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The Somali Current response to the Southwest Monsoon: 
the relative importance of local and remote forcing 

by David L. T. Anderson1 and Philip B. Rowlands1 

ABSTRACT 

A simple model of the Somali current is formulated which allows both local longshore 
forcing and remote east-west forcing. Asymptotic solutions for the pressure perturbation and 
velocity fields are obtained for both cases and the sensitivity of the boundary response to 
changes in the shape and position of the forcing is examined. The local forcing drives a flow 
whose north-south velocity increases linearly with time and the remote forcing, a flo w in which 
the north-south velocity increases quadratically. These results will break down when dissipative 
effects or strong nonlinearities develop. For the case of local forcing which is parti cularly 
strong between l0 °N-12 °N a nonlinear calculation is performed. This allows upwelling to de-
velop locally in the vicinity of the strong forcing region in accord with observation, an effect 
which cannot be explained by a linear model since in such a model coastal Kelvin waves 
smear out the local response. The conclusions are that initially the local forcing is much more 
important than remote forcing but that, for the nondissipative case, remote forcing will ulti-
mately become important. The separation point of the Somali current we suggest is a delicate 
balance between remote forcing trying to produce a southward current in this area and local 
nonlinear dynamics trying to establish a poleward flow . The model is compared with observa-
tions and appears to agree reasonably well. Baroclinic and shear instability and dissipative 
effects, all of which could be important in the boundary region, have been ignored. The fact 
that the Somali coast does not lie north-south has only partly been accounted for. However, 
the local winds used are those blowing along the shore and thus the main dynamic effects of 
the nonmeridional direction of this boundary have probably been included. 

1. Introduction 

This paper develops a linear, inviscid theory for the generation of western 
boundary currents at the equator; the techniques described in Anderson and Row-
lands (19 7 6) are modified for this purpose. The forcing mechanism is supposed to 
be the onset of a strong, steady wind the important components of which are the 
longshore stress near the coast and the zonal stress near the equator. 

It is shown that the local longshore wind stress leads to a longshore current 
which increases linearly with time and that this is initially the dominant response. 

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver 
Street, Cambridge, England, CB3 9EW. 

395 



396 Journal of Marine Research [34, 3 

The remote wind stress gives rise to a longshore current which increases quadrati-
cally with time, and which thus becomes the dominant feature later. The former 
mechanism for the generation of the Somali Current by the onset of the Southwest 
Monsoon was considered by Cox (1970) and the latter by Lighthill (1969). These 
authors concluded that the response to local winds is immediate (Cox) while the 
response to remote winds is less rapid (~ 1 month: Lighthill), a conclusion sup-
ported by the observations of Leetmaa (1972, 1973). The present work clarifies 
this situation and gives more detailed predictions of the likely response. 

The theory is applied to the Somali Current in the latter part of this paper. 
Several possible forms of the wind stress are considered (there are few good meas-
urements), and the sensitivity of results to different stress patterns analyzed. This 
leads to the conclusion that the response to the local forcing is rather insensitive to 
its exact distribution, while the response to the remote stress is more sensitive. 
These predictions are then compared with various observations and it is concluded 
that the main features of the development of the Somali Current are described well 
by the present theory, except in the region just south of Cape Guardafui where a 
strong upwelling region is observed but is not predicted by our theory. A simple 
nonlinear theory is then applied to this region, which corresponds to a strong low-
level jet blowing off the African continent and parallel to the shore (Findlater, 
1974). This indicates that an increase in upwelling is to be expected in this area. 
The details of this model are given in the Appendix. 

2. General Formulation 

The model used consists of a semi-infinite ocean basin with a flat bottom and a 
vertical western coast which is oriented exactly north-south. Following Anderson 
and Rowlands (1976), the equations we will use are 

2r"'- 1ttt - 2r"'- 1a:a;t + (2m+ l)r"'-\ - ,-m-i'" = -2 xm-ltt - 2xm-1.,t 

+ m(m+l)Xm+i - (m+l)xm-i _ 2m ymt - 2m ym"' (2.1) 

2rm-1it - 2r"'-1.,t - m(m+l) qm+i + mrm-l = - 2xm-lt - 2mYm (2.2) 

2vmt + (m+l) qm+1 - rm-i = 2Y"' (2.3) 

where the eastward, southward velocities (u,v), perturbation pressure p, and body 
force (X,Y) equivalent to wind-stress forcing (Lighthill, 1969) have been separated 
into vertical modes, and then expanded as series of parabolic cylinder functions, e.g. 

00 

where r = p - u, q = p + u 
Length has been scaled by the equatorial radius of deformation, a,. = (c,./2/3)~, 

time by a,./ c,. and velocity by c,. (the speed of propagation of gravity waves in the 
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nth vertical mode in the absence of rotation). The equations hold for each vertical 
mode, but we will consider primarily the first baroclinic mode which is the main 
contribution to upwelling (it corresponds to vertical displacement of the thermocline 
as a whole; other modes will tend to distort the vertical structure of the thermocline) 
and which is also the mode most easily forced by a surface wind stress (Lighthill , 
1969). It should be noted that for this mode u,v have the same sign as the surface cur-
rent, and positive p corresponds to downward displacement of the thermocline. For 
this first baroclinic mode en ~ 2m s-1, an ~ 200 km and thus 1 unit of dimension-
less time corresponds closely to 1 day and 1 unit of dimensionless distance to 2° of 
latitude or longitude. 

