examined the results of eight other experiments summarized by Siedler (1974) 
as well as some of the IWEX results, and concludes that the "half-coherence fre-
quency" w112, where C(x,w112) = 1/ 2, may be represented by 

w,12 = I / ax (3.1) 

where a= 0.58 m/ sec. The IWEX data is replotted in Fig. 2 as a function of wx. 

Also shown in Fig. 2 is a simple curve of the form 

1 
C(x,w) = 1 + (awx)z (3.2) 

which appears to describe the data adequately, and which may be used in estimat-
ing Doppler effects on internal wave spectra using the theory developed in the pre-
ceding section. Although it is probable that the coherence estimates are also con-
taminated by Doppler effects, we expect that, since the Doppler effects are generally 
small, the representation (3.2) will be sufficiently accurate for estimating Doppler 

effects on internal wave spectra. 
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Figure 2. Moored horizontal coherence of temperature from the IWEX data (after Briscoe, 
1975). Curve is the model given by equation (3.2). 

Figure 3A. Normalized internal wave spectra in the presence of inertial currents of magnitude 
U (cm/sec). 3B. Comparison of normalized internal wave spectra in the presence of inertial 
and steady currents of magnitude 10 cm/ sec. 

Substituting from equation (2.13) for x(t) in the case of an inertial current of 
magnitude U into equation (3.2), we have 

C[x(t) ,w] = {1 + 4a2w 2L2 sin2 (ft/2)}- 1 

(3.3) 
= {l + 2a2w2U [1 - cos (ft)]}- 1 

where L = U I f is the radius of the horizontal orbital motion of the inertial oscilla-
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tion, and may be of order 1 km (Phillips, 1966, § 5.7). The Fourier series repre-
sentation of equation (3.3) is readily obtained by setting 

1 
1 + 2cx2w2 U = cosh ({) 

and 
e-~ = r . 

Equation (3.3) then becomes 
sinh ({) 

C[x(t),w] = tanh ({ / 2) cosh ({) - cos (ft) 

1-r 
l+r 

1 - r2 
1 - 2r cos (ft) + r2 

(3.4) 

(3.5) 

(3.6) 

which is a well known form arising in the study of Laplace's equation in a circular 
region. The Fourier series representation is given by Carslaw (1950, §99): 

00 

C[x(t),w] = { 1 + 2 L rn cos (nft) } 
n=l 

(3.7) 
00 

= tanh ({/ 2) { 1 + 2 L e-nE cos (nft)} 

n=l 

From equations (2.17) and (2.14), then, the sample spectrum P(w) is given by 
00 

(3.8) 
n = -oo 

where F(w) is the uncontaminated spectrum, w,. = w - nf, and {,. is defined by 
equation (3.4) with Wn and {n replacing wand{. Note that 

tanh2 ({n/2) = 1 + 4cx2~ 2wn2/ f2 

e-tn = 1 - tanh ({n/ 2) 
1 + tanh ({n/ 2) 

(3.9) 

which illustrates that the filter response in equation (3.8) could be expressed directly 

in terms of the coherence C(2L,w). 
To illustrate the Doppler effect, we apply equation (3.8) to a model internal wave 

spectrum 

(3.10) 

= 0, otherwise 

where N is the Brunt-Vaisala frequency and < T2 > is the temperature variance 
assuming N2 >> f 2 (see Garrett and Munk, 1972, 1975). The results are shown in 



464 Journal of Marine Research [34, 3 

Fig. 3a for several values of the magnitude of the inertial current, with N = 50/. 
Clearly, if the inertial currents are sufficiently strong (U ;?; 20 cm/ sec), significant 
structure may be introduced into an otherwise smooth spectrum. It is of interest to 
compare these results with the results of similar calculations of Doppler contamina-
tion by steady currents. In the case of a steady current of speed U 

(3.11) 

The Fourier transform of this expression is well known (see Carslaw, 1950, p. 
322), so that by equations (2.11) and (2.10), 

1 f 00 F(w') P(w) =-- -, -,,- exp[-11-w/ w'l / aU] dw' 
2aU - 00 w 

(3.12) 

The sample spectrum for a steady current of 10 cm/ sec with F(w) given by equa-
tion (3.10) is compared with that for an inertial current of the same magnitude in 

Fig. 3b. Although somewhat different in form, the Doppler effects for steady and 
inertial currents are comparable in magnitude. The difference is restricted to rela-
tively low frequencies, as is to be expected since the steady flow solution (3.12) 
may be obtained from the inertial current solution (3.8) in the limit w/ f oo . 

