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Large scale inhomogeneities and mesoscale ocean waves: 
a single, stable wave field 

by James C. McWilliams 1 

ABSTRACT 

Horizontally propagating wave solution forms are assumed for mid-ocean mesoscale cur-
rents (i .e., those with spatial and temporal cycles of a few hundred kilometers and several 
months). The wave environment-defined to include the Coriolis parameter, bottom topog-
raphy, and mean currents-is assumed to be inhomogeneous, but only on much larger scales. 
Mutual compatibility between these assumptions is derived. The wave numbers and frequency 
for the mesoscale motions evolve in a characteristic coordinate transformation defined by 
group velocity propagation; the wave amplitude is determined by a conservation of action 
density. Particular focus is placed upon the manner of rectified mesoscale forcing of large 
scale currents. The response consists of a combination of / / (depth) contour flow, nondispersive 
baroclinic wave propagation, and forced cross-contour currents. All three of these small ampli-
tude laws remain valid at finite amplitude (i.e., a wave steepness of order unity or larger). 

1. Modeling motivation 

Mesoscale ocean currents are characterized by horizontal eddy diameters of a 
few hundred kilometers, periods of a few months, and vertical scales comparable 
to the ocean depth. In mid-ocean locations these currents typically are the ones 
with the greatest kinetic energy. In the theoretical description of ocean currents (as 
elsewhere), the concept of waves has had considerable utility, largely for its near 
uniqueness in yielding explicit solutions to the transient equations of motion. For 
example, there have been many studies of low frequency, quasigeostrophic waves 
(see the summaries of Platzman, 1968, and Lighthill, 1971). Furthermore, these 
wave theories have had empirical relevance. The presently completed mid-ocean, 
mesoscale experiments, Polygon and MODE, resolved little more than single cycles 
in space and time. On these scales, though, linearized waves were shown to be a 
successful description of much of the observed variability (McWilliams and Robin-
son, 1974; McWilliams and Flierl, 1975a). Clearly, however, this is a dynamically 
incomplete description: to address the generation, evolution, and decay of a meso-
scale wave field requires a greater scope than a single cycle. 

For the obvious advantage of mathematical simplicity, the wave environment 
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has usually been regarded as homogeneous. However, the ocean is an inhomogene-
ous medium. Currents in different locations are generally dissimilar due to variations 
of forcing, latitude, basin geometry, and, over a large enough separation, water mass 
characteristics. The present purpose is to extend the theory of mid-ocean waves to 
accommodate inhomogeneities of large scale in the wave environment-defined to 
include the Coriolis parameter, the bottom topography, and broad, slowly evolving 
currents (which will be called mean currents, implying an average over the shorter 
mesoscales). For the Coriolis parameter the modeling is accurate, since its spatial 
variability is only on a global scale. Bottom topography has variability at all scales; 
nevertheless, the greatest variance is associated with scales approaching those of 
the ocean basins (Lee and Kaula, 1967), which are generally much larger than 
mesoscale lengths. For the third environmental element, however, neither of these 
arguments applies: there are nonmesoscale motions on shorter as well as longer 
scales, and the velocity variance of the shorter is not generally the smaller of the 
two. The focus on the mean currents is thus somewhat arbitrary, but it is both 
mathematically compatible with the other environmental elements and permits a 
linking of mesoscale currents and the general circulation. Great effort has gone 
into observation of the latter, and surely it is of crucial importance in the climate 
regulating interaction of the ocean and atmosphere. It is with the expectation that 
the mesoscales do importantly contribute to the general circulation through eddy 
fluxes of heat and momentum that this model is formulated. 

The ocean currents are assumed in the model to be incompressible, hydrostatic, 
and inviscid. The last assumption is probably appropriate for mesoscale currents 
over a few cycles, since no decay of synoptic features was observed during MODE 
or Polygon. It may also be qualitatively correct for much larger times: individual 
Gulf Stream current rings have been shown to exist for at least two years (Cheney 
and Richardson, 1974). 

Observations indicate a simple vertical structure for mesoscale currents. Only 
two empirical eigenfunctions account for over 90 % of the measured velocity and 
dynamic height variances during MODE (Davis, 1975), and these eigenfunctions 
are approximately combinations of the barotropic and first baroclinic, linearized, 
dynamical modes (McWilliams and Flierl, 1975b). The present model has a com-
parable number of vertical degrees of freedom: two immiscible layers of constant 
(but differing) densities. While this is adequate for a local description of mesoscale 
currents, its applicability for mean currents has weaker observational support. The 
MODE region in particular may have a mean velocity profile with much different 
structure (McWilliams, 1974). However, multiple-level numerical simulations of 
the general circulation conform approximately to a two mode description, whether 
prognostic (Bryan and Cox, 1967) or diagnostic (where observations fix the density 
structure: Holland and Hirschman, 1972). 

The scale disparity between mesoscale currents and the subtropical gyres and 
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Figure 1. The power spectral density times frequency (such that area under the curve repre-
sents contribution to the variance) for temperature measurements taken near Bermuda (from 
Wunsch, 1972). There is a clear peak in the mesoscale regime (periods of 50-250 days). 

ocean basins suggests using a method of multiple scale analysis, which depends 
upon a scale ratio E being small ( e=l/ L, where l is characteristic of a mesoscale 
length and L of the environment). This partition, equivalent to the assumption of 
a scale gap between the mesoscale and the environment, is correct for the Coriolis 
parameter and asserted to be so for the topography and mean currents. Present 
observations cannot resolve the spectral distributions of the currents broader and 
slower than the mesoscales. While mesoscale eddies appear to be a scale-distinct 
phenomenon-they cause a peak in frequency spectra (Fig. 1) and probably also 
in velocity wave number spectra-it is not known whether interactions with cur-
rents slightly broader (e:s;l) or much so (e<<l) are most important. The latter is 
assumed in what follows, but the consequences of relaxing this condition will also 
be discussed. 

The structure of the paper is as follows. In §2 a two-parameter ordering of the 
equations of motion is derived; these parameters are the scale ratio E defined above 
(which also serves as a Rossby number) and a measure, R10 , of the mesoscale cur-
rent intensity. Before proceeding to derive the wave laws, we consider in §3 the 
equations for the mean currents, compatible with the other environmental elements, 
but without any rectified mesoscale forcing. In §4 the mesoscale solution form for 
a single, stable wave field in an inhomogeneous environment is introduced. §5 con-
tains the infinitesimal amplitude wave laws (i.e., R,,,<<e<<l), and in §6 they are 
examined for finite amplitude (R10~e). In §7, for a simple environment, solutions 
are obtained for large scale currents driven by rectified mesoscale forcing. Finally, 
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in §8 a generalization within this model is proposed for the Rossby wave concepts 
of barotropic and baroclinic modes; it requires a thin upper layer (i .e., a thermo-
cline depth much less than the total depth). 

In recent years and other contexts, well dispersed waves in slowly varying in-
homogeneous media have been much studied. Typical are the achievements of 
Benny (1971), Bretherton (1966), and Whitham (1965). Although explicit refer-
ences will be sparse, this study is partly within the conceptual framework they have 
established, but the methodology is not wholly the same. The concern here will be 
with the particular physics of mesoscale waves rather than with wave generality. 

2. A quasigeostrophic and nonlinear expansion 

For depth independent, inviscid, hydrostatic, incompressible motions in two im-
miscible fluid layers with constant densities-as discussed above-the Navier Stokes 
equations in a rotating reference frame reduce to 

a,v,, + (vu•V)vu + e. x /v,, + g"v' = 0 

! atml +6.)-cp) + V • [(hu + + m1 +6.)-cp))v,.J = 0 

atvl +(vi . V)v1 + e. X fv1 + g"vcp = 0 

1 1 a ai(cp-,) + V • [(h1-B + T (cf>-rnv1] = O (2.1) 

The quantities v,. and V1 are the upper and lower layer velocities, f the Coriolis 
frequency (twice the rotation rate), g the gravitational acceleration, , and cp the 
upper and lower layer pressure heads, h" and h1 the average layer thicknesses, 
B(x,y) the level of the bottom, and A the positive relative density difference be-
tween the layers (see Fig. 2). The interface displacement dis defined by 
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A quasigeostrophic approximation is simply an assertion that the currents are 
nearly geostrophic and horizontally nondivergent, with a consequent expansion in 
the small departures from these balances. This route is by now well-travelled, and 
the usual expansion parameter is the Rossby number, the ratio of the magnitudes 
of the advective and Coriolis forces (e.g., Phillips, 1963). One can alternatively, 
but isomorphically, expand in the scale ratio E. This latter was done in Robinson 
and McWilliams (1974), and will be done here as well to emphasize the role of 
environmental inhomogeneity. 