At the western boundary u = 0 implying qm = ,m. The fl.ow of energy is toward 
the equator at a western boundary via trapped Kelvin waves. Moore (1968) has 
shown that (2.2) can then be used as a boundary condition to determine ,m-1 know-
ing ,m+1 = (qm+1). Eq. (2.3) will be used as an equation for determining vm, once 
one has solved (2.1) for ,m-1

• 

It is convenient to consider separately the two types of forcing X,Y and to ex-
amine first the long time asymptotic behavior of the solutions. The details of how 
this asymptotic solution is obtained are discussed in section 3. The method of solu-
tion is similar to that given in Anderson and Rowlands (1976). The Laplace trans-
form with respect to time of (2.1)-(2.3) is first taken and then the solution for 
pm-1 is obtained which is of the form (where the caret symbol denotes the Laplace 

transform of a variable, i.e. r = f re-•td t). 

where 

and 

pm-1 = Am-1 exp (k_ m-lx) + [ m-1 

k_m- 1 = - {1+[1+16(m+½)s2 + 16s4]!} / 4s 

k+m- 1 = - {l-[1+16(m+½)s2 + 16s4P} / 4s . 

(2.4) 

(2.5) 

Exact determination of Am- 1 and /m- 1, a particular integral of (2.1), cannot be 
given until a particular form of X,Y forcing has been specified. 

3. Solution for steady north-south forcing 

We neglect the variation of Y with x, on the assumption that most longshore 
winds extend from the coast a distance greater than the baroclinic radius of de-
formation (~ 100 km at 2 °N). 

Then 
-2mf"m 

[m-1=-----
(2s2+2m+l) 

(3.1) 

where we have assumed that the Y forcing is imposed at time t = 0 and is steady 

thereafter (i.e. ym = ym;s). The solution for pm-i is 
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0 - 2m(m+1)(2m+2s2+1)- 1Yml exp(k_m-lx) 
2s2+m-2sk_ m-i 

2mYm 
2s2+2m+1 · 

[34, 3 

(3.2) 

The longterm behavior of (3.2), (2.2), (2.3) can be obtained by lettings 0. Then 

(3.2) becomes, at x = 0, 

rAm-11 = m pm+il - 4m(2m+l)-1ym z = O a:=0 (3.3) 

and 
00 

fil x= O = - 1 L omDm(Y) 
S m=O 

(3.4) 

where 
Gm= (m+l)Gm+ 2 -4(m+1)(2m+3)-1 Ym+1 (3.5) 

From (2.3) we have 
00 

vlx=O = 2~2 L {Gm-l - (m+l)Gm+l + 2Ym}Dm(y) (3.6) 
m = O 

The asymptotic form of (3.4) and (3.6) indicates that, irrespective of the longshore 
dependence of local longshore forcing, the thermocline displacement will asymp-
tote to a steady value at the coast while the longshore current will increase linearly 
with time. A more detailed time dependence will be considered later when we 
apply this theory to the Somali Current. 

The asymptotic form of (3.2) away from the coast is given by 

(3.7) 

where the second term on the right-hand side is the solution in the absence of a 
coast, and the first term is the correction due to the presence of the coast. The 
x,t dependence of such boundary response terms is independent of m and thus 
these terms may be easily summed to give r. A similar result holds for q. Using the 
recurrence relations and differential equations for parabolic cylinder functions 
(Abramowitz and Stegun, 1965), it is possible to show that the sum of the last 
terms in (3.7) is the solution which tends to zero as y ± oo of the differential 
equation 

(3.8) 

Here a prime means differentiation with respect to y. Similarly the total solution 
at x = 0 is given by 

r' + t yr - t , = Y' + t yY - t r1 (3.9) 

and f 0 as y ± oo. Thus rB may be found from (3. 7) and the solution for r 
reconstructed everywhere. 
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A similar method applied to q gives 

fJ."1 + (l-¼y2)fJ.1 = Y' - ½yY 
and 

Y ii'B - 2ij"B - (ijB - ii 0B Do(y)) = yY-2Y' - Y fJ.'1 + 2fJ."1 

with CJ.1, iiB 0 as y ± oo. 

399 

(3.10) 

(3.11) 

The term ij 0B Do(y) is just the equatorial Kelvin wave, which has a different x,t de-
pendence from the other contributions to iiB-

Inversion of the Laplace transforms gives 

r ~ rB l o[(2xt)~] + r1 (3.12) 

and 

(3.13) 

as t co, where lo is the zero-order Bessel function of the first kind. Thus u, p 

are given as functions of the single variable xt. This indicates the existence of a 
narrowing boundary layer. The longshore flow derived from this is 

v/t ~ (2/xtP l1[(2xt)~]fB(Y) + f1(y) (3.14) 

where f Band /J are functions of y which can be related to qB, rB via (2.3). 