4. Discrete spectra 

We now consider the Doppler effect of inertial currents on discrete spectral com-
ponents such as the internal tide. Consider first the effect on a coherent wave of 
the form 

T(x,t) = T 0 cos (k•x - Wot) (4.1) 

where k = (k1,k2) is the wavenumber and w0 the frequency of the coherent wave. 
The sampled time series of temperature is 

T(t) = T[x(t),t] 
(4.2) 

= To COS [k • x(t) - w0t] 

where x(t) is the sample trajectory. With x(t) given by equation (2.12), we have 

T(t) = To cos [kL sin (ft - 0) - w0t + u] (4.3) 

where 0 is an arbitrary phase, u = kL sin 0, k is the wavenumber magnitude, and 
as before, L = U I f is the radius of the horizontal orbital motion of the inertial 
oscillation. The expression (4.3) may be expanded in a series of simple harmonic 
functions of time by invoking the fundamental expansion for Bessel functions in 
the form 

00 

e izsln (ll) = L einll Jn(Z) (4.4) 
n= - oo 
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(see Watson, 1966, §§ 2.1, 2.22), so that 

co 

1'(t) = To ). l n(kL) COS [(w 0 - nf) t + <pn] 
._/ 

(4.5) 
n=-oo 

with cf,,. = kL sin(0) - n0, 0 being an arbitrary phase angle as noted previously. 
Thus, the sampled time series contains an entire discrete spectrum of oscillations at 
the sum and difference frequencies w0 ± nf. The amplitude at frequency w0 is re-
duced to To l o (kL), while the sideband amplitudes are given by T0 ln (kL). If we 
consider a first mode internal tide with k = 0.05 km-1 (Krupin, 1969), then for L 
= 1 km we have kL < < l and may approximate 

l n(kL) = - 1
-
1 

(½kLr 
n. 

(4.6) 

for n 0, with ln(kL) = (-lr ln(kL). The amplitudes of the first sidebands (w0 ± 
f) are then only a few percent of the primary frequency amplitude, and those of 
higher order sidebands are proportionately smaller. For the sidebands to be of com-
parable amplitude to the primary oscillation, kL must be of order unity, or L = 
20 km, corresponding to an inertial current of roughly 1.5 m/sec. Thus, inertial 
oscillations may in general be expected to have a negligible effect on observations of 
coherent first-mode internal tides. The situation may be somewhat different when 
the internal tide is composed of an entire spectrum of wavelengths, such as might 
occur if a generation mechanism such as that described by Bell (1973, 1975) were 
operative. 

The discrete spectrum corresponding to the sample time series of equation (4.5) 
is given by 

00 

(4.7) 
n=-oo 

If an entire spectrum of wavelengths is present, then equation (4.7) must be aver-
aged over wavenumber. The appropriate probability density function is (21rTo)-1 

times the wavenumber spectrum F(k), since the spectrum describes the distribution 
of variance over wavenumber space, with 

T0
2 = --45 "' F(k)dk 

47T - oo 
(4.8) 

and 

(4.9) 

in which Ro(x) is the spatial correlation function for waves of frequency Wo, Aver-

aging over wavenumber, then, we have 
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co 

P(w) = L f kln2(kL) F(k)dk 8(w - Wo + nf) (4.10) 

n=- oo 

assuming an isotropic spectrum, that is, that F(k) depends only on the magnitude of 
k. Invoking the integral representation 

l f"' J,,2(kL) = - J0 [2kL sin (/3)] cos (2nf3) d/3 
7T 0 

(4.11) 

(Watson, 1966, § 2.6), the integral in equation (4.11) may be transformed to 

f :"' { 2~ f klo[2kL sin (/3/ 2)] F(k) dk} cos (n/3) d/3 . (4.12) 

