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The role of inertia-gravity and planetary waves in the response 
of a tropical ocean to the incidence of an equatorial 

Kelvin wave on a meridional boundary 

by D. L. T. Anderson1 and P. B. Rowlands1 

ABSTRACT 
The problem of an equatorial Kelvin wave of step-function form incident on an eastern 

meridional boundary is solved on an equatorial beta-plane. The nature of the transient plane-
tary and inertia-gravity waves is examined and the way in which they combine to produce a 
coastally trapped Kelvin wave evaluated. 

It is shown that the coastal wave in the vicinity of the head of the disturbance amplifies 
like yl where y is the distance from the equator, but that in the wake of this head, the upwell-
ing is reduced to 1/ V 2 that of the incoming equatorial Kelvin wave. Planetary waves lead to 
a westward broadening of the upwelling field , most rapid near the equator. Inertia-gravity 
waves, particularly that of the lowest horizontal mode, can lead to frontogentic effects but do 
not induce any mean upwelling. 

An approximate theory eliminating the inertia-gravity waves is then considered which, it is 
shown, represents well the coastal propagation as well as the westward propagation of planetary 
waves. 

1. Introduction 

Much work has recently been done on the theory of coastal upwelling in the 
oceans, a phenomenon of considerable relevance to the fishing industry, as fish tend 
to congregate in regions of upwelling to feed on the nutrients brought up from the 
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Street, Cambridge, CB3 9EW, England. 
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deep ocean. For the important meteorological time scales of a few days the dy-
namics of upwelling are generally associated with the propagation of internal 
Kelvin waves along a coast (e.g. Walin, 1972). Yoshida (1959) showed that similar 
gravity waves can occur in the tropics where they propagate along the equator and 
are confined to low latitudes; subsequently Ichiye (1959) demonstrated the possi-
bility of low frequency Rossby waves also trapped near the equator. Moore (1968), 
for a basin with north-south boundaries and harmonic time dependence, showed 
how eastward traveling equatorial Kelvin waves generate at the eastern boundary 
equatorial waves reflected back toward the west and coastal Kelvin waves propa-
gating away from the equator. His results are supported by numerical calculations 
by Mofjeld and Rattray (1971) of the normal modes of oscillation of a rectangular 
basin centered at the equator. The connection between equatorial waves and coastal 
Kelvin waves is qualitatively obvious in Mofjeld and Rattray's diagrams. 

The problem solved in this paper is that of a step-function equatorial Kelvin 
wave incident on an eastern coast. The form of the coastal Kelvin wave generated 
is calculated at the coast for (a) the exact problem and (b) a problem in which an 
approximation is made to eliminate high frequency waves. It is shown that it is 
possible to derive an approximation which gives results in good agreement with the 
exact solution. 

2. Formulation 

Following Lighthill (1969), we represent the effect of a wind stress applied at the 
ocean surface as a body force uniformly distributed through the upper mixed layer. 
Then, using the notation of Gill and Clarke (1974), we separate off the vertical 
dependence of the linearized equations in the usual way and nondimensionalize the 
variables with the length scale a,, = (c,./2{3)! (the "equatorial radius of deforma-
tion" of Gill and Clarke (op. cit.)) and the time scale an/en, where Cn is the speed 
of propagation of gravity waves in the nth vertical mode in the absence of rotation 
(Bretherton, 1965). The resulting equations are 

Ut - ½ y V + p/1/ = X 

Vt + ½ Y U + P11 = Y 

Pt+ u/1/ + v11 = 0 

where (ignoring the vertical structure functions) 
u is the zonal component of velocity, 
vis the meridional component of velocity, 
p is the pressure perturbation divided by density, 
(X,Y) is the body force which is postulated to cause the fluid motion, 
x, y, are zonal and meridional co-ordinates with y = 0 at the equator, 
t is the time, 

(2.1) 

(2.2) 