The preceding equations (2.1) can be made nondimensional by the following 
scales: 

[f]~f 0 

[t]~(Ef 0)-1 

[x,y]~l [z]~hi 
(2.2) 

The scales selected for the quantities on the lower line in (2.2) anticipate the geo-
strophic expansion in E. The horizontal length l is characteristic of mesoscale mo-
tions; it has been observed to be comparable to the internal deformation radius 

1 ( D..ghuhl )~ 
fo hu+hi · 

The time scale has been chosen consistent with waves whose restoring force is the 
environmental gradient (as, for example, in a Rossby wave whose acceleration is 
balanced by northward advection of the planetary vorticity f). The environment is 
assumed to have only broad scales of variation, characterized not by l but by 
L = l/E. Consequently, we define nondimensional environment coordinates, rela-
tive to mesoscale coordinates, by 

[X,Y,T] = E[x,y,t] . (2.3) 

Thus, f(Y), B(X, Y), and the mean currents are functions only of X, Y, and T. 
Nondimensional momentum and mass conservation equations from (2.1) become 

E(ai+v,,•V)v,, + ez x f Vu+ V{ = 0 

ey2(a1+v.,•V) ({(1 +D..)-cp) + (1 +ey2({(l +D..)-cp))V•v,. = 0 

E(a1+v1•V)v1 + ez X f Vi+ Vcf> = 0 

Eoy2(a1+v1•V) (cp-{) + EV1°Vb + (b+EO"/(cf>-rnV•vz = 0 (2.4) 

The several non dimensional parameters and functions in (2.4) are defined by 

o = h.,/hi , 

f(Y) = 1 +{3Y , 

y = lfo/(D..gh,,P 

f3 = L ctn(00)/R 

b = 1-B/hz , (2.5) 
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where 00 is the latitude and R the earth's radius. A convention has been introduced 
for the topographic term which will be followed throughout: all differential op-
erators are 0(1) for the functions to which they are applied. Thus, 'vb is inter-
preted as 'v cx,Yib(X,Y), while 'v{, treated as if the pressure varied only on the 

mesoscales, is 'v <ai,v> t(x,y ,t). 
The equations (2.4) are to be systematically ordered in the small parameter E. 

This is perhaps most simply done from potential vorticity equations, derived by 
eliminating the velocity divergence between the vorticity and mass conservation 
equations. For each layer the result is of the form 

(2.6) 

where x (= v11-u.,) is the vorticity, D / Dt(=at+v• 'v) is the advective operator, and 
h is the instantaneous layer thickness, 

h = 8 + e8y2({(l +~)-</>) 

h = b + e8y2
( </>-t) . 

upper 

lower 
(2.7) 

Each of the preceding quantities is expanded in E (e.g., v = v0 + EV1 + E2V2 + ... ). 
The momentum equations in (2.4) can be used to obtain v (hence x and D/Dt) in 
terms of { and q>, h can be eliminated using (2.7), and the potential vorticity equa-
tions (2.6) then yield the governing balances for the pressures alone. Lengthy 
though the equations are, contributions through 0( E2

) will be required. 
The pressures, however, must be partitioned into mean and mesoscale com-

ponents: 

RM 
{ + R 10t(x,y,t,X,Y,T), 

E 

RM ,I,. q> - <I> + Rw'f' . 
E 

(2.8) 

The mean pressures depend upon only the environmental coordinates, while the 
mesoscale ones will in general depend upon both sets. The new parameters which 
appear are mean and mesoscale (wave) Strauhal numbers, 

R Vw Vw 
w = f 0LE2 = folE ' 

(2.9) 

where V M and V w are particle speeds. Since the scale ratio E measures the magni-
tude of particle accelerations relative to the geostrophic balance (i.e., it is a Rossby 
number), the Strauhal numbers are useful as measures of the ratio of advection to 
acceleration. The e-1 factor for mean pressures in (2.8) allows RM=Rw to repre-
sent equal mean and mesoscale velocity magnitudes through geostrophy. 

The insertion of (2.8) into the E-ordered pressure equations from (2.6) yields a 
correct expansion of the differential operators acting on the various pressures. The 
pressures themselves must be expanded in E (and, if appropriate, in RM and Rw as 
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well), but this will be deferred until §5. The resulting operators, explicit through 
O(e0

), are the following: 

upper RM [ ~" f3Zx-'y2D,.(Z(l+ii)-cp)] 

lower 

+ Rw [ ~ " Du072
{)--,,

2D,,({(1 +ii)-cp)-J ( ,, ~ " )] 

+ Rw2 
[ ~" ]({,\7 2

{) + j 2 

J({,cp)] = O(e) 

RM [ ~
1 

/3cp'"-8-'f2D1(cti-Z) -+ J(cti,b)] 

+ Rw [ ~
1 

Dz(\7 2cp)-8y 2D1(cp-{)-J ( cp, ~ 1 
) ] 

+ Rw2 [ ~l J(cp,\72cp) + 8r J(cp,0 ] = O(e) 

The large scale thicknesses of the layers are defined by 

and the mean advective operators by2 

RM R 
D,. = aT + -

1
-1cz, ), D, = aT + t J(cti, .) 

(2.10) 

(2.12) 

In this paper, terms in the operator through O(e2
) will be required; however, due 

to their complexity, they are not recorded here. 
Because the purpose of this section has been to establish a useful ordering of the 

model, the appearance of ii (of order 10-s for the ocean) in the final equations 
should be commented upon. It represents the contribution to upper layer thickness 
changes due to upper surface displacements; setting ii to zero where it appears 
explicitly in these equations is equivalent to imposing a rigid lid (with { becoming 
the pressure against the lid) . The O(ii) terms are almost never quantitatively im-
portant in what follows but are retained where they contribute to the formalism in 
a simple and understandable manner [e.g., the available potential energy of the free 
surface added to that of the interface in eq. (3.7)]. An exception occurs when both 
relative vorticity and interface displacements are small, such as for long (X,Y scale), 
barotropic (cti=Z) motions. There the O(ii) terms imply a time scale of fo- 1Ufa2/ 
g(h,,+h1), too fast to be characterized by the coordinate T (representing a scale 
/ 0 - 1e-2). These motions, mixed gravity-Rossby waves with a scale near the external 

2. Recall the convention described following (2.5): this operator should be re-interpreted as involving 
a,. a •• and a. when applied to a function of (x,y,t). 
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deformation radius, are not consistent with the model. Whenever such behavior 
might arise in what follows, the O(ii) terms are deleted. 

3. Large scale currents 

Prior to examining the mesoscale motions, it is of interest to examine one ele-
ment of their environment in isolation: the large scale currents which are consistent 
with the preceding expansion in e. We disregard for now any interaction with meso-
scale waves and set R w = 0. 

The dominant balance comes from (2.10) at O(e0
): strictly geostrophic potential 

vorticity is conserved following a particle path in each layer. 

D,, ( J,, ) = 0, D1 ( Jz ) = 0 · (3.1) 

The balance is between planetary vorticity changes and vortex stretching due to 
layer thickness changes. Relative vorticity contributions would enter only at O(e2

). 

This is a consequence of the large horizontal length scale L, and is sufficient to 
prevent the occurrence of classical barotropic instability (Kuo, 1949). Such in-
stabilities as may arise on these broad currents must be fed from the vertical rather 
than the horizontal velocity shear (i .e., baroclinic instability). 

The relations (3.1) are most often presented in their steady form. Then they re-
quire flow parallel to contours of f divided by the layer thickness, including the 
contributions from interfacial and free surface displacements. For weak mean cur-
rents [RM<< l in (2.11)], these displacements can be neglected, and the flow direc-
tions in the upper and lower layers are zonal and along f / b contours respectively. 
When is this steady flow limit appropriate? The ratio of the magnitudes of ah/ aT 
and the planetary vorticity advection f3v (which should participate in a steady 
balance) is 

(
R tan0o _1_) (foL)2 

f oL T. iighu ' 

where T. is a dimensional time scale. For L = 1000 km, an internal deformation 
radius of 50 km, and 00 = 30°, this ratio can be small only for time scales much 
in excess of 230 days. For different L values, the critical T. would vary in direct 
proportion. Thus, there is a large class of motions with T. values greater than the 
mesoscale times of 10-40 days for which the limit of steady contour flow is in-
correct. 