The inner integral in expression ( 4.12) is easily identified as the inverse of equation 
(4.9) for an isotropic spectrum, with x = 2L sin (/3/2), so that equation (4.10) 
becomes 

co 

°"· f o
2

" 
P(w) = L 

n= - oo 

R 0 [2L sin (/3/ 2)] cos (n/3) d/3 8(w - Wo + nf) 

(4.13) 

The correlation Ro(x) is formally equivalent to T 0
2 times the coherence at frequency 

w0 , so that we may express 

co 

P(w) = 21r T o2 L an8(w - Wo + nf) (4.14) 
n= -oo 

where 

l f 2

"' an = 27T 
O 

C[2L sin (/3/ 2), w0 ] cos (n/3) d/3 ( 4.15) 

This expression for the discrete sample spectrum is precisely that which would be 
obtained by applying the general theory developed in § 2 above to a discrete spec-
trum of the form F(w) = 21r T 0

28(w - w0). 

Barnett and Bernstein (1975) have measured the horizontal coherence of semi-
diurnal internal tides in the central Pacific over distances ranging from 5 km to 
500 km. They find a coherence of 0.7 at 5 km, and no significant coherence at 
50 km or 500 km. These results are consistent with the IWEX data plotted in 
Fig. 2, which also contains contributions from internal tides. If the coherence func-
tion given by equation (3.2) is then taken to be representative of mid-ocean internal 
tides, the analysis of the preceding section is applicable, and the coefficients in 
equation (4.14) above are given by 

= tanh (V2) e-lnls ( 4.16) 
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Figure 4A. Relative amplitudes of spectral peaks at frequencies Wo ± nf as a function of the 
magnitude of the inertial current, where wo is the frequency of the internal tide, assuming a 
coherence function given by equation (3.2). 4B. Same as A, assuming a coherent first mode 
internal tide. 

where 

cosh W = 1 + __ l __ 
2a2w/ L 2 

with £C1 ~ 0.58 m/ sec. The a,, are the relative amplitudes of the peaks in the 
sample spectrum. In the absence of inertial currents (U = 0), a0 = 1 and an = 0 
for n =I= 0. Values of the coefficients for several values of n are plotted as a func-
tion of U in Fig. 4a, assuming w0 = 2f, which is appropriate for the semidiurnal 
tide at mid latitudes. For weak inertial currents (U 5 cm/ sec) the primary spec-
tral peak at w 0 dominates, with less than 5 % of the energy appearing in the second-
ary peaks. For strong inertial currents (U ;?; 25 cm/ sec), however, less than half the 
energy remains in the primary peak, and the secondary peaks become significant. 
A similar plot of an as a function of U for a single coherent first-mode internal tide 
is shown in Fig. 4b. Here an is given by equation (4.7) as l n2(kL). Clearly, if the 
internal tide is characterized by a single coherent wave rather than a spectrum of 
waves of varying length, then the Doppler effects of inertial currents are significantly 
reduced. 

5. Conclusion 

We have investigated the Doppler effect of inertial currents on temperature 
measurements from moored sensors. For moderate inertial currents (of order 10 
cm/ sec or less), the primary effect on the internal wave spectrum is the appearance 
of energy at sub-inertial frequencies and frequencies above the buoyancy cut-off. 
Strong inertial currents (;?; 20 cm/ sec) may induce significant structure in the 
measured spectrum, in the form of sensible peaks near harmonics of the inertial 
frequency. If the internal wave field contains a discrete harmonic component at 
frequency w0 , such as an internal tide, then the sample spectrum will display peaks 
not only at the primary frequency but also at the sum and difference frequencies 
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Wo ± nf. If the coherence of the internal tide decreases significantly over distances 
of 5 or 10 km, as suggested in the measurements of Barnett and Bernstein (1975) 
and Briscoe (1975), then a significant portion of the internal tidal energy may ap-
pear in these sideband peaks. Such peaks are in fact observed in measured spectra 
(see, for example Briscoe, 1975, Fig. 15), and it is interesting to note that at mid-
latitudes, then= 1 peak is located near the inertial frequency. 

In closing, we note that the theory developed here is applicable to any oscillatory 
currents which may advect the random temperature field. For example, effects 
similar to those described here may be introduced by barotropic tidal currents (see 
Bell, 1973). 
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