4. Solution for steady east-west forcing 

Here we restrict the forcing to zero at the coast to a distance a from the coast. 
Thus between the coast and the forcing region we have westward propagating 
Rossby waves and a boundary response. Then in (2.4) we have 

lm
-1 -- [(-2s2-2k+ m-l s-m-l)Xm-l + m(m+ l)Xm+ 1]exp[k+ m-1(x-a)] 

-'-------'------=--=------c=-----:---,-:--~-----(4.1) 
2sk+ m-I(k+ m-l_k_m-1) 

and 

(2sk m-I-2s2-m)Jm-l + m(m+ 1) ;m+11 -Am-1 = + z-0 

(2s2+ m-2skm _) 

to the west of the forcing region. 
The solution at x = 0 as s 0 is given by 

p = F(y)/ s2 

and 

v = <l>(y) / 2s3 

where F, <I> are some functions of y related to the forcing by 

pm-1 = (mXm+1-xm-1)/(2m+ 1) + mFm+1 

¢m = _ (m+l)Fm+l + pm-1, q>O = -F1 

(4.2) 

(4.3) 

(4.4) 
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and <I> is the sum over all m of <1>mDm(y) etc. Eqs. (4.3), (4.4) show that for east-
west forcing the thermocline displacement increases linearly with time, while the 
boundary current increases quadratically. 

qr~ ii.rt 
rr ~ 'i'rt 
qs0Do(y) ~ ii.s0Do(y)t 
rs~ r8 (2t/x)i / 1[(2xt)l] 
q8-q0

8 D 0(y) ~ (ij_8 -ii_0sDo(y))(2t/x)! l1[(2xt)l] 

Again the boundary response terms give a narrowing boundary layer. 

5. A model of the Somali Current 

(4.10) 

We now apply this theory to the western part of the Indian ocean, and in par-
ticular to the generation of the Somali Current by the onset of the Southwest 
Monsoon. 

Leetmaa (1972, 1973) has examined the response of this current (which flows 
northward only during the Southwest Monsoon) in 1970 and 1971. He found that 
the surface flow is northward before the Southwest Monsoon is in evidence in mid-
ocean. Thus the mechanism proposed by Lighthill (1969) (generation by winds in 
mid-ocean) cannot be responsible for the initial development of the current. This 
agrees with the theory presented above, which indicates that local winds drive the 
current initially, while later in the season effects due to the remote component of 
the Monsoon are likely to dominate. 

For the initial response we consider a north-south wind stress near the coast, 
and as noted in §3 we neglect any zonal variation of this wind. Fieux (1975) in-
dicates a very rapid onset of this wind (~ 1-5 days) while Leetmaa (1972, 1973) 
suggests that it takes a few days longer. With times of this order it is questionable 
whether a step function onset of the wind is sufficiently accurate, as it takes only 
about 6 days for a coastal Kelvin wave to reach the equator from the Gulf of 
Aden. However, we are interested here only in the long-time asymptotic behavior 
of the ocean, and for this purpose it is unimportant exactly how we impose the 
wind; what is important is that the wind used in the model should have the same 
long-term behavior as the real wind (effectively independent of time). 

It is difficult to find reliable data with good resolution for the latitudinal depen-
dence of the nearshore wind. The two main sources of data were (a) the Meteorologi-
cal Atlas of the Indian Ocean Expedition (Ramage, Miller, and Jeffries, 1972) and 
(b) Hellerman's (1967) updated estimates of the wind stress. The former suggests 
an almost constant wind from 10°S to north of Cape Guardafui for May, while the 
latter shows the longshore wind stress increasing almost linearly from 7.5°s to 
7.5°N and then attaining a peak at around 10°N. This peak is consistent with the 
existence of the low level jet which crosses the coast at about 9°N and then blows 
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Figure I. Plot of three (a,b,c) possible longshore wind stress profiles as a function of y and 
an analytic approximation to bas given by Eq. (5.1). 

parallel to the coast over the ocean (Findlater, 1974; Duing and Szekielda, 1969; 
Saha, 1974). The three profiles used in the model to approximate these (the latter 
both with and without the low level jet) are shown in Fig. 1. 

In Figs. 2a,b are shown the resulting longshore velocity and displacement of the 
thermocline as functions of y at the coast (from equations 3.4-3.6). The points of 
interest are (noting that negative p corresponds to upward thermocline displace-
ment): 

(i) North of the equator the upwelling in all cases is rather similar, although the 

Figure 2a. (left) Plot of the asymptotic form of p at x = 0 as a function of y for the three 
longshore wind stress profiles given in Fig. 1. 

Figure 2b. (right) As for 2a but for vl t. 
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Figure 3a. (right) Plot of the asymptotic contours of p as a function of y, xt for curve d of 

Fig. L For small values of y the solution is dominated by the equatorial Kelvin wave but for 
larger values of y, the short planetary waves produce eddies of the form l o[(2xt)!]. The con-
tour interval is .5. 