(2.3) 
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and a suffix denotes differentiation. 
The y-dependence can be separated out of equations (2.1)-(2.3) by expanding 

the dependent variables and the forcing terms as series of parabolic cylinder func-
tions. Thus, 

co 

F = Fm(x,t) Dm (y) (2.4) 
m=O 

where Fis any dependent variable and Dm(y) is the parabolic cylinder function of 
order m (Abramowitz and Stegun, 1965, Ch. 19). Following Gill (1975) it is now 
convenient to define two new dependent variables: 

q=p+u 
and 

r=p-u 

(2.5) 

(2.6) 

Expanding q and r as in (2.4) and using the orthogonality of the parabolic cylinder 
functions and the recurrence relations 

d~m + ½ yDm = mDm-1 (2.7) 

and 

dtm-½YDm=-Dm+ 1 (2.8) 

we obtain the following set of equations after eliminating vm: 

qot + qo., = xo (2.9) 

2q1tt + 2q\,t + q1 = 2X1t + 2yo (2.10) 

2qm+2ttt - 2qm+23J3Jt + (2m+3) qm+2t - qm+2'1) = 2xm+2tt - 2xm+2.,1 

+ (m+l) xm+2 - xm + 2ym+11 - 2ym+1//J (2.11) 

2rmttt - 2rm.,/IJ1 + (2m+3)rm1 - rm/lJ = 2Xmtt - 2xm.,.1 + (m+l)(m+2)Xm+2 

- (m+2)Xm - 2(m+l)Ym+\- 2(m+l)Y"'+1
11J (2.12) 

(2.13) 

all form> 0. 
Instead of (2.13) we will often use the equivalent equation 

(2.14) 

The boundary condition at the eastern wall (x = 0) is u = 0 which can be partially 

expressed as 

(2.15) 
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Figure 1. Dispersion curves for Yanai and Kelvin waves in the exact case. 

It is apparent from (2.13) and (2.15) that the modes with m even and those with m 
odd are not coupled and thus that the original problem divides into two separate 
problems. We will consider primarily the case of even m, which will (§3) be seen 
to be the more important case. The problem with odd m is analogous. 

3. Unforced wave solutions 

In this section we briefly recall the dispersion relations for free equatorial waves 
given by Blandford (1966), as interpretation of many of the later results requires 
some knowledge of the dispersion properties of free equatorial waves. 

If the substitutions 

are made in the unforced forms of equations (2.9)-(2.12) we obtain for q0 : 

w-k= 0. 

(3.1) 

(3.2) 

This is the equatorial Kelvin wave and (3.2) shows that it is nondispersive and 
travels with group and phase velocities equal to unity in our nondimensional units, 
both eastward. For q1 we obtain 

(3.3) 

This is sometimes called the Yanai wave (Yanai and Maruyama, 1966), or alter-
natively mixed Rossby-gravity wave because for low frequencies it has the proper-
ties of a Rossby wave and for high frequencies it has the properties of a gravity 
wave. This wave also has eastward group velocity for all frequencies. The dispersion 
relations (3.2) and (3.3) are plotted in Fig. 1, where it can be seen that for all fre-
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Figure 2. (left) Dispersion curves for r0 and r2 (or q2 and q') in the exact case. The curves 
labelled 'O' are for r0 and those labelled '2' for r. 

Figure 3. (right) Dispersion curves in the approximate case for Yanai and Kelvin waves, and 
for r0 and r2 (or q2 and q'). The curves labelled 'O' are for , 0 and those labelled '2' are for 
r2. Comparison should be made with Fig. 2. For low frequencies the dispersion curves are 
similar. For high frequencies inertia-gravity waves are excluded in the approximate case and 
replaced by trapped waves. 

quencies the group velocity of the Yanai wave is less than that of the Kelvin wave. 
For the low frequencies which are of interest here the equatorial Kelvin wave gen-
erated by some remote disturbance will reach the eastern boundary long before the 
Yanai wave. This is why, as noted in §2, we concentrate mainly on the case of 
even min this paper. 