The conservation laws (3.1) may be linearized when their Strauhal number is 
small. From the scaling of (2.2) and (2.3), T. = e-2

/ 0 - 1 , and (2.9) becomes 

R - VMT. 
M- L (3.2) 

To avoid a trivial balance (i .e., arbitrary contour currents), only transient flows can 
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be linearized. For a time scale T. which permits the balance of ah/ aT and {3v as 
above, RM = V Ml(S cm sec-1), which should be small for many mid-ocean cir-
cumstances. The linearized forms for (3.1) are 

y 2 ar(Z-<I>) - f3/ j2a.,z = 0 
(3.3) 

8y2 ar (<l>-Z) + + J(cp,b) - /3b / f 2 <I>., = 0 

with error O(RJt,L'l ,e2
) . In each layer there is a time change in the vertical shear of 

pressure (Z-cp) due to flow across contours of either f or f / b. Solutions of (3.3) 
are propagating, baroclinic, planetary, topographic waves whose restoring forces 
are the cross-contour advections. The only complication in presenting explicit 
solutions arises from the nonconstant coefficients. For the special case of a flat bot-
tom (b = 1), the general solution to (3.3) is 

Z - G1(Y,D = + [G1 + G2(Y) - <I>]= Ga ( X + f2yfcr+a) , Y), (3.4) 

where the Gi are the arbitrary functions of their arguments. Three phenomena are 
present in this solution: (1) barotropic, transient, zonal flow ; (2) steady zonal cur-
rents, different in each layer; (3) westward propagation, with only meridional pat-
tern distortion, of currents intensified above the thermocline (when 8<1) and 180° 
out of phase between the layers. The phase speed is that of long, nondispersive, 
baroclinic Rossby waves. Barotropic Rossby waves have been suppressed by ne-
glecting free surface displacements in the upper layer thickness (see §2). 

The above solution illustrates the restrictions inherent in laws of the type (3 .1). 
General boundary conditions cannot be imposed in X (along contours), but this is to 
be expected for first order differential equations. At the edges of the oceans, at 
least, other physical processes must be involved. Similarly, general initial conditions 
are not possible. From (3.1) we can derive the following synoptic constraint valid 
in particular at T = 0 : 

For steady solutions these terms vanish individually. These restrictions will be 
further explored in the context of mesoscale forcing of the mean flow. However, 
insofar as the preceding scale assumptions about the large scale, mid-ocean cur-
rents are correct, the restrictive laws of (3.1) must apply. But they cannot apply 

ubiquitously. 
The first mean field correction to the conservation of geostrophic potential vor-
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ticity (3.1) occurs at O(E2). Consequently, we can expand the mean pressures in e, 
without an O(E) contribution, 

Z = Zo + E2Z2 + ... , <I>= <l>o + E2<1>2 + .. , , 
and, by continuing the operator expansion begun in (2.10), derive the following 
equations for <1>2 and Z2: 

(3.6) 

J ( <1>2, ~
1 

) + f8y2D1 ( <1>
2 

/ 
2 2

) = "v • ( ~
1 

Di ( "v:o)) • 

Thus, the expressions (2.11)-(2.12) and (3.1)-(3.5) should be interpreted as apply-
ing only to the leading order pressures, Z0 and cf,0 • The flux divergences in (3.6), 
which force the 0(E2

) pressures, represent a combination of depth-integrated rela-
tive vorticity changes and ageostrophic advections of geostrophic potential vorticity 
(f /H). Even for steady flows, the solutions can no longer simply be currents paral-
lel to geostrophic potential vorticity contours; cross-contour flow is forced. Tran-
sient, linearized solutions for Z2 and <1>2 would satisfy a wave equation of the type 
(3.3) forced by the flux divergence in (3.6). 

In summary, the large scale balances can be described as an expansion through 
0(E2

) of the conservation of potential vorticity. Alternatively, a depth integrated 
mean energy balance to this order can be obtained by multiplying the layer poten-
tial vorticity equations by 8(Z0 + E2Z2) and (<1>0 + E2<1>2) respectively. The result is 

a~ (En+ E PB + E2EKu + E2E m) = -"v • [V,,(P,, + E2E Ku) + V1(P1 + E2Ero)] 

(3.7) 

The energy density can change locally due to the divergence of the particle fluxes 
of pressure and energy. The available potential energies of the interface and free 
surface are 

En=+ 8y2 [(Zo - <l>o)2 + 2e2(Zo - <l>o) (Z2 - <1>2)] , 

Eps = + 8lly 2 [Za2 + 2e2Z0Z 2] , 

and, with a relative contribution in (3.7) only at O(e2
), the depth integrated kinetic 

energies in the layers are 

1 
EKu = 2 8Huj ("vZo)/ /12, 

EKI = + Hij("v<l> o)/ /12 
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The particle velocities include an ageostrophic component at O(e2) ; for example, 

fVu = ez X v'(Zo + e2Z 2) - €2 Du[(v'Zo)/fl , 

The formulation (3.7) is similar to that for general fluid motions given by Landau 
and Lifshitz (1959). Notice, however, that in (3.7) there is no flux of available po-
tential energy; that is because of our use of depth integrated pressures, 

P., = 8Hu(Zo + e2Z 2) + e2 8y2RMZo(Zi l + A)-<1>2) 

P1 = H1(<I> o + e2<I>2) + e28y2RM<l>o(<l>2 - Z2) • 

An area integral of the energy balance law (3.7) shows that the total energy of a 
region can change only by fluxes through its boundaries. But it is incorrect to 
identify them with geographical boundaries since the equations (3.1) and (3.6) can-
not be expected to apply for an entire closed basin. 

This completes a survey of free, large scale currents; they will be altered when 
mesoscale motions of sufficient intensity are present (§ § 5-7). 

4. A single, stable wave field 

The mesoscale solutions in an e and Rw expansion must have multiple scales to 
accommodate the inhomogeneous environment, and, by our assertion, they must 
also exhibit wave-like behavior on the faster scales (x,y,t). A solution form with 
these characteristics is the WKB form, 

{ ~ C(X,Y,T)ei9(X,Y,TJ I •. (4.1) 

C and 0 are functions only of the slow variables; the fast coordinates do not ex-
plicitly appear. We call C the amplitude function and 0 the phase function. To 
demonstrate the mesoscale variability, we expand the phase function in a Taylor 
series. 

{ ~ C0e'"0 exp {i[v'0 0•X/ e + 0T
0
T/ e + .. . ]} o: eil k.x-wtJ + .. . (4.2) 

The phase constant 00 can be incorporated into the amplitude, nonlinear phase 
terms are irrelevant over an 0(1) mesoscale distance, and the linear terms make { 
resemble a mesoscale wave when v'0 and -0T are identified with the local wave 
number vector k and frequency w. 

The structure of the mesoscale solution in e and Rw depends upon the local 
character of the waves, and a categorization will be adopted based upon this. Waves 
are usually defined as stable whenever w is real for real k. Since in the WKB form 
both are derivable from the phase function, the word stable in this context implies 
real 0. Furthermore, only the situation where a single wave is present, rather than 
a discrete spectrum, will be considered. Since both unstable and multiple wave fields 
can be solutions to the eqs. (2.10), however, these restrictions must be imposed. 
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This will be done by limiting the inquiry to initial conditions (Z, cl>, C, and 0 at T 
= 0) consistent with the assumptions, and then following solutions only while they 
remain so. 

5. Small amplitude waves 

The solution form for the mesoscale wave field includes the terms 

1 '= 2ce1e;, + ... + (-i) 
(5.1) 

cp = + C(A +eA1o)eiB/< + ... + (-i) , 

where (-i) indicates the complex conjugate of the preceding. This solution is to be 
inserted in the operator expansion of §2. For small e and R,o, the terms in (5.1) are 
sufficient to fully determine the dominant wave field (including the amplitude, the 
phase, and the ratio A of the lower and upper layer mesoscale velocities) and its 
forcing of the large scale currents. Although there exists higher order structure to 
the solution-and even contributions comparable in magnitude to the O(e) term 
in (5.1)-its consideration can be postponed until the e and Rw limits are relaxed. 

a. Phase. When (5.1) is inserted into (2.10), the only contributions at O(e0Rw1
) 

are from derivatives of the phase function. With a factor of (-i / 2)Cei81•, the layer 
equations which determine 0 and A are 

[ ; " 'v0•'v0 + y 2(l+~-A)] D,.(0) + J ( 0, ~ " ) = 0 (5.2a) 

[ A ~
1 ve-vo + oy2(A-I) ] DzCO) + AI ( 0, ~ 1

) = o (5.2b) 

Only first spatial and time derivatives of 0 are present; hence, with the identifica-
tions following (4.2), (5.2) can be interpreted as algebraic relations between fre-
quency, wave number vector, and amplitude ratio-or, with the elimination of A 
between the pair of equations, as a dispersion relation. A more specific description 
is that, within each layer, the mean potential vorticity gradient 'v(H/ f) balances 
the product of a Doppler frequency (D(0)) and an energy coefficient (see (5.11)). 
Except for minor notational differences and ~=i=O, these laws are equivalent in their 
local (algebraic) interpretation to eqs. (2.8) of Robinson and McWilliams (1974). 
There, however, the focus was upon unstable solutions. 

