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Baroclinic Rossby waves as inferred from 
temperature ffuctuations in the Eastern Pacific 

by William J. Emery1, 2 and Lorenz Magaard1 

ABSTRACT 

Monthly mean values of temperature from both hydrographic and XBT casts are used to 
compute isotherm displacements at weather station November (30N, 140W) and at six 2-
degree squares between Hawaii and the weather station. A composite spectrum computed 
from all the isotherms in the six 2-degree squares shows significantly higher potential energy 
in the frequency range below the theoretical cut-off frequency ( corresponding period about 
five months) for baroclinic Rossby waves. The first five baroclinic modes are computed from 
the mean density profile at station November, and these modes fit in the time domain to the 
isotherm displacements at the weather station. This fit indicated the predominance of the first 
mode. 

Next, a cross-spectral fit of a Rossby wave model (random field of baroclinic waves) is made 
to the time series of isotherm fluctuations. At station November alone, a fit using the first 
four modes accounts for about 75% to 85% of the fluctuations at periods of about one to 
two years. This fit also indicates the predominance of the first mode, hence a cross-spectral fit 
using the first mode only is made to the isotherm fluctuations in the six 2-degree squares. 
This fit accounts for about 65% to 75% of the observed fluctuations at periods of about one 
to two years and indicates waves propagating in distinct directions between 20 and 80 degrees 
west of north with wavelengths between 1200 km and 1700 km. The group velocities of these 
waves are directed almost exactly westward and have magnitudes of about 4.5 cm s-1

• For 
smaller wave periods (about 5 to 9 months) the angular range of propagation directions 
widens to isotropic propagation in the western half plane. 

1. Introduction 

Monthly mean values of subsurface temperature, from the eastern Pacific, have 
been used in some recent studies (Bernstein and White, 1974; Emery, 1975). Their 
time series of mean temperature values appear to contain wave-like fluctuations. 
Therefore, we have begun to investigate the extent to which these fluctuations could 
be due to fields of known waves. From expendable bathythermograph (XBT) data, 
we have prepared time series of monthly mean values in the layer between 200 m 
and 500 m for six 2-degree squares in the region between Hawaii and weather 
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Figure 1. Locations of the six 2-degree squares and weather station November (N). 

station November (30N, 140W). Hydrographic data from a I-degree square around 
the weather station were used to form similar time series in the layer between 100 m 
and 3000 m. 

These data provide a good opportunity to examine the possible existence of in-
ternal Rossby waves in the ocean. For this purpose, we first study the frequency 
and depth distribution of the fluctuations, arriving at a spectrum of potential energy 
for the upper layer of the ocean. These investigations strengthen our suspicion that 
Rossby waves could be partly responsible for the low-frequency portion of the ob-
served fluctuations. We therefore develop a Rossby wave model which we then fit 
to the observations. This was done as a cross-spectral fit in extension of the work 
of Schott and Willebrand (1973) and Schott (1974) who applied a similar fit to 
internal gravity waves. 

2. Data 

The XBT observations used to form the time series in the six 2-degree squares 
were taken by ships of opportunity traveling between California and Hawaii. Under 
a program of the National Marine Fishery Service, XBT's have been taken along 
this route on a semimonthly basis since May, 1966. To these data were added other 
observations from the XBT file of Fleet Numerical Weather Central. The data were 
linearly interpolated for every 20 m of depth down to 500 m and the resulting 
temperatures were averaged within the month and 2-degree square in which they 
were taken. The period of best coverage was from May, 1966 to December, 1970 
because of a large gap due to a shipping strike. The locations of the six squares 
chosen for this study are shown in Fig. I. 

The hydrographic data in the I-degree square around the weather station were 
taken by ships occupying this weather station. A program of the U.S. Coast Guard 
(Husby, 1968), to study the oceanographic environment at station November, pro-
vided almost daily coverage of hydrographic data in the months from July, 1966 
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Figure 2. Vertical distribution of Brunt-Vaisala frequency at weather station November. (Note 
changes in vertical scale at 300 m and 1500 m). 

to December, 1969. The temperature records from this station were linearly inter-
polated to give temperature values every 25 m between O m and 300 m, every 
100 m between 300 m and 1500 m and every 500 m between 1500 m and 4500 m. 
The interpolated values were then averaged over the month in which they were 
taken to form a time series of temperature structure between the surface and 4500 m. 
The averages of these temperature values over the 42 months were used to calcu-
late the mean profiles of potential density and the Brunt-Vaisala frequency (Fig. 2). 