Equations (2.11) for qm+2 and (2.12) for rm have the dispersion relation 

2w3 - 2wk2 - (2m+3) w - k = 0. (3.4) 

Solving this for k we find 
k = - 1/ 4w ± [1/16w2 - (m+3/ 2) + w2]!. (3.5) 

For sufficiently large w the square root is real and we have inertia-gravity waves. 
Similarly, for sufficiently small w the square root is again real and we have free 
planetary waves. However, for intermediate frequencies the square root is imaginary 
and the disturbance decays exponentially in either the positive or negative zonal 
direction. Thus disturbances with such frequencies can exist only in the neighbor-
hood of a meridional coast, and as shown later a suitable sum of such disturbances 
constitutes the coastal Kelvin wave. The dispersion curves for equation (3.4) are 
drawn in Fig. 2 for the modes m = 0, 2; the modem = 1 lies between these two. 
For increasing m it is seen that the range of frequencies where k is complex in-
creases, the imaginary part of k, at fixed w, increases, and the group velocity of 
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long planetary waves decreases. The second property is connected with the fact that 
the zonal length-scale of a coastal Kelvin wave decreases with increasing latitude 
(as m increases Dm(y) is significantly nonzero for larger y), and the third property 
is similarly connected with the fact that planetary waves are important on short 
time-scales (~ 1 month for the first baroclinic mode (Lighthill, 1969)) in low lati-
tudes but in middle latitudes are signicant only over longer periods (~ decades 
(Veronis and Stommel, 1956)). 

For low frequencies, equations (2.10-12) can be approximated by dropping the 
second time derivative in (2.10) and third time derivative in (2.11) and (2.12). This 
later approximation is equivalent to filtering out the inertia-gravity waves. The dis-
persion relations corresponding to (3.3), (3.4) are now 

2wk + 1 =O 

2wk2 + (2m+3) w + k = 0 

while that for the Kelvin wave (3.2) remains unchanged. 

(3.6) 

(3.7) 

These dispersion relations are plotted in Fig. 3. Comparison of this figure with 
Figs. 1 and 2 shows that the equatorial Kelvin wave remains unchanged, the 
planetary waves are almost unchanged as also are the waves which are confined 
near a coast, for frequencies below 0.5 in our units. However, the inertia-gravity 
waves have been replaced by trapped waves; i.e. k is now complex at inertia-gravity 
wave frequencies. The Yanai wave is virtually unchanged at low frequencies, where 
it behaves like a planetary wave, but it is considerably changed at high frequencies 
where it previously had the properties of an inertia-gravity wave. From this free 
mode analysis one would conclude that the low frequency approximation as applied 
here is a good approximation for periods long compared not with 1/f but with 41r 
(i.e. the period at which w = 0.5). In dimensional units for the first baroclinic mode 
(c1 2ms-1) w = 0.5 corresponds to a period of about 12 days. For higher modes 
c,. is lower and this period is longer; for the baratropic mode this period is about 
1 day. 

4. An equatorial Kelvin wave incident on an eastern coast (exact solution) 

We now consider a particular solution to equations (2.9)-(2.13), namely the 
response of the model ocean to the arrival of a step-function equatorial Kelvin wave 
at the east coast. As there is no force acting on the fluid in this case, equations 
(2.9), (2.11)-(2.14) have their right-hand sides replaced by zero. As equatorial 
Kelvin waves have eastward group velocity the only solution of (2.9) relevant to 
the problem of an eastern coast is the incident wave. This will be taken to have the 
form q = H(t - x) where H(0) = 1 for 0 > 0 and 0 for 0 < 0. The response to 
any more general form of incident wave can be calculated from the response to this 
wave by convolution. 
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5. The solution for r 0 

The first step in the solution to this problem is to evaluate r0 using (2.12), (2.15) 
and the assumed form of q0