The range of behavior described by these equations is considerable and includes 
well studied examples. Rossby waves between a rigid lid and a flat bottom (~=Z== 
cl>=O, b=l) are described by 

barotropic: OT= f30x/K2
; A = 1 

baroclinic: 0T = f30x/ [f2y 2(1 +o)+K2
]; A = -o , (5.3) 
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where K 2=k 2='v0•'v0. Another example is for constant Coriolis parameter and a 
sloping bottom. Then the solutions would be either steady flow parallel to topo-
graphic contours and with arbitrary vertical structure or a topographic wave (e.g., 
Rhines, 1970), concentrated in the bottom layer and described by 

_ K2+y2 . _ K2 
0r - -1(0,b) K 2[K 2+yz(b+B)], A - 1 + y2 . (5.4) 

However, an algebraic interpretation of these laws is incomplete: with k a param-
eter, there is an infinity of acceptable (w,A) pairs in any particular environment. 
But a treatment of these as differential equations fully determines the evolution of 
0 and A once 0(X,Y,0) is initially prescribed. The above applies only for non-
trivial, initial value problems; the external forcing of either the mesoscale or the 
mean currents from an idealized state of rest is not considered. 

An economical manner of solving the phase equations (5.2) is in terms of char-
acteristic coordinates. For any first order partial differential equation which we 
can write in the functional form 

F(0r,'v0,T,X) = 0 , (5.5) 

the solution is also a solution of the equivalent characteristic system (Courant and 
Hilbert, 1962) defined by 

a0T 
-=-Fr/ Fe as T 

ave 
--=-Fx/Fe as T 

ax 
--= Fve/Fe as T 

(5.6) 
ae a - = 'v0• - X + 0r as as ' 

where a transformation of the independent variables has been made from (X, Y,T) 
to (f ;ry,s). We defines= T, and g and 'Y/ by the initial condition. 

X (f ,'YJ , s = 0) = f, Y(f,'YJ, s = 0) = 'YJ . (5.7) 

A further initial condition required for (5.6) is 0((,'Y],0) [plus 0r(f,'YJ,0) and A(f,'YJ,0) 
such that (5.2) is satisfied]. A grid in g and 'Y/, initially uniform in X and Y , trans-
lates and distorts in time with the velocity aX/ as. But since (5.5) is the dispersion 

relation, the pertinent velocity is 

ax Fve Al x.r - aw I 
as= - FeT = Fwl x.T - ak X,T 

(5.8) 

which is the group velocity Cu. The derivatives along characteristics can be written 

_a I = _a I + cu•'v I . as {, 1/ aT X ,Y T 

(5.9) 

Thus the group velocity defines the moving reference frame within which changes 
in the frequency and wave number vector can be most simply expressed. The evo-



436 Journal of Marine Research [34, 3 

lution of the phase function here conforms to the general pattern described by 
Lighthill (1965). 

Any combination of the eqs. (5.2) is an acceptable choice for F. In general, then, 
F will depend on A as well. To preserve the simplicity of the characteristic system 
(5.6), we might make a choice which eliminated A between the layer equations. 
The same advantage, however, comes from a choice such that aF/aA = O; for ex-
ample, 8/Du(0) times (5.2a) plus A/D1(0) times (5.2b) yields3 

F=8e,,+Ae1+l( 0, 
8
:")/Du(0)+A 2J( 0, ~I )1vie0)' 

(5.10) 

where "energy coefficients" for the two layers are defined by 

H H 
e,, = y 2(l-A) + .:iy2 + f V0•V0, e1 = 8y2(A-1) + Ay "v0•"v0 

(5.11) 

To evaluate F and its derivatives, the amplitude ratio A can, for example, be alge-
braically calculated from 

_ H,, J ( 0, ~") 
A - I+ .:i + 'Y2f2 "v0•"v0 + y 2D,,(O) · (5.12) 

b. Amplitude. The wave amplitude function C is a passive factor at O(e0R,/). 
For linearized waves (R,0<<e<<l), it can be determined at O(e1Rw1

) with contri-
butions from both the expanded operator at that order plus first derivatives of C 
from the O(e0Rw1

) operator (2.10). After collecting these terms and factoring 
t ei01•, the layer equations can be written 

D,,(Ce,,) + J(C,H,Jf) + 2 ~" D,.(0)V0•VC + CDu(0)V• ( ~u "v0) 

(5.13a) 

+ Cfe,,D,,(1/f) - iC A 10y 2D,,(0) = 0 

D(Cez) + J(CA,Hz/f) + 2 ~1 
Dz(0)"v0•VCA + CADi(0)"v• ( ~ 1 V0) 

(5.13b) 

+ Cfe1D1(1/f) + iCA10 [ ( 8-y2 + ~1 
K 2

) D 1(0) + J ( 0, ~z)] = 0 . 

Both C and A 10 must be determined here. The latter can be eliminated by forming 
the same linear combination of layer equations as in (5.10). When this is done, 

3. This particular choice is such that !C2F could serve as the averaged Lagrangian in the Whitham 
(1965) formalism in order to derive the phase and amplitude laws of this section. 
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then by use of (3.1) and (5.2) the following law governing the wave amplitude can 
be derived: 

(5.14) 

This implies the conservation of action density A in a volume whose boundaries 
translate with the group velocity. We define A by 

A= .1 CF = .1 c 2 
(~ ·+ ~) 2 9

T 
2 

D ,.(0) Di(0) . 
(5.15) 

Within the frame of reference defined by Cg, A can change only because Cg diverges 
(n.b., Cg must be spatially variable). For the characteristic representation (5.6)-(5.9), 
however, this divergence can be related to the time change of the Jacobian of the 

( a(X,Y)) coordinate transformation, J == a(t,TJ) ; namely, 

atnl J _" I - v•c T as f,1/ g 
(5.16) 

Consequently, the law (5.14) describing the evolution of A in physical coordinates 

should be written in (t,TJ,s)-space as :s (Al)= O 

This equation has the integral 

A
'cc ) _ Act,TJ,O) 

~,TJ,S - A ' 

J(t,TJ,S) 
(5.17) 

since i(s=O)=l from (5. 7). The action density can change along a characteristic 
only due to the stretching or contraction of the transformation. In addition to the 
initial condition for the phase equation, C(X,Y,O) is also required to evaluate (5.17). 
If C(X, Y,O) is zero outside of a finite region, then C will always be zero outside of 
the transformed image of the region. Thus, there is always a period of time within 
which lateral boundary effects can be ignored. 

The action laws (5.14) and (5.17) are formally identical to previous presentations 

(e.g., Bretherton and Garrett, 1968). However, the definition of A in (5.15) is not 
quite the usual form. Commonly, the action is defined as the ratio of an averaged 
(over wave cycles) wave energy density and a frequency that is Doppler-shifted by 
the local mean current. As such, action is spatially a point-value quantity. However, 

A from (5.15) represents a vertically integrated property of a three-dimensional 
ocean, and has only horizontal spatial variability. Each of the two terms in A might 
individually be interpreted as energy-frequency ratios, if we identify ½ C28e,, and 
½ C2Ae1 with layer energy densities and D,.(0) and Di(0) with shifted frequencies. 
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However, it is only the sum (vertical integral) of the individual layer ratios, not 
each separately, that is conserved following Cg. Furthermore, the individual layer 
energy densities need not always be positive. If we form their sum, we obtain a 
satisfactory total energy density, 

It consists of available potential energies of the interface and free surface as well 
as depth-integrated kinetic energy. The separate energy coefficients in (5.11), 
though, do not have positive definite interfacial energy terms. Their sum does, as 

above, but in A this summation is prevented by any differences between the mean 
layer velocities (via the Doppler frequencies). 