The number of observations used in the computation of the mean temperature 
values varied from month to month. Moreover, these observations were irregularly 
distributed in time and space. It was therefore a crucial question as to how good 
an estimate of the real monthly temperature means our values were. One solution 
to this question is to compare the change in monthly values to the amount of varia-
tion within a month. The standard error is a measure of this variation, therefore, 
the average standard error from adjacent monthly values was compared to the 
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Figure 3a (left) and 3b (right). Time series of isotherm ( 0 C) displacements at weather station 
November. Dotted lines: interpolated data. 

temperature change between these two values. Between 70% and 90% of all 
changes were greater than the average standard error (see Table 1). About 50% to 
80% of the changes were greater than the 95% confidence limits which corresponds 
approximately to twice the standard error. The high percentage of temperature 
changes greater than the standard error indicates that fluctuations with periods 
shorter than a month (such as internal tides) have small amplitudes in this region. 
Further evidence of the reliability of the monthly values will be given later (sec-
tion 6) as a result of the cross-spectral fit. 

In the 2-degree squares, the fluctuations of nine isotherms between 9°C and 
l 7°C were chosen for study. The mean depths of these isotherms over the 56 
month period were computed from the time series described above. These mean 

Table 1. Percentage of reliable temperature changes. 

Greater than ll* 
95% Confidence level 

(= 21>) 

• 1l = standard error. 

November 

.64 

.77 
.51 
.75 

2 

.48 

.71 

3 

.47 

.70 

4 

.65 

.82 

5 

.77 

.87 

6 

.59 

.77 
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depths were then subtracted from the monthly average depths of respective iso-
therms to form time series of monthly isotherm displacements ,. In the region be-
tween Hawaii and station November, the selected isotherms were usually found 
between 150 m and 480 m. Therefore, the 54 time series computed from the six 
squares represent isotherm fluctuations in the layer between these depths. 

At weather station November, 27 isotherms between l.4°C and 16°C were 
selected. As with the XBT data, the mean depths of the chosen isotherms were 
computed for the complete period of observation. As before, these mean depths 
were subtracted from the monthly depths and 27 time series of , fluctuations were 
formed. These time series are shown in Figs. 3a and 3b where it can be seen that 
the chosen isotherms were within the layer between 150 m and 3000 m. 

3. Spectrum of potential energy 

In order to determine the important frequencies of the observed fluctuations, 
spectra E;(w) were computed for 49 time series of isotherm displacements ,.ct) 
calculated from XBT data. These spectra had only four degrees of freedom per 
spectral estimate because of the shortness of the time series. Assuming stationarity 
and horizontal homogeneity of the fluctuations, more significant spectra were pro-
duced by averaging the spectra, corresponding to the same depth interval, over the 
six squares. These spectra were multiplied by N 2(z) and then integrated over z to 
form the spectrum of potential energy in the layer between 207 m and 367 m; 

S
367'n 

Ep(w) =½Po N 2(z)S(w,z)dz 
207m 

(3.1) 

where S(w,z) are the spectra of , fluctuations averaged over the six squares, N(z) is 
the Brunt-Vaisala frequency (z downward) and ,o is a reference density. Ep(w) is 

shown in Fig. 4. 
In determining the effective degrees of freedom (K) for Ep(w) we must realize 

that the 49 series are not independent. If they were completely independent K 
would be 196; if they were completely dependent K would be 4. According to 
Willebrand (J. Willebrand, personal communication) we can find K of a composite 

spectrum Ep(w) = Ia;El w) from 
i 

K= ( fa;E, r d 

Ia;a/y,/E1E; 
i ,f 

(3.2) 

where "/if is the coherence between , ; and ,1 and dis the number of degrees of free-
dom of the individual spectra E;(w). Applying (3.2) to our case (adjusting the a, 
accordingly) we find K = 10. To obtain a larger K we have redone the calculation 
with d = 8. The resulting smoothed spectrum (Ep(w)) does not differ significantly 
from the one in Fig. 4 except that we no longer have a point at 28 months. In this 
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Figure 4. Spectrum of potential energy. 