• Taking Laplace transforms of these equations and 
using the initial conditions 

ro = 0 fort < 0 

we obtain 
- S8 r0 + S r0a:., - 3/ 2 S r0 + ½ r0

., = 0 
and 

,
0 =1/ satx=0, 

where 

The solution of (5.1) and (5.2) is 

where 

,
0 = -1

- exp Ck+ x) 
s 

k+ = - 1/4s + C~sz + 3/ 2 + s2
) 

1 

(x < 0) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

and the branch of k+ is chosen so that k+ is positive for s real and positive. From 
the inversion theorem for Laplace transforms we then have 

r0 = (2m)-1 Jrs-1 exp (k+x+st)ds (5.7) 

where r is the Bromwich contour. The singularities of the integrand are a simple 
pole at the origin and branch points at s = ± ia and ± i/3 where a = .2071 and 
/3 = 1.2071 are the positive roots of 

(5.8) 

Branch cuts are taken from ia to i/3 and from - ia to - i/3 along the imaginary 
axis. For t + x> 0, r may be completed by a large semicircle in the negative half-
space and by Jordan's lemma the integral around this semicircle will be negligible. 
The resulting closed contour may then be contracted around the singularities and 
the integral (5.7) evaluated as 

r0 = { 1 + ! s:R-1sin(x/ 4R + Rt)sinh[x(4R)-1 j(l-24R2 + l6R•)1/]dR} H (t+x). 

(5.9) 

Here the first term is the contribution from the pole at the origin while the integral 
is the contribution from the contours around the branch cuts. This method of de-
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Figure 4. I' in the ex~ct case as a function of x and t. The number attached to each curve is 
the time at which that solution occurs. 

forming the contour of integration will be used to derive all the solutions given in 
this section and in §6. The solution (5.9) is drawn in Fig. 4 for various values of t; 
it can be seen to take the form of an initial disturbance traveling with unit velocity, 
in our nondimensional units, with a larger scale flow behind. It is tempting to in-
terpret the first term in (5.9) as the planetary wave response as it is the contribu-
tion from s = 0, and the integral as a disturbance confined near the coast, as the 
range of integration is just the range of frequencies for which such disturbances 
exist in r0 (see Fig. 2). That this is not the correct interpretation is seen from the 
fact that the initial disturbance travels with unit speed, a speed which can be at-
tained only by inertia-gravity waves, and the initial discontinuity at x + t = 0 is 
entirely due to the first term in (5.9). That is, this first term certainly contains in-
formation about inertia-gravity waves. Similarly the decay of the initial disturbance 
just behind the discontinuity at x + t = 0 is due to the integral, which thus also con-
tributes to the inertia-gravity waves. However, it can be seen that the integral be-
comes very small fort>> -x due to the rapid oscillation of the factor sin(x/4R 
+Rt) and thus the first term in (5.9) gives the asymptotic behavior of r for t > > 
-x: r0 ~ 1 as t oo at fixed x. 

An interesting feature of Fig. 4 is the form of the discontinuity at the head of the 
solution. It can be seen that the inertia-gravity waves give rise to a frontogenetic 
effect, i.e. they increase the gradients just behind the head of the disturbance. This 
can be explained as follows. For larges, (5.7) becomes 

r0 ~ -
2
1 

. f s- 1exp[x/ 2s + s(x+t)]ds. 
1Tl r (5.10) 
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Usually, letting s become large gives the nature of the solution for t small. How-
ever, (5.10) shows that in this cases large corresponds to (x + t) small, i.e. in the 
vicinity of the head. Evaluating (5.10) gives 

r0 ~ J0[(-2x(x+t)) !] H(x+t). (5.11) 

An interesting comparison can be made between (5.11) and the thinning western 
boundary layer given by Lighthill (1969), which has the form l-J0(y2xt). If (5.11) 
is referred to a frame moving with speed -1 we obtain 

l 0 [(-2x(x+t))i] = l 0[(2t(t-g))!] where g = x + t 

~ l o[(2tt)~] for g < < t. (5.12) 

Thus inertia-gravity waves produce strong gradients in the westward traveling dis-
turbance in much the same way as short planetary waves traveling eastward from a 
stationary western boundary do. 