Nevertheless, physical interpretations of the wave field evolution can more 
familiarly be made in terms of amplitudes and energies. In terms of (5.15) and 

(5.17), it is perhaps helpful to categorize heuristically certain behavior in A. The 
vanishing of J corresponds to concentrating the wave field into a vanishingly small 
region, with usually a singularity of the local energy density and wave amplitude 
(see the example in §7). An exception may occur at a critical layer [i.e., where 

either Du(0) or D 1(0) vanishes]. There wave amplitude may remain finite while A 
becomes infinite; alternatively, vanishing C at a critical layer may allow finite A 
and non-zero J. If the separate terms in (5.15) cancel each other-which would 
not be possible for an action proportional to a positive definite energy-then C, 
hence total wave energy, may become infinite unless the region of influence has 

greatly expanded (i.e., J oo ). Whether any of these possibilities would occur de-
pends upon the integration in time of the eqs. (5.6). 

c. Rectification. Since the nonlinear terms of the original layer equations (2.1) 
are quadratic, so are those of the expanded eqs. (2.10) to leading order in e and 
Rw- A quadratic product of oscillatory real functions should in general have a 
nonoscillatory component; in the present context, this would be a term with no 
mesoscale variability. This rectification represents a forcing of the large scale cur-
rents by the mesoscale wave-field, and may be of considerable importance in 
modeling the mean circulation. 

In (2.10) a quadratic product first occurs at O(e0Rw2
), i.e., second order in the 

wave amplitude. Rectification might therefore be expected at this order. However, 
all O(e0R w2

) operators include a Jacobian which, to leading order, operates only on 
the phase function in (5.1). The result is proportional to 1(0,0) and thus vanishes. 
Even at the next order in e, the 0( eRw 2) operators are either J acobians or have a 
combination of even and odd derivatives of { and cf>. These also do not rectify. Meso-
scale rectification is postponed until second order in the scale ratio, O(e2R,,,2). Con-
tributions come from all three of the O(enR10

2
) operators, where n = O, 1, 2. Con-
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sequently, the result is exceedingly cumbersome. We define the rectification func-
tions, Bu and Bi, so that they represent mean pressure forcing in the form 

RM [ ~
2 

D ( k ) + 0( e2
) ] = e2 Rw 2 B . 

Then, with opportunistic condensation of the diverse contributions described above, 
we can derive the following formulas: 

(5.18a) 

+ 1 ( ICI, 1cru ) + 1 ( ~u , 1ci1;012

)} 

B1 = ½ { J ( 0, [ + J ( ICIA, ~1
) + Dz ( IC~ez ) ]) 

(5.18b) 

This is certainly a central result of this paper. Neither the order of magnitude nor 
the functional form of the rectification have any precedents to the author's knowl-
edge. 

The presence of mesoscale rectification alters the large scale energy eq. (3.7) to 
the following one: 

a~ (EPI + E ps + e2EK,. + e2EK1) + V•[Vu(P,, + e2EK,,) + Vz{Pz + e"EKu)] 

(5.19) 
e2R w2 = - -R--(8ZoBu + <1>0B1) • 

JI{ 

If the mean and mesoscale velocities are equal (RM = Rw), then the rectification 
only forces a slight alteration to the mean currents: Z 2 and <1>2, rather than Z 0 and 
<1>0 , absorb the wave forcing. On the other hand, in order that the rectified forcing 
contribute to the mean at the same order as mean planetary vorticity advection, 

we require 

1 (5.20a) 

or, from (2.9), 

VM R V w 
V w L ctnOo f oL 

(5.20b) 

This latter is a small number; the mean flows are expected to be weaker than the 
waves which drive them. For values of L = 500 km, V w = 15cm s-1 and 00 = 30°, 
V M would be .5 cm/ sec. This value for the velocity magnitude is similar to those 
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below the thermocline in the MODE region (Schmitz, Luyten, and Sturges, 1976). 
What is observationally unknown, however, is the mean length scale L (the above 
ratio varies with U). 

The rectification functions in (5.18) are real and quadratic in the wave amplitude. 
The way in which terms are grouped does not permit a clear distinction between 

heat and vorticity flux divergences (i.e., V•h'v' and 'v•x'v'); these transports are 
combined, for example, through the energy coefficients (5.11), which contain both 
thickness changes and relative vorticity terms. One can specify a local interpreta-
tion, incorporating many of the concepts of a homogeneous environment and uni-
form plane waves, by treating C, A, 'v0, 0T, {3, 'vb, 'vZ, 'v<I> as constants (with 
vanishing higher derivatives) and simultaneously setting f=b=l and Z=<l>=0. This 
procedure is the one which permits an interpretation of the phase equations (5.2) 
as a dispersion relation. In this sense, then, we note from (5.18) that most contribu-
tions to rectification are nonlocal. The wave forcing is predominantly an expression 
of the inhomogeneity of both the environment and the mesoscale wave field initial 
conditions. There is no inherent sign constraint on the rectification terms in either 
(5.18) or (5.19). They can act as either a source or sink of energy for the mean 
flow. Interpretation of their character is best done by specific examples, several of 
which are described below. 

This completes the derivation of the important small amplitude results. To judge 
their oceanic relevance requires considering processes which might alter or negate 
them. Partly this involves the relaxation of the R10 0 assumption, as in the next 
section. 

6. Nonlinearity 

We can estimate the wave Strouhal number R10 from observations. The value 
R,,, = .25 is obtained for typical scales of V,,, = 10 cm/ sec, l = 60 km, 00 = 30°, 
and E = .1. This is small, but not so small that wave nonlinearities can be gen-
erally neglected-particularly for mesoscale currents with relatively large speeds, 
short lengths, and long time scales. 

A "single wave" solution structure, generally valid for small E and finite Rw is 
the following one: 

{ = ½ Ceie;, + e/2 {[C10 + R,/Cn]e•01, + R,J)ei201,} 

(6.la) 
+ €2/2 {C2ei9/E + R w[D10 + Rw2Ddei29/E + Rw2£ei89/E} + (-z) 

+ E2/ 2 {[C 2A + C10A10 + CA 20 + R w2C12Adei9f •} (6.lb) 

+ Rw[D10An10 + Rw2D12An12]ei201• + Rw2EAI!}ei391•} + (-1) 
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Figure 3. The structure of nontrivial dynamical balances in an e and R., expansion for a 
single stable wave field. The boxes are identified by their order of magnitude and coefficient 
of mesoscale oscillation. 

This expansion form is the completion of (5.1). Amplitude functions for the funda-
mental, second, and third harmonics are labeled by C, D, and E ; the corresponding 
amplitude ratios are A, AD, and Al!J. All quantities in (6.1), except C2 (see below), 
can be determined by the expanded equations through O(e2). The amplitudes and 
phase functions are all functions of only the environmental scale coordinates. The 
method of analysis is to insert (6.1) into the operators (2.10) and their continuation 
through O(e2), and then set to zero each coefficient of distinct powers of E and Rw 
and e i B/ E. 

A matrix of the resulting equations is shown in Fig. 3. Bracketed entries indicate 
which of the quantities defined in (6.1) are determined by the equations at a par-
ticular order in e and Rw with a particular coefficient of mesoscale oscillation. Also, 
for the rectification at O(e2Rw2), we have indicated that the wave-driven mean cur-
rents are determined (see 5.18). 

With reference to (6.1), we see that to leading order in E only a single wave is 
present. Systematic corrections to C and A occur at higher orders in E, as do higher 
harmonics of the fundamental wave: the second harmonic arises with nondimen-
sional pressure magnitude O(ERw2) and the third with magnitude O(e2Rw3). There 
are no higher harmonics through O(e2). Thus, there is a postponement of the non-
linear higher harmonics to higher orders in E in a manner analogous to that for 
rectification. Both postponements are due to the structure of quasigeostrophic ad-
vection (a Jacobian operator to leading order in e) and the single wave field as-

sumption. 
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Both the solution form (6.1) and Fig. 3 are complete for all powers of R10 

through O(e2). The figure demonstrates a result of considerable importance. All of 
the small amplitude laws derived in § 5 are correct at finite amplitude as well. There 
is no nonlinear breakdown for a single, stable wave field in an inhomogeneous en-
vironment. To see this, allow R w to approach one from below. In Fig. 3 this is 
equivalent to a vertical collapse of each of the three boxes ( one for each power of 
e). Then for each of the phase, amplitude, and wave rectification laws there are 
no other equations with the same coefficient of mesoscale oscillation and power of 
E-no matter what the magnitude of R w. This is illustrated by the zagging vertical 
lines not intersecting more than one set of bracketed variables in Fig. 3. There will, 
of course, be nonlinear consequences for the higher order corrections in (6.1). For 
example, the distinction between C10 and C1 2 will be lost and their governing bal-
ance will become nonlinear when R ,0 is not small. 