Figure 3b. (left) Plot of the asymptotic contours of v/t as a function of y , xt. 

stress profiles are very different. In particular, there is no local upwelling maxi-
mum where the stress is greatest. 
(ii) In the southern hemisphere there is upwelling for profile la but downwelling 
for 1 b. 
(iii) Longshore velocity contours are similar, but the maximum fl.ow varies with 
the forcing profile, both in amplitude and position (½0 N-2°N). 

Some of these points are qualitatively explicable in terms of Ekman flux arguments 
modified to account for Kelvin waves. In the northern hemisphere one expects a 
northward wind stress to drive upwelling, whose amplitude increases as 1/ f toward 
the equator, and a corresponding northward geostrophic current (at least away from 
the equator). Coastal Kelvin waves move equatorward, which explains the lack of 
large response at y = 6.25 when the wind stress is a maximum there. Thus the 
effect of this peak in the forcing is distributed over the low latitudes. 

The solution away from the coast for this local forcing was calculated from the 
theory of §3. The forcing used was similar to that used above, but avoids any 
difficulties due to discontinuities in the differential equations (3.8) etc. It is given 
by 

Y = 2 exp [-(6+y2)(y-6)2/lOO] - exp [-0.42(y-6)2] (5.1) 

and is illustrated by curve d in Fig. 1. The resulting solution for p is shown in 
Fig. 3a. Near the equator the response is dominated by the equatorial Kelvin wave 
(almost independent of xt) while farther north the characteristic behavior of the 
Bessel function is manifest, implying the dominance here of short planetary waves. 
In fact, the solution is everywhere dominated by the boundary response. The zonal 
velocity u may be derived from q and r. An equation for v is obtained from (2.3) 
as in (3.14). The result is shown in Fig. 3b. From 3a and 3b it is apparent that v 
and p are geostrophically balanced. 
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- .2 

Figure 4a. (left) Plot of the asymptotic form of pi t at x = 0 versus y for forcing of the form 
(5.2) for values of b = •5, 1, 2 i.e. for east-west forcing north of 1 °, 2°, 4 °N respectively. 

Figure 4b. (right) Plot of the asymptotic form of v / f' at x = 0 as a function of y for the same 
values of b. Note that there is little difference in the intensity of the longshore flow for 
varying values of b, though the position of maximum flow moves northward. 

The results of §4 are now applied to the remote forcing. Again reliable data on 
the wind stress are difficult to find . Hellerman (1967) suggests a maximum intensity 
of about .5 dynes cm-2 at about 57½0 E, but his 5° resolution does not enable us 
to establish the latitude of maximum forcing very accurately. Lighthill (1969) sug-
gests that this is 2 °N which seems consistent with Ramage et al. (1972). However, 
because of the uncertainty in the forcing it is necessary to examine the sensitivity 
of results to various types of forcing. We will consider forcing of the form 

X = H(x-a) H(y-b) H (t) (5.2) 

where H is the Heaviside function, a is the distance from the coast and b the dis-
tance from the equator at which the forcing is applied. 

Results for p at x = 0, calculated as in §4, are shown in Fig. 4a, for b = • 5, l ,2. 
A point of importance here is that the shape of the upwelling curves are very simi-
lar, with downwelling south of the equator and upwelling in the forced region. As 
the forcing moves northward, so does the region of maximum upwelling, and its 
strength decreases, but the downwelling intensifies as it moves northward. From 
Fig. 4b one sees that the maximum longshore flow is at 1 °, 2°, 4°N, i.e. maximum 
velocity corresponds with the region of maximum pressure gradient in the y direc-
tion which in turn corresponds with the maximum y gradient of the forcing. The 
amplitude of the longshore flow does not appear to be overly sensitive to the posi-
tion of the forcing region, i.e. curves b, c are rather similar to curve a displaced 
northward by 1 °, 3 ° respectively. It should be noted that there are no apparent 
discontinuities in these solutions because they were calculated by summing explicitly 
the series given by (2.4), (4.1), (4.2) to a finite number of terms. In fact, it is easily 
shown from (4.5), (4.7) and (4.8) that iiJ and r1 have equal and opposite discon-
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Figure 5a. (left) Plot of the asymptotic contours of pi t as a function of y, xt for forcing of 
the form (5.2) with b = 1. The interior solution dominates except near the boundary. 

Figure 5b. (right) As for 5a but for vl f. 

tinuities and thus p1 is continuous. Similarly PB is continuous. Thus the absence of 
discontinuities in Fig. 4a is real and not just an effect of truncating the series. A 
similar argument applies to v. Of course, a large number of terms in these expan-
sions is of dubious merit since the higher the order of the planetary wave stimu-
lated (in a region away from the coast) the longer the time it takes to arrive at the 
coast. For this reason it is important to consider the proper time evolution of the 
solution in this case. This is done below. Meanwhile, the x-dependent asymptotic 
solution is shown in Fig. 5a for p and Fig. 5b for v. These were calculated using 
the differential equations given in §4. Away from the boundary the p-field is 
dominated by the interior solution set up by the long planetary waves and in this 
region the north-south velocity tends to be zero. There is, once again, no discon-
tinuity in either p or v. This is necessary from the original differential equations 
for u, v, p given in Anderson and Rowlands (1976). In these equations, y-deriva-
tives of p and v appear and thus any discontinuity in these leads to a delta-function 
appearing in the equations, which cannot be balanced by any other term. However, 
u is a discontinuous function of y, but this is not plotted here. An important point 
in Fig. 5 is that the maximum upward thermocline displacement is further north in 
the interior(~ y = 3 i.e. 6°N) than it is at the coast(~ y = 2 i.e. 4°N). The region 
of maximum downward thermocline displacement in the interior lies along the latit-
tude of discontinuity in the forcing (i.e. y = 1). 