[34, 3 

case we obtain K = 25 which leads to the 80% confidence limits displayed in 
Fig. 4. 

This spectrum has two distinct energy levels, with the higher energy at low fre-
quencies. The highest spectral peak is at a period of 14 months. The increase of 
spectral energy at low frequencies begins at a period of about five months which 
is close to the cut-off period (4.8 months, to be shown later) for baroclinic Rossby 
waves at 25N. This leads us to further investigate the possible wave character 
(baroclinic Rossby waves) of the fluctuations. 

4. Vertical distribution of isotherm fluctuations (fitting in the time domain) 

As a first step in determining the vertical distribution of the isotherm displace-
ments, we computed the first five baroclinic Rossby wave modes. These modes are 
the solutions of the equation for the vertical velocity w: 

d2w + >..2N 2w = 0 
dz2 

subject to the boundary conditions 

w =Oatz= O, H 

(4.1) 

(4.2) 
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(4.3) 

His the depth of the water, w frequency of the wave, K,,, horizontal wave number 
(K2,. = K 2 + r/2), K and 'Y'/ wave numbers in the x and y direction (x to the west, y 

to the north), f the Coriolis parameter, and /3 = df /dy. Equations (4.1) and (4.2) 
are also valid for internal gravity waves where w 2 < < N2 and 

(4.4) 

These modes can therefore also serve for possible investigations of long internal 
gravity waves (i.e. tides). 

Equations (4.1) and (4.2) were solved for the first five modes by the "C-root 
method" described in Preisendorfer, et al. (1974). For this, we used N(z) as com-
puted at station November (Fig. 2) where the water depth (H) was 4755 m. The 
resulting eigenfunctions of vertical velocity were then normalized as 

Wn(z) 
<p.n(z) = -H~--'-'--- (4.5) 

(JN2(z)W 2n(z)dz)½ 
0 

where n indicates the mode number. These normalized eigenfunctions ( </>n <•>) are 
shown in Fig. 5. The corresponding eigenvalues (in m-1s) are X.1 = 0.3343, X., = 
0.707, A.3 = 1.091, A4 = 1.393, and As = 1.959. According to (4.3) the dispersion 
relation for the nth mode is 

(K- fw) 2 +'Y] 2 = :~2 -f2>._2n (4.6) 

We consider An and <f>n to be representative for the whole area under investigation 
and attach the /3-plane at 25N. Hence the cut-off periods (in months), given by Tn 

X. = 41rf _n_ are T1 = 4.8, T2 = 10.2, T3 = 15.7, T. = 20.1, Ts= 28.2. 

The !ext step was to fit, in the time domain, the normalized eigenfunctions to 
the fluctuations computed at weather station November. To do this, the coeffi-
cients An(t) of the modes were chosen to minimize the expression 

f (~(z,t) - t An(t) <f>n(z))2dz (4.7) 

The resulting coefficients An(t) are shown in Fig. 6 for the period July, 1966 to 
December, 1969. Also shown in the figure is the deviation 
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G 

N 2(z)(~(z,t) - L A n(t)cp,.(z))2dz 

D(t) = n =l s~ N 2(z)~ 2(z,t)dz 

(4.8) 

of the observed isotherm displacement from the modal fit. As can be seen in Fig. 6, 
the deviation is almost always less than 50% and is usually less than 25 % . The 
mean deviation is 32%. 

In this fit, the importance of the first mode can be clearly seen from the relatively 
large amplitude of A1. It also appears that the lower frequency fluctuations have 
larger amplitudes. Both of these observations are confirmed by the spectral values 
computed from the time series in Fig. 6 (see Table 2). These spectral estimates, 
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Figure 6. Coefficients (A. (t)) of the first five internal modes as fit, in the time domain, to 
isotherm displacements at weather station November. 

though not statistically significant, clearly show the highest spectral values at low 
frequencies for A1, The higher modes have much smaller spectral values at all 
frequencies. 

Our results are consistent with the idea that the observed fluctuations are mainly 
due to first mode baroclinic Rossby waves having periods greater than five months. 
The time series contain, of course, fluctuations of shorter periods. To obtain more 
conclusive results, we need to restrict our fit to the frequency range of the possible 
Rossby waves. One way to achieve this is to carry out a cross-spectral fit at the 
appropriate frequencies. Using this method, we can determine to what extent the 
vertical and horizontal structure of the observed field can be described by a Rossby 
wave model. 