The second harmonic amplitudes (D and DAn) must satisfy the following pair of 
layer equations: 

D [ 3Hu/''v0[
2 + A ] _ DA = _ ~[ 1(0,eu/ f) + 

y 2f2 D 4y2 D,.(0) 

- oD + DA [ 3Hz[v'0[2 
D "f2f2 

(6.2) 

+ _i__] = _ C2 
[ 1(0,ei/Af) A+ 3Aez[v'0J2J 

A 4y2 Dz(0) f2 

The left-hand sides are related to the phase laws (5.2). If (20, A) as well as (0,A) 
were a solution to those equations, then (6.2) would be an indeterminate system for 
(D, An). This could be described as a self-resonance. It is unlikely to occur in 
general since (5 .2) yields a nonlinear dispersion relation, but, even if it did, it could 
have no important consequences in distances or times of the order of the environ-
mental scales whenever R w is small. The forcing of the second harmonic amplitudes 
is simply proportional to C2-no amplitude derivatives enter. Most of the contribu-
tions are local (in the sense of §5), but there are nonlocal ones as well. These equa-
tions are algebraic rather than differential. 

Any amplitude function in (6.1) which is a coefficient of eio;, and Aei8f • in the 
upper and lower layer pressures respectively cannot be determined except at an 
order higher in E than it first appears. We saw this in §5, where the O(R10) ampli-
tude C was solved for at O(eRw). Similarly, C1 0 and C1 2 cannot be obtained until 
O(e2Rw) and O(e2Rw3

) respectively. Also C2, which includes terms of several orders 
in R 10, is indeterminate through O(e2

) . To complete the description of the solution 
elements in (6.1), we remark that, just as the second harmonic amplitude D is 
forced by the quadratic interactions of the dominant wave C, so also are D10 and 
D 12 forced by the interaction of C with C10 and C12• 

The fundamental feature of this fully nonlinear solution is its equivalence to that 
for a linearized wave in its important characteristics. The smallness of the ratio of 



1976] McWilliams: Mesoscale ocean waves 443 

mesoscale to environment scales assures this. The only requirement on wave in-
tensity is the mild one that its Ross by number ( ERw) be small enough to permit 
quasigeostrophy. 

7. An (almost) uniform environment 

The interpretation in terms of a local dispersion relation defined in §5 is an 
analog of perfectly periodic plane waves in a homogeneous environment. This does 
not imply a trivial environment (/3=Z=<P=B=O), for then 0T would vanish (see 
5.2), and no wave propagation could occur. Non-zero gradients off, B(X,Y), Z, or 
<P are required to support the waves; however, periodic plane wave solutions are 
consistent only when these functions for the environment are replaced by average 
values and when derivatives of order higher than first are ignored. As has been 
shown, these locally plane-wave solutions are modified on the larger scales by the 
true variability of both the environment and the initial wave field [e.g., nonuniform 
C((,77,0)]. To simplify the laws of §5, we make the approximation that the shortest 
scale nonuniformities in the evolution of the wave field are caused by initial con-
ditions of the wave field rather than the environment. In other words, we posit yet 
another scale L', characterizing the scale of wave amplitude variations, and such 
that L>>L'>>l. 

To derive the laws analogous to the more general preceding ones, we define in-
termediate scale coordinates 

(X',Y',T') = e'(x,y,t); e<<e'<<l (7.1) 

The total pressure solution forms-replacing (2.8) and (5.1)-are given by 

{ RM Z (X,Y,T) + R,,f Z' (X',Y',T') + ½ Rw[C(X',Y',T')ei8 (X",Y' ,T ')/< + (-i)] 
E E 

(7.2) 

RM cf> (X,Y,T) + R 1;/ cf:,'+½ Rw [C(A + EA1o)eiB/ < + (-i)] , 
E E 

with errors O(eRM, e'RM', E'Rw, eRw)- This solution represents (1) a very broad 
flow, (Z, <P), which exists independent of the mesoscale [i.e., RM is larger than the 
value specified by 5.20b]; (2) a weaker, shorter scale mean flow, (Z', <P' ), driven 
by wave rectification at O(e'2Rw2); and (3) a single, stable wave field with non-
uniformities4 of scale L'. The magnitude of RM' in order to balance wave forcing 

is as in Eq. (5.20b) with V M' and 
When the solution (7.2) is inserted into equations expanded as in §2, a crucial 

simplification results. The parameter E remains the relevant quasigeostrophic ex-
pansion parameter (n.b., initial wave field inhomogeneities cannot support propaga-

4. Inevitably the environment imposes nonuniformities of scale L. However, if C(f,77',0) vanishes 
outside a region 0(1) in ((,77'), then the largest scale inhomogeneities can be ignored for a time O ( l) 

in T'. 
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tion). Thus, for e<<E', only the operator (2.10) is relevant through O(e'2); no op-
erators from O(e) or higher can contribute. The action law at O(E'Rw) and rectifica-
tion at 0( e'2 R10 

2) no longer incorporate higher order expressions of environmental 
variability. 

a. Phase. The resulting equations at O(R10) are the same as (5.2). However, now() 
and A are functions of (X',Y',T') while H,,, Hi, Z, <I>, b, f, and their derivatives vary 
only with (X,Y,D. Over any 0(1) increment in (X',Y',T'), the latter therefore are 
effectively constant. Within the equivalent characteristic system (5.6), both F/ and 
Fx' are O(e/e') and negligible. Thus 0T', and V'0 are independent of s'; that is, k 
and w are constants along a characteristic. Similarly the group velocities are 
straight lines in X'-T' space, but not necessarily parallel ones. If, however, 0 is 
initially linear in f and r}', then k, w, and Cu are constants uniformly in (f ;rJ',T'). 

b. Amplitude. At O(eR10) one can again derive action laws of the forms (5.14) and 
(5.17). However, the derivatives are in X', Y', T' ors' and thus apply to only 0, A, 

and C as they appear in c9 , A, and J. Because the group velocity cannot change 
along a characteristic, we can explicitly solve (5.6) for the coordinate transforma-
tion. 

Y' = ,,,, + Cg(ll)s' 

(7.3) 
J = 1 + s'V•cu + s'2J(c/:»l ,cu<11 >) • 

From (5.17), the initial tendency for action changes is governed by the group 
velocity divergence, but the long time behavior, if relevant, is due to the Jacobian 

product of the group velocity components. Either J has at least one zero crossing 
or, if not, it must eventually diverge to positive infinity. Along a characteristic, 
therefore, the action and the wave amplitude must either become singular or else 
asymptotically vanish. While the latter spreading of energy might be stopped at 
large times of O(e' /e) by environmental focusing, the singular case implies a failure 
of the present model in a time T' of order one. This failure may be interpreted as 
amplitude variability on increasingly shorter scales, which is in violation of the 
original multiple scale assumption. This situation is analogous to a turning point in 
traditional WKB problems (e.g., Ferry and Mount, 1972), and extension through 
the singularity can be made; this will not be done here. With a linear initial phase 
function, J is a constant and the action law (5.14) reduces to 

( a~' + Cu•V') C = 0 . (7.4) 

This implies simple propagation, without distortion, of the initial wave pulse in the 
direction of the group velocity. 

c. Rectification. The simplification of an almost uniform environment is perhaps 
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greatest for the wave field rectification. From the O (Rw 2) operators in (2.10), the 
0 ( €'2 R,/) terms become 

B =-1 { ( _KL ) (iC/2 )} " 2f J 0, D,,(0) Du(/C/e,,) + J 2' e,. 

(7.5) 

' )} 
analogous to those of (5 .18). Again, only derivatives of the wave functions con-
tribute. For a linear initial phase function, we keep only derivatives of the ampli-
tude magnitude: 

_ eu ( ( /C/2)) _ Ae1 ( ( /C/ 2)) B,, - 2fD,,(0) J O,D,. 2 ' Bi - 2f D 1(0) J O,Di 2 . (7.6) 

This final form can be rewritten in terms of more familiar wave quantities by the 
(w,k) identifications of (4.2), a local interpretation of the environment, and the 
simple amplitude law (7.4). Then 

B,,=½ 
e,J(2 

[ez X Cp] J [Cg-Vuh at, a IC/2 
w(w-V,,•k) axk 2 

(7.7) 

B1=½ 
Ae1K 2 

[e, X Cp]; [Cu-Vzh at a /C/2 
w(w-V 1•k) axk 2 ' 

where V ,, and V 1 are mean upper and lower layer currents and c11 is the phase 
velocity, 

0r, 
V,, = 1/ fez X "v'Z', V 1 = 1/ f ez X "v'<ll' , Cp = - /"v'0/ 2 "v'0 . (7.8) 

In (7.7) a summation convention is used (n.b., the indices j and k are 1 or 2). Thus, 
the rectified wave forcing is proportional to the energy coefficients in each layer, 
the square of the scalar wave number, and the inverse of both the intrinsic and 
local Doppler frequencies. Its shape is determined by the spatial curvature in the 
wave energy projected along directions perpendicular to the phase velocity and 
parallel to the difference between cu and the mean velocity of the layer. 

d. Large scale currents. The mean currents driven by the wave forcing in (7.5) 
(and with R' M = e'2R,v2) satisfy linearized equations which are inhomogeneous ver-
sions of (3.3): 

y 2(Z'-cp')T, + J ( Z' ·+) = -B,., 8y2(<1>1-Z')T' + J (cf)' ,+)= -Bi 

(7.9) 
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The synoptic constraint, analogous to (3.5), becomes 

J ( Z' ,+) + 1( <P' ,+) = -(8B,, + Bz) (7.10) 

Except for fortuitous cancellation (8B,, = - B1), it is inconsistent to consider an 
initial state with a non-zero wave field and zero mean currents. An adjustment 
process between waves and mean flow must be presumed to have occurred prior to 
the period where (7 .10) applies. The large scale barotropic motions described at 
the end of §2, but neglected here, must participate in this adjustment. 