For completeness, the effects of a westward wind stress south of the eastward 
wind stress is examined using forcing of the form 

X = H(x-a) H(t)[H(y-b) - H(b-y)] (5.3) 

Fig. 6 shows the asymptotic forms of p/t, v/12 at the coast for the case b = 1. 
This figure shows that the effects are very dramatic in that the velocity maxi-
mum at ~ 2°N is almost tripled in magnitude and the downwelling very much 
strengthened. 
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-4 

- -1 

Figure 6. Plot of the asymptotic forms of pi t, vlf for east-west forcing of the form (5.3) for 
b = 1. 

The more detailed time development is now considered. It is expected that the 
above asymptotic solutions will become effective soon after the coastal Kelvin 
wave from the northernmost point of the local forcing has reached the equator. 
This takes about 6 days. Calculations show that this is indeed the case for local 
forcing. However, the dispersion of the equatorial waves generated by remote 
forcing makes further investigation of this regime necessary. For this purpose the 
equations were solved by numerical inversion of the Laplace transform (Lanczos 
1957). 

In Fig. 7a is given the solution for p and a function of time at the coast for the 
case when the parameters in (5.2) are a = 3, b = 1. Planetary waves will arrive 
at the coast after 9, 15, 21 days, etc. The general shape of Fig. 7a is similar to the 
asymptotic solution, but the maximum displacements of the thermocline are very 
different. However, the tendency for the upward displacement peak to dominate 
over the downward displacement with time is clearly manifest in Fig. 7a. The long-
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Figure 7a. (left) Time development of p plotted as a function of y for values of t = 30, 45, 
60 days. Forcing is of the form (5.2) with b = 1. This curve should be compared with 
Fig. 4a. The characteristic shape is similar but the relative amplitude of the upwelling/ down-
welling differs. 

Figure 7b. (right) As for Fig. 7a but for v. Comparison with Fig. 4b shows that the relative 
maximum amplitudes of the northerly, southerly flow differ from that given by the asymp-
totic solution, but the profile is qualitatively very similar. At time 45, the solution is not yet 
building up quadratically with time. 

shore velocity plotted in Fig. 7b shows the same effect. Finally, Figs. 8a, b show 
the longshore flow at times 25, 75 for a = 1, 3, 5 and b = 1. After 25 days the 
boundary current for a = 5 is still tiny compared with a = 1; by 7 5 days it has 
grown very considerably relative to the a = 1 case but is still only approximately 
half as big. 

6. Discussion 

From the above results it is possible to make certain predictions about the 
Somali current response and the upwelling, downwelling to be expected. For both 
local and remote forcing (for the case b = 1, corresponding to an eastward wind 
stress north of 2 °N), the longshore current is always northward between 1 °S and 
4.5°N (y = -.5, 2.25) but north of 4.5°N and south of 1 °S, the resultant velocity 
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-10 

Figure 8a. (left) Plot of v after 25 days for forcing of the form (5.2) when the distance a 

from the coast is varied. The chosen values of a are 1,3,5 corresponding to forcing of 2 °, 6°, 
10° away from the coast. The value of b is 1. 

Figure 8b. (right) As for Fig. 8a but after 75 days. 

will be a function of time since it is a balance between opposing tendencies, the 
local response trying to drive a longshore flow which is northward, the response to 
remote forcing being southward. This implies that initially, the Somali current 
would be northward from say 6°S right up to Cape Guardafui (12.5°N) since the 
local response is dominant initially. But, if the monsoon persists long enough, the 
response to remote forcing will dominate (since v increases like t2 in this case com-
pared to t for local forcing) and then the Somali current will flow northward only 
from 1 °S to 4.5°N. But for intermediate times it can flow northward over any 
value of latitude between 6°S and 12.5°N. The position at which the flow comes 
to zero will correspond to a separation point of the Somali current and this can 
move equatorward from 12.5°N to 4.5°N. Exactly how it moves cannot be deter-
mined until the relative strengths of the local and remote forcing functions are 
specified. 

Here we strike a problem, for no very reliable data on mean wind stress is avail-
able. Hellerman's data would suggest that the longshore stress is stronger than the 
interior stress, appropriate values for the longshore stress at 10°N being ~ 2 dynes 
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Figure 9a. (right) Resultant p curves 30 and 60 days after application of forcing of the form 
given by Fig. le and equation (5.2) with a = 3, b = 1. The relative amplitudes are such that 
the maximum of the local forcing is twice that of the remote forcing. 