Table 2. Spectral values for A1 through Ao at periods between 5 and 22 months in m•s•. 

Coefficient of baroclinic mode 

Period 
(months) A, A, As A, Ao 

22 9.6 0.4 0.4 0.3 0.2 

11 5.0 0.5 0.1 0.2 0.3 

7.3 2.4 0.6 0.6 0.2 0.1 

5.5 1.0 0.0 0.3 0.2 0.1 
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5. The Rossby wave model 

In a p-plane, we consider a random field of vertical isotherm displacements 
, (x, z, t) which are composed of a superposition of uncorrelated free baroclinic 
Rossby wave modes: 

,cx,z,t) = L {(k ,w) <p(An,Z) exp [i(k•x-wt)] (5.1) 
w,K 

where 

x = (x,y), k = (k;1J) and <p("-n,Z) = <f>n(Z). 

We assume , to be a stationary and horizontally homogeneous process. Hence we 

have for the random complex amplitudes {(k,w) 

< {(k,w){(k' ,w')> = 0 if k + k' =l= 0 or w + w' =l= 0 (5.2) 

where < ...... > indicates the ensemble mean. The correlation function of , is 

K(r,z,z',r) = L < {(k ,w){ * (k,w)> </>("-n,Z) • 
K,w 

<p(An,z') exp [-i(k•r-wr)] (5.3) 

where r = x' - x, r = t' - t and * denotes the complex conjugate. Introducing a 
continuous representation, 

<{(k,w)~'(k,w)> ==E(k,w)dkdw (5.4) 

and assuming that the wave field consists of modes up to the Mth order only, 

M 

E(k,w) = L !: Sn(<f>)o(R-Rn) (5.5) 
n=l 

we find the cross-spectrum to be 

M fi 
A(r,z,z'w) = L En<f>n(z)<f>n(z')e-i 2w rsina + 

n=l 

(5.6) 

f
21T 

0 
Sn( <f>) exp { -iR,. cos ( <f> - a)} d<f>. 

Here r is the magnitude of r and a describes its direction (a positive from north to 
west) and R2,, = (fi 2/ 4w2 

- f2>..2n) (see 4.6) is the radius of the circle determined by 
the possible wave number vectors of the nth mode at frequency w (Fig. 7). In Fig. 
7, c0 points in the direction of the group velocity vector. Its magnitude is 

2w 2R,. 
Cu= fik (5.7) 
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NORTH 

Figure 7. The circular locus of the wave numbers of the nth mode. 

its direction is cf> + 1T. Sn (</>) is the directional distribution of E (k,w) on this circle 
and is normalized as 

(5.8) 

From (5.6) we find the co-spectrum C and the quadrature-spectrum Q according 
to A= C - iQ. One of the co-spectra, namely 

M 

C(O,z,z,w) = L En</> 2n(Z) (5.9) 
n = l 

is the auto-spectrum of { which explains the meaning of En as a measure for the 
energy of the nth mode. 

6. Fitting the Rossby wave model to observations 

In the case where observations from only one location are used the model can 
be applied without restriction. For a single location r = 0 and hence from (5 .6) 

M 

A(O,z,z',w) = L Encf>n(Z)</>n(z') = C(O,z,z',w) (6.1) 
n=l 

and 
Q(O,z,z' ,w) = 0 (6.2) 

These theoretical cross-spectra were fit to the cross-spectra computed from 21 
time series of { at station November (Figs. 1 and 3a). Before fitting these spectra, 
however, the observed cross-spectra were checked for consistency with the model. 
According to (6.2), for the observations to be consistent with our model it is neces-

sary that 
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Table 3. Consistency coefficient at station November. Tis the period in months. 

T 

22 
11 

7.3 

q= 

8 

L Q.(8)2 
8 =1 

-----<<1 
8 

L c <•>2 • 
8 = 1 

q 

0.032 
0.066 
0.184 

[34, 3 

(6.3) 

where c. <•> and Q. <8 > are the co- and quadrature-spectra computed from the series 
ands indicates the pair of S series (s = 1, 2, ... . , S). For station November, S = 
231.The values of q are given in Table 3 and show the data to be sufficiently con-
sistent especially for the lower frequencies. 