A particular example of flow above a flat bottom (b = 1) is described below. 
There the free, mean currents would be as in (3.4); they may be arbitrarily super-
imposed upon the forced response. The synoptic constraint (7.10) can be integrated 
zonally to show that the large scale currents cannot vanish everywhere at large 
distances from even a bounded region of wave forcing. Both Z' and <P' cannot 
asymptotically approach constants unless, for all Y', 

f :
00 

dX'(8B., + B1) = 0 , (7.11) 

which is unlikely in general. The forced meridional currents will be confined to the 
region of nontrivial forcing, but the zonal currents will not. For this reason, as well 
as the general Y-dependent arbitrariness of (3.4), the present mid-ocean dynamics 
must be judged a more fundamental description of flow across, rather than along, 
contours off /(thickness). For a closed basin, additional dynamical processes must 
be included near boundaries and narrow mean currents in order to fully determine 
the contour flows. 

e. Illustration. Consider the special case of a baroclinic Rossby wave field (i.e., 
/3 =:/=- 0, b = 1, Z 0 = <Po = 0). The dispersion relation and amplitude ratio are as 
in (5.3). Assume further that the initial spatial envelope of the oscillations-the 
amplitude function-is Gaussian (see Fig. 4) and 0(t,71,0) is linear. Then a single 
frequency and wave number vector characterize the wave field and are preserved 
with propagation; amplitude is conserved as in (7.4). The forced large scale currents 
satisfy (7.9) and (7.10). For their initial conditions, we assume no lower layer flow 
(<P' = 0) and vanishing upper layer flow to the west (Z' 0 as X' - oo ). 

Eliminating <P' from (7.9) yields a forced wave equation for the upper layer 
meridional velocity: 

_p_ _a_} az' _ f2y 2(1 +8) 
12 iJX' iJX' - 8 /3 

(7.12) 

For baroclinic waves, Bz = Bu. The forcing is thus more intensified in the upper 
layer than is the wave structure (by an extra factor of 8-1). 
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Figure 4. The initial structure of the amplitude function C(X', Y', 0). This is the envelope of 
mesoscale oscillations which force the large scale flows shown in Figs. 5 and 6. The number 
of wave crests within this envelope would be approximately 1/E'. C.I. is an abbreviation for 
"Contour Interval". 

Because the wave field evolution is so simple under these circumstances, so also 
is the rectified forcing. The initial shapes for B,, and the right-hand side of (7 .12) 
will simply propagate, without distortion, at the group velocity. The coincidence of 
cu with the large scale baroclinic phase speed -/3e,,ly2f2(l +o) should, therefore, 
lead to a resonantly effective forcing. This condition (cg for small scales matching 
Cv for large) is reminiscent of Landahl's (1973) for shear flow instability. 

Illustrations of two wave-driven mean flows are given in Figs. 5 and 6. The two 
have identical initial conditions for wave amplitude (i.e., Fig. 4) and wave number 
magnitude (y2=k2=1) but the wave vectors differ in direction. One has phase 
propagation towards NNW (Fig. 5) and the other towards WNW (Fig. 6). The re-
sulting mean currents are quite different. 

(z) Wave properties. The wave vectors chosen were 

= l (-.31, .95) (NNW) 
k= (m,n) 

(-.95, .31) (WNW) 
(7.13) 

Since frequency is proportional to zonal wave number m [see (5.3)), the NNW 
wave field has a small frequency relative to the WNW wave (by a factor of 1 / 3) 
with Cg towards WSW at slightly more than half the large scale wave speed (a "near 
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Figure 5. The large scale flow forced by a NNW propagating, baroclinic wave field. 

(a) The rectified pressure forcing (i.e., 2wx•• B. X 100) at T' = 0. 
e. 

(b) The initial forcing of the meridional velocity equation (7.2). 
(c) The upper layer meridional velocity V. at T' = 0. 
(d) V. at T = 12.1. 

(34, 3 

resonance"). The more rapid WNW wave has a slower group velocity, mostly to 
the south. 

(ii) Rectified pressure forcing. Figures 5a and 6a show 2w2B,,/ e,,k2 at T' = 0 
as calculated from (7.7). The two patterns are very similar but for a rotation; the 
pattern strengths do not much differ, in spite of differing c-" and c" magnitudes, be-
cause the variations between the two cases are compensating in B,,. 

(iii) Meridional velocity forcing. Figures 5b and 6b show the quantity on the 
right-hand side of (7.12) at T' = 0. With time it simply translates with c11• The 
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(e) The upper layer pressure Z' at T' = 0. 
(f) Z' at T' = 12.1. 
(g) The lower layer pressure cl>' at T' = 12. I. 
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NNW wave forcing is more intense by an order of magnitude. To understand this, 
rewrite the (7.12) forcing using (5.3) and the corresponding Cu to eliminate all but 
wave number factors. Thus, 

8y2(l+8) 

/3 

[ -n,m] k [ m2-mn2-r ] a a a IC/2 
, 2n z ax, axk ax, 2 

(7.14) 

where f=y 2(1 +8) and K 2=m2+n 2• The notation [A,Bl, denotes the jth component 
of a vector whose x and y components are A and B. As m gets small with n of 
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Figure 6. The large scale flow forced by a WNW propagating, baroclinic wave field. The 
sequence is as in Fig. 5. 

order one (the NNW) wave), the third vector gets large, whereas when m is O('y2) 
and n is small (the WNW wave) it becomes small. 

(iv) Pressure patterns. Figures Se, Sf, 6e, and 6f show Z' initially and for a 
much later time (T'= 12). The mean fl.ow forced by the NNW wave starts out more 
intense and forms a nearly closed pair of gyres. The weaker WNW case has banded 
zonal fl.ow. Both patterns develop westward. The NNW case continues to intensify 
as the forcing and large scale, baroclinic response move (approximately) together. 
There is little intensification in the more skew WNW situation, but a clear mean 
field wake develops along f contours. The lower layer pressure is initially zero, but 
grows weakly and generally out of phase with the upper layer flow (Figs. 5g and 
6g) in order to satisfy (7 .10). 
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T = 12.1, C. I. = 0.5 

.63 

-I 0 I 2 3 

(v) Upper layer meridional velocities. Since the governing eq. (7.12) is most 
directly a forcing of V,,', the large scale response is perhaps most clearly seen in 
V,,'. These patterns, initially and at T'= l2, are shown in Figs. 5c, 5d, 6c, and 6d. 
In both cases the loci of translation with mesoscale Cg and large scale Cp are clearly 
exhibited at longer times. 

(vi) Dimensional interpretation. These solutions correspond to {3=.4, which 
implies L=1500 km and e=.03. With e'=.2 and V 10=10 cm/sec, spatial units in 
Figs. 4-6 correspond to L'=250 km, the large scale Cp is 3 cm/ sec to the west, the 
mesoscale Cp and Cg are 0(1 cm/ sec), pressure units (Ru'e(j0l)2/E'g) in Figs. Se, f, g 
and 6e, f, g, are .6 ems of head, velocity units (V w 2E'2/ foLE2) in Figs. 5c, d and 6c, d 
are .4 cm/sec-1, and the integration time (T'=12) is in excess of a year. For a de-
formation radius of 45 km, the mesoscale wavelength (21rl) is 280 km. Notice that 
in the case of near resonance (Fig. 5d), large scale, upper layer, meridional veloci-
ties greater than 5 cm/ sec have been forced after only a year. 
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f. Limit of validity for the uniform environment approximation. What is the rela-
tion between L and L' such that the solutions of this section are uniformly valid in 
the coordinates (X', Y', T')? The severest constraint comes from the action law. It 
is presumed independent of the phase equations, being 0( e') smaller in magnitude, 
even though sharing a common oscillatory factor (Fig. 3). In a Taylor series ex-
pansion, the neglected environmental inhomogeneities in the phase equation arise 
at 0(Rwe/e'). For this to be smaller than 0(e'Rw), the order of the action law, 
requires the severe restriction e'2> >e. 