6. The general solution for qm (m = 2, 4, 6, .... ) 

From the transforms of (2.11), (2.14) and (2.15) we find that 

(6.1) 

where 
k" + = - (4s)-1 + (4s)-1[l + 16 (m - ½) s2 + 16s4P (6.2) 

and the square root is defined to be positive for s real and positive. At x = 0 we 
have 

[ ] 

-1 
m/2 

qm =Am= (2s2 + 2skm + + m)-1 A"' - 2 = s n'::i (2s2 + 2sk2
n + + 2n) 

(6.3) 

The integrand (6.1) has a series of branch points along the imaginary axis and 
a simple pole at the origin. The branch points of km+ will be defined as ± i am, 

± i 13m where am and {3"' are the positive roots of 16g4 
- 16(m-½) g2 + 1 = 0, 

and 13m > am. If the branch cuts are taken from iam to if3m and from -iam to -if3m 
the integral may be written, using the same general method as in § 5, as 

qm -
2 f 132 

Rl sin (Rt + 4xR) cos cf:, sinh <I> + Rl cos (Rt + 4xR ) 
- 7T(m!)I a 2 L 

sin cf:, cosh <I>} dR 
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m/2 -1 

+ 1rc;,)1 L c2,,p 
r=l 

2r {sin(Rt + x/ 4R) cos c/>r sinh <I> + cos (Rt + x/ 4R) sin c/>r cosh <I>} 

f a 2 

a2r+ 2 R 1T [-2R2 + 2j - 1/ 2 + 2(R4-(2j-1/ 2)R2 + 1/ 16)!] 
j =l 

m / 2-1 

+ 1rc;,p L c2,!)½ 
f"=l 

f 132r+ 2 dR 

{

sin(Rt + x/ 4R) cos cf>r sinh <I> + cos(Rt + x/ 4R) sin c/>2 r cosh <I>} 

l' R ;_ [-2R2 + 2j - 1/ 2 - 2 (R• - (2j - 1/ 2)R2 + 1/ 16)½] 

and 

J=l 

+ [ ~£ (2/)] -l (6.4) 

m /2 

where cf>= L 0 (m - 2j + 3/2) (6.5) 
j=l 

m /2-r 

c/>r = L 0 (m-2j + 3/ 2) (6.6) 
J=l 

0(m - r) = tan-1 {[-1/16 + (m - r)R2 -R•p (2R2 - m + r)- 1 } (6.7) 

<I>= ; [- 1/ 16 + (m - 1/ 2)R2 
- R•p. (6.8) 

7. The coastal Kelvin wave at the east 

We now reconstruct the series for q as in (2.4). Owing to the complicated nature 
of (6.4) attention is confined to the coast, x = 0, although similar considerations 
would enable q to be reconstructed everywhere. We note that, from (2.5), q = p 

at x = 0 and so at the coast the reconstructed q is just the pressure anomaly. The 
00 

sum q = Do(y) + ""' qmDm(y) at x = 0 is reconstructed in Fig. 5 for various 
m=2,4, . .. 

values of t. (The term Do(y) is due to the incident equatorial Kelvin wave.) The 
initial peak is seen to amplify as it travels away from the equator; from measure-
ments of this figure it is apparent that it amplifies as y!. On a mid-latitude /3-plane 
an analysis similar to that of Moore (1968) (Ch. IV) shows that for high frequen-
cies the coastal Kelvin wave is confined to within a distance o:: 1/y, independent of 
frequency, of the coast. The initial behavior of the solution is given by the behavior 
of the Laplace transform for large s, which corresponds to high frequencies. Thus 
the initial disturbance of our coastal Kelvin wave is confined within a distance 
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q 