In light of these results the cross-spectra of (6.1) and (6.2) were then fit to the 
observed cross-spectra for M = 1, 2, 3 and 4. This least squares fit was accom-
plished by minimizing the function 

8 

F = ), { (C. <• > - C <•>)2 + (Q. (8 ) _ Q <•>)2} 
...,; 
8=1 

(6.4) 

where C<8 > and Q<•> are the theoretical cross-spectra for the s pair. In this case 
where r = 0, we have from (6.1) and (6.4) 

8 M 

F(E1, E2, ... , Em) = L [(C. (B) - L Dns En)2 + Q. (8 )
2
] (6.5) 

B=l tl. =l 

where Dns = c/>n(z.)cf>n(z'.). To minimize Fit is necessary that 

.t(tDn. Dk•) En= tDk.c.(B> ;k=l,2, ... ,M (6.6) 

Equation (6.6) was used to find E1, E2, .. . . , EM for M = 1, 2, 3 and 4 at a period 
of 22 months, M = 1, 2 at 11 months, and M = 1 at 7 .3 months. These are the 
maximum values of M allowed by the cut off periods of the various modes. The 
results are displayed in Table 4. Also in this table are values of F m-inl F O which is 
a measure of the quality of the fit where 

8 

Fo = L (C. (s )2 + Q. (s)2) (6.7) 
•=t 

If Fmtn!Fo = 0 the fit is perfect; Fmtn!Fo = 100 percent means that none of the ob-
servations are described by the model. 



1976] Emery & Magaard: Baroclinic Rossby waves 377 

Table 4. Resulting En (m• month • s-") from cross-spectral fit at weather station November 
(wi th standard error). Tis the period in months. 

M E, 
1 19.9 ± 5.2 
2 19.9 ± 6.1 
3 19.8 ± 0.7 
4 19.3 ± 11.9 

M E, 
l 13.4 ± 4.3 
2 13.4 ± 5.0 

M E, 
4.3 ± 1.5 

E2 

1.0 ± 0.0 
0.9 ± 38.9 
0.1 ± 46.5 

E2 

1.7 ± 0.0 

F m1n/Fo 

44.5% 

T = 22 

Ea 

4.1 ± 6.3 
3.8 ± 19.5 

T = 11 

F m1n/Fo 

25.0% 
24.5% 

T = 7.3 

E, 

6.5 ± 27.1 

19.5% 
19.4% 
18.9% 
16.1% 

Next we have applied the model to the { series of the six 2 degree squares (Fig. 
1). Due to the limited depth range of the XBT data we cannot expect to be able 
to separate several modes in this case. Also as can be seen from the fit in the time 
domain and the cross-spectral fit at station November the first mode appears to play 
a predominant role. We therefore restrict our model to the first mode in this case. 

Since observations from more than one location are to be used r =f= 0 and we 
must specify S1 (cf,) in (5.5). The simplest assumption is a discrete directional dis-
tribution of E(K,w) and we therefore let 

S1(</>) = 8(cf,-cf,1) 

With these assumptions (5.6) becomes 

A(r,z,z',w) = E1cf,1(z)cf,1(z') exp{-i[ {3/ 2w r sin a + R1 r cos(cf,,-a)]} 

(6.8) 

(6.9) 

The cross-spectra thus defined were then fit to the cross-spectra computed from the 
{ fluctuations at the different locations: 

C. <•> = C.(r8,a8,Z8,Z'8,w); Q. <8 > = Q.(r,,a,,z8,z'8,w) . 

The quadruple , ., a8, z., z'. describes the locations of pairs of points (x8, z8), (x'8, 

z.') s again indicates the pair number. 
In this case the expression to minimize from (6.4) and (6.9) is 

8 

F(E,,cf,1) = L [(C. <8> - D 18 E1 cos B.) 2 + (Q. <•> - D 18 E, sin B.) 2
] (6.10) 

8=1 
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where Bs = fw r8 sin l\'.8 + R1 rs cos (c/>1 - as) 

From aEF = 0 we obtain 
a 1 

8 L D 1s(C. <8 > cos B8 + Q. <•> sin B.) 
8=1 

E1(c/>1) = -------------
s 

LD\8 
8=1 

Using (6.7) and (6.11), (6.10) can be written as 

[ .± D1s(C. <8> cos Bs + Q. <8> sin B8) ] 

2 

F(c/>1) = Fo - -------------
s 

LD218 
B=l 

[34, 3 

(6.11) 

(6.12) 

We can see from (6.12) that minimizing F is identical to maximizing E1(c/>1) in 
(6.11). 