Figure 9b. (left) As for Fig. 9a, but for v. 

cm-2 while the interior stress is ~ 1 dyne cm-2
• But it is an easy matter to find 

significantly different estimates: Duing and Szekielda suggest sustained wind values 
in the vicinity of Cape Guardafui, presumably due to the low level jet mentioned 
previously, of order 17m s-1 which would give a wind stress of order 8 dynes cm-2

• 

Bruce (personal communication) and Stammel (personal communication) can also 
support moderately high stress values in this region. For the eastward wind stress 
in the interior, Lighthill takes a value of 2.5 dynes cm-2

• For the sake of com-
parison we take a longshore forcing of the form Fig. 1 c with the maximum value 
twice the value of the east-west forcing in the interior. This probably underestimates 
the relative strength of the local forcing particularly near Cape Guardafui. The 
resultant p and v profiles for X = 0 are given in Figs. 9a,b respectively. The east-
ward forcing is of the form (5.2) with a= 3, b = 1, i.e., the forcing is restricted to 
6°E of the coast and 2°N of the equator. The curves are plotted thirty and sixty 
days after the switch on of the winds which we arbitrarily took to be coincident, 
though Leetmaa (1972, 1973) suggests that the local winds start a few days before 
the interior winds. 

Initially there is upwelling over the whole of the region 6°S to 12°N but after 
thirty days there is weak downwelling south of the equator due to the remote 
forcing. North of the equator the upwelling, maximized initially at 6°N, moves 
equatorward slightly (to 5½0 N after 30 days to 4½0 N after 60 days), and intensifies. 
For v, initially the flow is northward at all latitudes and this state of affairs persists 
to at least 60 days. A flow reversal, i.e., a separation point, would require about 
70 days or a larger relative amplitude for the remote forcing. The position of the 
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Figure 10a. (left) Average surface currents for months (a) Apr., May, June. From Indian 
Ocean Currents (1966). Figures give velocity in miles/ day. 

Figure 10b. (right) As for Fig. 10a, but for July, Aug., Sept. Note how much sharper the 
velocity maximum at~ 2°N is here than in 10a. Cf. Fig. 9b. 

separation point is at 6.4 °N, some 2 ° too far to the south. It will be argued later 
that the separation point is not formed by this mechanism but by nonlinear response 
of the coastal Kelvin wave to the local wind stress. Before discussing that aspect it 
is interesting to see what features of the model appear to be observable in the data. 
Duing and Szekielda (Fig. 3, 1971) give satellite pictures of the estimated sea sur-
face temperatures and these confirm the existence of an upwelling region at about 
7°N while Figs. 6 & 7 of La Violette and Chabot (1968) (also based on satellite 
observations) and Fig. 4a of Bruce (1973) would suggest there was upwelling at 
~ 5°N, this being more intense in August than in May. These observations appear 
consistent with Fig. 9a in principle. 

The variability in the position of the upwelling region from year to year may 
possibly be accounted for by a slight change in the relative positions and intensities 
of the forcing functions. For example, there is evidence that the monsoon was both 
later and stronger in 1964 than it was in 1963, (Ramage et al., 1972). Sea surface 
temperature charts for lower latitudes are given in this atlas. They show weak 
downwelling at approximately the predicted latitudes (centered at ~ 2°S) again 
consistent with Fig. 9a. Velocities are less easily compared on an individual month/ 
year basis but charts of velocities averaged over several years are available for the 
3-monthly periods May, June, July and August, September, October (Indian Ocean 
Currents, 1966). In the former the current is northward at all latitudes, being maxi-
mized at 1 °N, but this is a rather flat maximum (60 miles/day) the current being 
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Figure 11. Contours of geopotential topography of sea surface relative to 1000 db during the 

Southwest Monsoon. Units are dynamic meters. From Bruce (1968). Cf. Fig. 3a. 

strong from about 5°S to 4°N (where there is a hint of an eastward branching). In 
the latter the current maximum (63 miles/ day) is very much sharper, now having 
moved north to 3°N. Beyond this peak the current decreases to a minimum (26.3 
miles/ day) at 5°N; there is an eastward branching of the current at 8°N with 
northerly flow beyond (maximum 19.3 miles/ day). The whole picture gained from 
the above is encouragingly similar to Figs. 9a,b. For comparison, these charts are 
included as Figs. l0a,b. 

The only detailed picture of upwelling away from the coast that we have found 
is that of Bruce (1968, Fig. 3) reproduced as Fig. 11. This appears to be very 
similar to that of Fig. 3a. If that is so the implication is that local forcing may 
have a more important effect than remote forcing in stimulating offshore "eddies". 
Certainly, short planetary waves traveling at 1/ 8 ms-1, if not strongly damped, 
penetrate as far as 15° from the coast in 3 months. Fig. 3a implies that these eddies 
migrate westward. There seems to be no observational evidence about this point. 