Figure 5. The coastal Kelvin wave, q at x = 0, as a function of y and t in the exact case. The 
number attached to each curve is the time at which that solution occurs. 

a: 1/ y, independent of t, of the coast. Although, in general, the energy of the 
coastal wave is not rigorously conserved (nor even rigorously defined) for short 
times, the loss to planetary waves and inertia-gravity waves beyond the radius of 
deformation of the coast may be neglected. Conservation of energy then suggests 
that this initial disturbance must amplify as y ! as it propagates away from the 
equator, thus explaining the observed behavior. 

The integrals in (6.4) decay fairly rapidly with time, and qm soon becomes 

[ 
m/2 ] qm = _'TT (2j) -1 

J = l 
(7.1) 

At fixed y we then have 

q ~ Do(Y) + m=

2

t ... [ ~£ (2j)] -l Dm(Y), (7.2) 

but this series is just the expansion of 2-1 in parabolic cylinder functions. Thus we 
have 

q ~ 2 - A as t oo. (7.3) 

Hence at any latitude the pressure anomaly eventually becomes equal to the magni-
tude of the incident equatorial Kelvin wave divided by 2! (for an incident wave of 
step-function form). From Fig. 4 it can be seen that the initial disturbance in the 
coastal Kelvin wave travels with unit speed in our nondimensional units, as it is 
expected to do since we have used the speed (c,.) of coastal Kelvin waves in our 
nondimensionalization. 
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Figure 6. (left) r0 in the approximate case as a function x and t. The number attached to each 
curve is the time at which that solution occurs. Evaluation was by means of series (8) 
summed to 50 terms. 

Figure 7. (right) Comparison of r0 at t = 20 in the exact and approximate cases. For x > -7 
the curve are effectively identical. 

8. An approximate solution 

Using the filtered versions of (2.9) and (2.11-2.14), the solution for r0 is 

,o = __ ---- ds 1 f eKl1J+Bt 

21ri r S 
(8.1) 

where 

K=-1s +(1~s2 + 3i 2 Y 
Evaluation of (8.1) is possible by direct integration as in § 5 with branch cuts from 
s = ± i/2y6 to ± i oo but the integrals converge less rapidly in this case than in 
§ 5 and so an alternative method is adopted here. If we define 

z = 2(6)J s - (1 + 24s2)l (8.2) 

then (8.1) becomes 

,o=_l __ fr (l+z2) exp{(z2-1) t+(3/ 2)! x (l+z)1Jdz 
2m 1 z(l-z2) 4(6Pz 1-z 

(8.3) 

where r, is a circle surrounding the origin, and the integration proceeds anticlock-
1 

wise. The integrand may be expanded as a Laurent series about z = O and r0 is then 
just the coefficient of z-1 in this expansion. The first few terms in expansion for 
r0 are 

r 0 = exp[(3/2)l x] {Jo(r) - 6½ x l1(r) + (2 + 61 x + 3x2) / 2 (r) - ... } (8.4) 

where r = t/2(6)1 and use has been made of the generating function for Bessel 
functions 
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Figure 8. The coastal Kelvin wave, q at x = 0, as a function of y and t in the approximate 
case with the exact recurrence relation 2.14. The number attached to each curve is the time 
at which that solution occurs. 

exp { 4(~)& ( z -+)} = kj;oo (-z)k J -k ( 2(~)~ ) (8.5) 

Fig. 6 is a plot of r0 obtained from (8.4) when fifty terms are included in the sum-
mation. 

Comparison with Fig. 4 shows that behind the initial inertia-gravity wave dis-
turbance, in the region dominated by planetary waves, the approximate solution 
agrees closely with that for the exact case. Of course the approximation cannot 
hope to give good results in the region of the bead of the disturbance as we have 
explicitly removed inertia-gravity waves in this solution by our filtering process. 
For a better comparison the exact and approximate curves for t = 20 are super-
imposed in Fig. 7, where they are seen to be in remarkably good agreement in the 
region dominated by planetary waves. 