We have performed this fit for two sets of , series from the six 2 degree squares, 
referred to as schemes I and II (Fig. 1). Scheme I contains 7 isotherms (9° to 15°C) 
of squares 1, 2 and 3 giving a total of 21 series. Scheme II consists of 7 isotherms 
(9° to 15°C) of squares 1, 2, 3 and 6 and 4 isotherms (12° to 15°C) of square 5 
and the 15°C isotherm of square 4, a total of 33 series. Scheme I was chosen as a 
sample that would best satisfy the assumption of horizontal homogeneity. Scheme 
II was a test which included all useable , series and although it may not satisfy 
this assumption as well as scheme I, it does have better statistical significance be-
cause of the larger number of series. 

We calculated £ 1 (cf,1) for both schemes according to (6.11) as well as Fmin/Fo, 
The results are shown in Fig. 8 for the period of 28 months. The maxima of £ 1 are 
indicated along with the corresponding minima of F min/ F 0 • At these points the 
wavelength X. and the direction of propagation y (y positive from north to west, 
Fig. 7) of the respective waves are given. The maxima of £ 1 along with the cor-
responding values of cf,1 and Fmin/Fo are given in Table 5. In addition, the appropri-
ate wave lengths, directions of propagation, phase speed c and group speed cu are 
presented. 

As the next step we have made a more general assumption about the directional 
distribution of E (k,w). Following Schott and Willebrand (1973) we let 

S 1 (cf,) = 81 cos2P1 ( cf, -; c/>i ) (6.13) 

This means that we allow the waves to propagate in a beam centered around cf,1, 
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Figure 8. E, (cf,,) and Fm1n/Fo at period T = 28 months for schemes I and II . 

379 

the width of which is described by the angle e1 defined by cos'p1 e1/ 4 = ½ (see 
Fig. 7). The factor 81 is determined by the normalization condition (5.8). For this 
propagation distribution we find from (5.6) 

Table 5. Results of the " ll -function" fit (with standard error). 

T(months) Scheme E,(m'month•s-') cf,, A(km) 

28 I 12.1 ± 2.9 -88.0 ° ± 0.8° 1390 ± 470 

28 II 9.8 ± 4.8 - 87.6° ± o.5° 1190 ± 220 

14 I 11.7±3.0 -88.0° ± 1.80 1500 ± 320 

14 II 9.4 ± 5.1 -89.1 ° ± 1.10 1670 ± 120 

9.3 I 6.6 ± 3.0 -96.7° ± 5.0° 880 ± 240 

9.3 II 6.5 ± 5.2 -99.4° ± 2.1 ° 750 ± 90 

7 I 4.5 ± 2.2 -68.1° ± 10.8° 490 ± 140 

7 II 4.4 ± 3.4 -66.6° ± 13.6° 480 ± 170 

5.6 I 4.3 ± 1.3 -21.0° ± 13.7° 280 ± 40 

5.6 II 3.5 ± 3.0 -15.6° ± 5.6° 260 ± 10 

T(months) Scheme 'Y c(cm s-')c,(cm s- 1) F m1n/F o 

28 I 24.2° ± 7.50 1.9 4.6 21.6% 

28 II 20.9 ° ± 3.4 0 1.6 4.5 33.8% 

14 I 62.0° ± 20.9 ° 4.1 4.4 27.3% 

14 II 76.4° ± 16.0° 4.6 4.4 38.2% 

9.3 I 123.7° ± 18.2° 3.7 3.7 60.0% 

9.3 II 132.0° ± 5.40 3.1 3.6 61.9% 

7 I 50.3° ± 8.8° 2.7 2.5 73.2% 

7 II 49.2° ± 9.7° 2.6 2.5 68.1% 

5.6 I 59.7° ± 1.2 0 1.9 1.1 49.0% 

5.6 II 60.3° ± 0.7° 1.8 1.1 70.6% 
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A(r,z,z',w) = E1<f>i<z)c/>1(z') exp { - i fw r sin a } x 

l J,(R, r) + 2 ;t ,• y. cos[v(a-<f,,-,r)J J,(R,r) ( 

where 'Yv is defined by the recursion formula 

[34, 3 

(6.14) 