The linear model does not give good agreement with observation in the region 
north of Ras Hafun. Swallow & Bruce (1966), La Violette & Chabot (1968), 
Bruce (1968, 1970, 1973, 1974), Duing & Szekielda (1970), and Ramage et al. 
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Figure 12. Specification of the two-layer model parameters. 
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(1972) all support the existence of strong upwelling centered at 11 °N. There is 
nothing in this model to give such strong upwelling. Indeed, from Fig. 9a one 
would conclude that though there would be upwelling there, it would be weaker 
than farther south. Clearly this is inconsistent with the observations. However 
Duing & Szekielda (1971), Hellerman (1967), and Findlater (1974) all suggest that 
the forcing is much stronger in this region than elsewhere. But Fig. 2a shows that 
Kelvin waves carry the upwelling to lower latitudes leaving no residual upwelling 
to correlate with the local forcings. On this picture there can be no local response. 
Initially this picture is probably correct. But upwelling tends to generate a long-
shore flow (geostrophically balanced with the upwelling pressure gradient). This 
mean current opposes the Kelvin wave propagation, tending to retard the Kelvin 
wave, forcing it to remain longer and longer in the forcing region and providing a 
mechanism for feedback. This problem of analyzing the behavior of a forced 
Kelvin wave interacting with a mean flow for general stratification is essentially 
nonlinear; modal decomposition cannot in general be used but the simpler prob-
lem using a two-layer model is solved in the Appendix. The analysis shows (see 
Fig. 13) that the mechanism suggested above is correct and that the effects of the 
mean fl.ow set up by the Kelvin wave act to retard its equatorward propagation. 2 

This makes it possible for a local response to develop. The equations become 
singular (in the sense that the upper layer depth becomes zero) when the speed of 
the fluid in the top layer is exactly equal and opposite to the velocity of the Kelvin 
wave. 

2. Cox ( 1976) in a sophisticated nonlinear numerical model of the Somali current also observes this 
effect. 
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Figure 13. Plot of dimensionless upwelling for the nonlinear model. Dashed lines are for 
times such that the top layer has negative depth. 

APPENDIX 

Nonlinear coastal Kelvin waves-the upwelling region off Cape Guardafui 

The analysis, which is similar to that of Bennett ( 1973) who studied barotropic coastal 
Kelvin waves, will be performed on an /-plane, as the region of interest is sufficiently far from 
the equator and of a sufficiently small meridional extent to make this valid. The model ocean 
consists of an upper layer of depth do and a lower layer of depth Do initially. The density of 
the upper layer is p and that of the lower layer is p'. The vertical displacement of the inter-
face is s (positive upward) and the depths of the upper and lower layers are d,D respectively. 
Thus we have d = do - { and D = Do + g. The barotropic pressure is cf,; g is acceleration due 
to gravity and g' = g(l - pl p') is the reduced gravity. The ocean surface and bottom are 
horizontal and rigid, and the coast (x = 0) is plane and vertical. x is measured positive to-
ward the interior of the ocean and y is the coordinate along the coast, (u,v), (u',v') are the 
(x ,y) components of velocity in the upper and lower layers respectively (see Fig. 12). The 
forcing mechanism will be taken as a body force Y uniformly distributed throughout the up-
per layer and independent of x; this last approximation has been justified above. In reality, 
for a given wind stress on the ocean surface the body force in the upper layer will be in-
versely proportional to the depth of that layer, and as we will be considering upwelling which 
brings the interface very near the surface, this should really be taken into account in the model. 
However, to do so makes the problem intractable and so the effect is not considered. In fact, it 
is apparent that this effect will not alter the main conclusion that upwelling is much greater 
in the forcing region (and possibly to the north of it) than it is farther south. 

With the above definitions the equations of motion for the upper layer are: 

and for the lower layer: 

-fv +cf,.= 0 
v, + uv. + uv, + fu +cf,,= Y(y,t) 

(du). + (dv), - g, = 0 

- fv' + g'g. + -1!., cf,. = 0 p 
v', + u'v'. + v'v', + fu' + g'g, + pi p' cf,,= 0 

(Du'). + (Dv'). + g, = 0 . 

(A.I) 

(A.2) 
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Equations expressing the conservation of potential vorticity in the upper and lower layers 
separately are 

and 

( a a a )( v'. + t ) at + u' ax + v' ay D = 0 . 

Hence, as the ocean is initially at rest with d and D uniform, we obtain 

dov. +is= 0 
and 

D ,v'. - Jg= 0 . 

Substituting for v and v' from the fir st of the momentum equations then gives 

cf, •• + f2l do g = 0 
and 

pl p' cf, •• + g' g •• - ;
0 

g = 0 

The general solution of these equations is 

g = Z(y,t)e' • + Z'(y,t)e-•• 

cf, = <l>(y,t) e'• + <l> ' (y,t)e-•• + A(y,t)x + B(y,t) 

where 

and 

'J...'<I> =- FZ 
do 

'J...•<I>' = -f Z' 
do 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

and 'J... is the negative square root of { { io + /do) . We want solutions which are bounded 

as x oo. Thus we have 

s = Ze'" 
and 

cf,= <l>e'" + B 

The boundary condition that u = u' = 0 at x = 0 gives, via the momentum equations: 

'J... 'J...' 
-f- <I>, + 7 <I> <I>,+ <I>.+ B, = y 

and 

( 
)[ 'J... ( P ~) ] 1-g'do P f2 - 1- <I>,+ f p' - dog' f2 <I> <I>,+ <I>, = - Bv 

(A.IO) 

(A.11) 

These equations can be solved as they stand to give a (complicated) nonlinear equation for 
<I>. However they can be simplified by noting that in the real ocean Do >> do and I - pl p' 

0. These approximations give 'J... ~ - f l (g'do)! and the last two equations become 

B, = 0 (A.12) 
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and 

1 
<I>, - c<I>,- -c-<I> <I>,= - cY 

where 

C = (g'd.)½ 

This may be cast into a more standard form by defining 

7J = ylc 

and 

{ = 1 + <I>/c2 

Then we obtain 

{, - {{a= - Y l e 

with { = 1 at t = 0. 