8. A thin upper layer: barotropic and baroclinic approximations 

Theoretical descriptions of mid-ocean transience owe much to the two vertical 
normal modes described by Veronis and Stammel (1956): the barotropic and first 
baroclinic modes. They were derived for the case of a flat-bottom, resting ocean on 
the ,B-plane, and are reproduced in (5.3). For more general environmental condi-
tions, however, this categorization of the solutions to the phase equation (5.2) is 
not meaningful due to a mixing of barotropic and baroclinic characteristics. Yet a 
natural extension of these concepts emerges when 8, the ratio of the upper and 
lower layer depths, is small. 

The upper layer phase equation of (5.2) does not contain the parameter 8 and 
is unaltered in a 6 expansion (though Ll=0 seems appropriate). For the lower layer 
equation, however, one obtains 

(8.1) 

The vanishing of the two factors on the left side define respectively the generalized 
baroclinic and barotropic solutions. They are explicitly 

Di(0) = _ f21(0,b/ f) 
bV0•V0 ' 

barotropic 

J ( 0, t-) 
y 2D,,(0) 

J ( 0, ~ " ) 
Du(0) = - ----=-=--,-=,,---,'--- , A= 0 

y 2+H ,,V0•V0/f2 
baroclinic 

(8.2) 

with an error of 0(6), except in the case where the two solutions are coincident 
[the error is then 0(8~)). The barotropic wave has a combined planetary and topo-
graphic restoring force and extends throughout the water column. In contrast the 
baroclinic wave responds to ,B and the vertical shear of the large scale velocity, but 
is confined to the upper layer. The frequencies are Doppler shifted by the mean 
velocities in the respective layers. Surface currents will more strongly influence baro-
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clinic propagation, but it is effectively the depth averaged currents which influence 
the barotropic. 

The consequences of a shallow thermocline (8<<1) can be extended throughout 
the solution structure described in § § 5 and 6. In particular, if 8=0( en) for n any 
positive integer, the solution form of (6.1) is appropriate here as well; the phase 
function is fully specified by (8.2) since its higher order corrections in 8 can be 
absorbed in the amplitude functions. At O(eR.w) the layer equations (5.13) decouple 
when 8 is small, and the resulting action laws involve only quantities for a single 
layer. 

They are formally analogous to the relations of §Sb if we replace the functional 
in (5.10) with either barotropic (FT) or baroclinic (FC) forms: 

] FO _ 2 + Hu\70•\70 + 1(0,Hu/ f) 
' 'Y f2 Du(0) 

(8.3a) (8.3b) 

The action densities and group velocities then follow from (5.15) and (5.8). For 
the barotropic mode, there is strict conservation of AT as in (5.14), whereas for the 
baroclinic mode, 

(8.4) 

where PT=FT•Dz(0)/ A 2• When 8/e ~ 1, A 0 is not conserved; note, however, that 
the forcing is purely imaginary and causes changes along characteristics only in 
the phase, not the magnitude, of C. Other relations for the single wave field solu-
tion, such as the rectification and the nonlinearly forced second harmonic can be 
similarly simplified. 

These results are valid only away from the coalescence of the two modal fre-
quencies in (8.2). Coalescence is also a necessary condition for wave instability. 
The unexpanded dispersion relation (5.2) is quadratic; hence the two modal fre-
quencies must be either distinct and real or conjugates. Since the 0(8°) frequencies 
are always real, complex values at higher orders require them to be equal. The 
analysis of this situation is beyond the scope of this paper. However, the following 
heuristic argument shows that, if a wave field is initially not at coalescence every-
where and 8 is small, it cannot reach coalescence in any 0(1) increment in the 

environmental coordinates. 
Inserting A from (5.12) into (8.1) yields the dispersion equation 

ftTftO = 0(8) , (8.5) 

where P0=P0Du(0). This functional is an acceptable choice for the characteristic 
system (5.6), which defines the evolution in s(=T), of 0T, \70, T, and X, hence also 
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of PT and P0 • If initially there is no coalescence in a baroclinic5 wave field, then 
pa = 0(8)/PT, and it is approximately zero. From the characteristic equations 
(5.6), it follows that 

ate I = 0(8) / PT aFT I = O(l)FT + 0(8) / PT . 
as €.11 as { , T/ 

The waves remain approximately baroclinic along characteristics, while FT can 
make 0(1) changes. If coalescence is somewhere approached (say FT~fJ" where a 
increases from zero), then aFT / as also becomes small and 0(8,81

-"), thus retarding 
the approach. With uniform validity in (X, Y ,1), coalescence can never be reached. 
Similarly, one can show that an initially coalesced wave field can never leave 
coalescence in an 0(1) environmental scale interval. 

9. Comments and conclusions 

Even in a broadly variable environment, mesoscale, wave-like solutions can exist 
and their environmental scale evolution can be predicted. For mesoscale distances 
and times, over which the environment is effectively uniform, their structure is that 
of plane, propagating waves. However, due to their accomrnodation of the broader 
scale variability, the solutions have features which are trivial for plane waves: the 
propagation and distortion of the wave packet, the transformation of the oscillation 
frequency and wavelength, and the forcing of the mean circulation by the rectified 
eddy fluxes. The character of each of these laws is complicated analytically, yet 
fairly easily solved for in full detail by numerical computation. 

If there is a true spectral gap between mesoscale and environment, then im-
portant postponements of nonlinear behavior must occur. Nonlinear waves (Rw~l) 

will still have propagation characteristics described by linear wave dispersion rela-
tions: the simulations of Rhines (1975) suggest that once a spectral evolution has 
settled on a dominant scale (i.e., approached a single wave field situation) its phase 
propagation is uniform and as predicted by linear theory. Furthermore, nonlinearity 
should be ineffective in either altering the distribution of wave energy (the amplitude 
function) or generating higher harmonics of the fundamental wave. 6 Rectified forcing 
by the mesoscale wave field will be weak. Since observations indicate a generally 
weak mid-ocean mean fl.ow, however, wave forcing may often be its cause. Note 
that for a single, stable wave field the mean field interaction is uni-directional. For 
comparable mean and wave particle speeds, the mean currents are part of the wave 
environment, but are not driven by rectified forcing to leading order. On the other 
hand, wave-driven mean currents are too weak to influence the wave field evolution. 
Within this spectral gap model, the interaction can become mutual only for baro-
clinically unstable waves-but this is the subject of a future study. 

5. The argument could be applied to barotropic as well. 

6. The preceding characteristics must be reconsidered when more than a single wave is present. 
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Since there is such a disparity between the internal radius of deformation ( ~ 50 
km) and ocean basin dimensions (~3000 km), numerical simulations resolving both 
mesoscale eddies and the general circulation are difficult. Of considerable interest 
would be a successful parameterization of mesoscale currents. The solution struc-
ture (4.1) has a considerable advantage in this issue-it only requires solving equa-
tions in the large scale, not mesoscale, coordinates. If there were a clear mesoscale 
spectral peak, then, the preceding formulas might be useful, eq. (5.18) in particular. 
However, several crucial questions remain unanswered: for example, ( 1) which 
wave field(s) should be present initially? (2) What complications are introduced by 
multiple wave fields (a discrete spectrum)? (3) What alternative relations are re-
quired in the special locations-near boundaries or narrow, intense mean currents 
-where this model does not apply? 

These questions can be partly answered in a spectral gap model. For small ampli-
tude waves (Rw< < 1), boundary conditions could be satisfied by a superposition of 
waves of the form (4.1), but such a representation would be cumbersome. The 
character of a multiple wave field can be explored in the present model-this also 
is a subject for the future-with only a weak restriction on Rw- Many of the single 
wave laws persist, including the rectification structure (5.18). Baroclinic instability 
in a spectral gap model may partially indicate which waves should be assumed 
present. Nevertheless, the questions are formidable, and only as components of a 
more general parameterization scheme could the present formulas be applied. 

It is crucial to the formulation of the model that the scale ratio E be small. If it 
is not, then one loses the concept of waves altogether (phase and amplitude changes 
merge). Yet as E becomes less small, all wave processes speed up: the frequencies 
are higher, and the amplitude and wave number evolutions are more rapid and 
occur over shorter distances. Similarly the rectified forcing would be more intense, 
even to the point of forcing wave-comparable mean flows (RM~Rw). All of these 
tendencies are characteristic of synoptic scale atmospheric waves, for example, 
where the wave and environmental scales are more similar. 
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