P1-V 
'Yv+1='Yv Pi+v+l ;-yo=l (6.15) 

and J., is the Bessel Function of the first kind of order v. For this general case the 
expression to minimize is then 

8 

F(E1,<f>i,P1) = [(C_<•> - c<•>) 2 + (Q.<•> - Q<•>) 2
] 

3=1 

where c<•> and Q< 3 > can be found from (6.14). 
aF 

From iJEi = 0 we get 
8 L (C. (8) c, + Q. (8) q,) 

l=l 

(6.16) 

(6.17) 

C{B) Q{B) 

where c, = Ei and q, = Ei . Note that c, and q, are independent of E1. From 

(6.16) and (6.17) we find that minimizing F (E1 , cf>1, P1) is equivalent to maximiz-
ing the expression [ t (C. <•> c, + Q. (8) q,) J 2 

G(<f>1 P1) = ---------
8 

L <c.2 + q,2) 
8=1 

(6.18) 

This was done by tabulating G for appropriate values of <f,1 and P1• In doing so 
the upper limit of the sum in (6.14) was replaced by 

l8R1r + 4.8 for R 1r < .87 
N = 2 + entire 

2R1r + 10.0 for R1r ="' .87 
(See Murray, 1967). 

(6.19) 

The results of maximizing Gin (6.18) are given in Table 6, where instead of P1 
we present the beam width E1, An example of the dependence of Fmin/F0 on E1 at 
constant <f,1 is shown in Fig. 9. 
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Figure 9. Fm1n/ F o as function of €1 at period T = 28 months for schemes I and JI. 

Table 6. Result of the "finite beam width" fit (with standard error). 

T(months) Scheme E1(m3month•s-') </»i €1 Fm,.IFo 

28 I 12.1 ± 2.9 -88.0° ± o.8 ° oo 21.6% 

28 II 11.8 ± 4.5 -87.6° ± o.5° 1.5° ± 2.8° 28.2% 

14 I 11.7 ± 3.0 -88.0° ± 1.8° oo 27.3% 

14 II 10.7 ± 4.9 -89.1 ° ± 1.2° 2.5° ± 7.4° 35.9% 

9.3 I 7.9 ± 5.7 -96.7° ± 9.6° 16.8° ± 89.7° 57.9% 

9.3 II 6.5 ± 5.2 -99.4° ± 2.1 ° oo 61.9% 

7 I 9.8 ± 3.9 -68.1 ° ± 360° 360° ± 360° 46.9% 

7 II 9.6± 4.6 -66.6° ± 360° 360° ± 360° 58.8% 

5.6 I 7.7 ± 2.1 -74.0° ± 56.0° 210° ± 304° 27.0% 

5.6 II 7.9 ± 3.9 -75.0° ± 101° 230° ± 360° 58.4% 
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Before we discuss our results we will consider their reliability and accuracy. In 
calculating error bars for our numerical results we again follow Schott and Wille-
brand (1973) and Willebrand (personal communication) for the values of E,.. In 
Table 4 we have 

(6.20) 

8 

where SE,. is the variance of En, b;k is the inverse matrix of a.k = L D;s Dks and 
8=1 

L = K - M . We find K from (3.2) using the{. employed in each fit and a , = l. 
For the "8-function" fit (Table 5) we have 

(8E1)2 = bu F mini L and (8</>1)2 = b22 F ,,r,1,./ L . (6.21) 

In this case b,k is the inverse of the matrix a.,, the elements of which are 

(6.22) 

a22 = st[ ( a;;:> ) 2 + ( a;;:> ) 2 ] 

evaluated at the values of E1, cf,1, for which F = F min· Here L = K - 2 where K is 
again found from the {; used per fit . 

For the " finite beam width" case (Table 6) we have, in addition to (6.20) 

(8P1)2 = baa Fmin/L (6.23) 

The matrix a.k also has the additional elements 

~[ ac<s) ac<•> + aQ<s) aQ <•) ] 
L.,; aE1 aP1 aP1 
8=1 

(6.24) 

a = ~[(~ ) 2 (~) 2 ] 33 .L.,; aP1 + aP · 
B=l 1 

All elements of a;k are evaluated at E1, cf,1, Pi for F = F 111'in• 

For this case L = K-3. The error bars in Tables 4, 5 and 6 are at the 80% level. 