[34, 3 

(A.13) 

(A .14) 

It should be noted that the equation for <I> is just the same as that obtained by Bennett (1973) 

in the barotropic case. 

General solution of the equation {, + { {. = - f(7J) 

As with the linear analysis given earlier we are interested in the response to a steady wind 
suddenly imposed at t = 0. Thus we wish to study the solutions of the equation 

with 

Defining characteristic coordinates 

and 

{ = 1 at t = 0 . 

X = 7J + s: { dt 

T=t 

we obtain the pair of simultaneous equations 

and 

(A.15) 

(A.16) 

(A.17) 

These equations are the most convenient for calculating numerical solutions. However, an 
analytical solution may also be obtained. We have 

But it is easily shown that 

a•7l I a
2

T I ( aT I 
aT2 .:r = - d7J' .:r a;i- .:r 

)~ 
(A.18) 

and thus we have 

(A.19) 
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Thi . fir . i!T I s 1s a st order equat10n for a:;, z and has the solution 

( ~T7) I p ) • { f 7) }-1 
V 4 = 1 + 2 T}/(p)dp (A.20) 

where 

T} = T}o at T = 0 . 
But 

i!T I 
iJ7J I 

1 --

' 
(A.21) 

Hence 

and 

t = T = f 7/ ds/ 71ol {(s)I 
7/0 

(A .22) 

for t < t" the time at which { first becomes zero. For our purpose there is no need to take 
the solution beyond t = t" for { = 0 corresponds to Z = do, that is at t = t, the interface 
breaks the surface somewhere and the above analysis breaks down. Also at t = t, we have 

v = ce~• 

and so I , is the time at which the speed of the current in the upper layer first equals the speed 
of propagation of coastal Kelvin waves. 

Probably the most important conclusion to be drawn from this analysis is that to the south 
of the forcing region { can never become zero. For in a region where no forcing occurs { is 
constant along characteristics with slope -t in TJ - I space. Thus if t = 0 somewhere in such a 
region then it remains zero at that value of 7/ for all time (i.e. t, - t t, = 0 and { = 0 imply 
{, = 0) and it must also have been zero at all previous times, which contradicts the initial 
conditions that { = 1 at I = 0. 

This argument is valid even for times greater than I, ; but it does not necessarily apply to 
regions to the north of any forcing. If we treat the differential equation purely as a mathemati-
cal problem and allow t to become negative then for times greater than t,, v can become 
larger than c and information from the forcing region can be carried northward! But in the 
forcing region t can become negative and such values may propagate out of the forcing 
region to the north. However, in the physical problem, negative t is meaningless and the above 
analysis breaks down as soon as t becomes zero, as the wind stress forcing then acts on the 
lower layer in at least part of the forcing region. There is no way of telling whether t can 
subsequently become negative to the north of the forcing region. It must be emphasized how-
ever that the conclusion that { is positive everywhere south of the forcing region is true for 
all time even after the analysis has become invalid in the forcing region. The meaning of this 
result for our purposes is that upwelling to the south of a region of wind-stress forcing must 
be weaker than it is in the forcing region. This should be contrasted with the linear analysis 
where the upwelling is governed by the equation t, - {, = - /(71) and where the upwelling 
south of the forcing region can be just as vigorous (albeit at some later time) as that in the 
forcing region; there is no upper limit to the upwelling south of the forcing region in this case. 



416 Journal of Marine Research [34, 3 

A second important observation is that overturning of the interface only occurs for { < 0 
and so for t less than t, the interface never overturns and thus breaking and mixing are not 

inevitable. 
Of course in reality the wind stress is nonzero all along the coast and there is no region 

"south of the forcing region". However the low level jet which blows off Cape Guardafui is 
very much stronger than the other winds and thus upwelling will occur much more rapidly in 
this area. The generalization of the above result to this case is that the interface first breaks 
the surface as a result of local winds or winds to the south. Thus upwelling in the region of 
Cape Guardafui is likely to be much stronger much sooner than farther south. 

As an example of the kind of upwelling obtained as a solution of the above equation, the 
displacement of the interface at x = 0 is plotted in Fig. 13 as a function of 11 and t for t 
t, (=1) for 

!(11) = 1 

=O 

(0 < 11 < 1) 

elsewhere 

The solution for t > t, is also plotted (broken lines) for a few values of t to illustrate the 
fact that for negative 11, { is less than du for all time. 
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