1976] Emery & Magaard: Baroclinic Rossby waves 383 

To further check the reliability of the cross-spectral fit, we replaced the t series 
for both schemes with random data uniformly distributed between -25 m and 
+25 m and repeated the "8-function" fit. The resulting E1 (cf,1) distributions, for 
28 and 14 months, did not show any distinct maxima. Also the corresponding 
Fmin/Fo values were about 96% (scheme I) and 98% (scheme II). 

7. Discussion and conclusions 

When analyzing time series of almost five years in length for periods between 5 
and 28 months the problem of statistical significance of the results becomes a 
crucial one. We therefore started our analysis with a nonstatistical method: fitting 
in the time domain. Proceeding to statistical methods (spectral analysis, cross-
spectral fits) we have seen that due to the dependence between series the large 
number of time series makes up for the shortness of the series only to a limited 
extent. The number of degrees of freedom of the composite spectrum (about 10 to 
11 versus 4 for the individual spectra) reveals that in terms of statistical inde-
pendence our t series contain about three independent data sets. This is consistent 
with our finding that the fluctuations are mainly due to long first-order waves. A 
meaningful cross-spectral fit of such waves to data requires the different t series to 
be sufficiently dependent. Moreover, they have to cover adequately the region un-
der consideration. These requirements determined the number of series we have 
taken from the XBT and hydrographic data. A smaller number would have violated 
the necessity of adequate coverage with respect to space; a larger number would 
not have given any additional insight. 

The high degree of dependence of our t series leads to reduced statistical signifi-
cance of our results. High statistical significance for a cross-spectral fit can only be 
achieved if the series are long compared to the periods in question, i.e. of the order 
of 100 years in our case. Since this condition was not met the standard errors of 
our numerical results are rather large. They are, however, small enough to permit 
meaningful conclusions. 

The dependence between series is strongest at weather station November since 
only one location is involved. Only the first mode can be determined with any ac-
curacy; the energies of the other modes cannot be shown to be significantly different 
from zero. The numbers for Fmin/F0 show that for periods of 22 and 11 months a 
large portion of the fluctuations can be described by the first mode. As can be seen 
in Schott (1974) a figure below 20% for Fmin/Fo is rare in mode fitting . 

The application of the model to the XBT data from squares 1 through 6 is, of 
course, a more exacting test since it involves to a much higher degree the dispersion 
relationship of the waves. Tables 5 and 6 show that at periods of 14 and 28 months 
the best fit waves have a well defined direction of propagation. The results for 
scheme I are in reasonable agreement with those for M = 1 in Table 4. The fit is 
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somewhat poorer for scheme II, however, they are not inconsistent with those for 
scheme I. At periods 9.3, 7, and 5.6 months the "8-function" fit is poor for both 
schemes I and II. Using the "finite beam width" fit the F,ninl Fo values are made 
smaller than those for the "8-function fit", in some cases (scheme I, 7 and 5.6 
months) substantially smaller. At 7 months the results of the "finite beam width" fit 
agree with the results from the weather station (Table 4). 

The standard error in Table 6 is largest for E1- This also follows the results of 
Schott (1974) for internal gravity waves. The e1 values for wave periods 7 and 5.6 
months indicate that the angular range of propagation directions opens up for these 
periods to isotropic propagation in the western half plane. The E1 values are not 
significant statistically. The reduction of F1nin/F0 value, however, through the "finite 
beam width" fit to the values of Table 4 which represent the integrated contribu-
tion from all propagation directions, supports the idea that the E1 values are more 
accurate than the error bars indicate. Based on the consistency of the results from 
different data sets (hydrographic data from the weather station, XBT data from 
squares 1 through 6) we believe that the same is true for all our results. In sum-
mary, of our results the most significant and important are those for the 14 and 28 
month periods. Waves at these periods propagate with "8-function" directional 
distribution in the north-west quadrant. They have wave lengths on the order of 
1200 to 1 700 km. Their group velocities are directed westward with magnitudes of 
about 4.5 cm s-1 • 
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