9. The eastern coastal Kelvin wave in the approximate case 

The method of § 8 can be extended to general m provided a suitable boundary 
condition is available. In the Appendix it is shown that the best boundary condi-
tion is (2.14) with r"' set equal to qm. Equation (2.14) can be simplified by drop-
ping the second time derivative. This leads to some loss of amplitude in the vicinity 
of the head of the Kelvin wave but is otherwise acceptable. 

The solution is plotted in Fig. 8. The agreement with Fig. 5 is good except that 
the amplitude of the bead is slightly less, though the speed of propagation is not 
affected. 

It seems plausible that the reason for this approximation giving a coastal Kelvin 
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Figure 9. Contours of the p field at t = 2, 4, 8, 20 respectively. The contour interval is .1. 
The .05 contour is farthest south. The distortion of the p field by the coastal wave is ap-
parent as is the southerly propagation of the disturbance. Northern hemisphere contours are 
not drawn since the solution is symmetric with respect to the equator. The x-scale is from 
0 to -10, and the y-scale from 0 to -8. The oscillations at the coast result from having a 
finite number of parabolic cylinder functions (28) in the expansion. 

wave very similar to that in the exact solution is that the meridional dependence 
of the equatorial Kelvin waves is smooth and so the coastal wave has no sudden 
discontinuity in the vicinity of its head. This implies that high frequencies are not 
present in this coastal Kelvin wave and so the approximation, being good for low 
frequencies, gives good agreement with the exact solution. This should be con-
trasted with the solution for r0 as a function of x and t at y = 0, which in the exact 
solution has an initial discontinuity which does not appear at all in the approximate 
solution. 

10. The solution away from the boundary 

Using the approximation of sections 8 and 9, it is possible to construct an efficient 
numerical model of the equations where the east-west variation is expressed in terms 
of Chebyshev polynomials (Anderson, 1974). Contour plots of p, u, v from this 
model of times, 2, 4, 8, 20 are shown in Figs. 9, 10, 11 respectively. The incoming 
equatorial Kelvin wave is included though the mechanism of its generation is not. 
(For example, the equatorial Kelvin wave could be set up at the western boundary 



1976] Anderson & Rowlands: Equatorial Kelvin wave 309 

- 10 EQUATOR -10 EQUATOR 

• 45 ·•5 
.35 ·35 
•2 5 •25 
•15 -15 

•05 •05 

(a) (b) 

-6 

- 10 -10 

•25 
•I 5 

·05 

•05 
(c) (d) 

Figure 10. As for Fig. 9, but for u. The reflected waves act to cancel out the incoming Kelvin 
wave and by t = 20, weak westward velocities have been established along the equator. 

by planetary waves of exactly the same form as those activated by the Kelvin wave 
at the eastern boundary since the equations are invariant to reversal of x and t) . 

Fig. 9 shows how the pressure field is distorted by the coastal Kelvin wave. (Ini-
tially the isobars are parallel to the equator). The movement of the head of the 
Kelvin wave along the boundary away from the equator is clearly illustrated in 
Figs. 9a, 9b, 9c. By t = 20 the head of the Kelvin wave is well out of the region 
of interest. Initially the coastal wave produces strong gradients in the vicinity of the 
coast but planetary waves propagate the front westward leaving a fairly fl. at field 
behind (asymptotically of amplitude 2-i of the initial field) . Fig. 10 illustrates the 
same features, and shows how the reflected waves cancel out the velocity field set 
up by the initial equatorial Kelvin wave. By t = 20, in fact, a weak westward fl.ow 
has been set up near the equator. The meridional velocity in Fig. 11 can be thought 
of as being due entirely to coastal influences, since for the equatorial Kelvin wave 
v is identically zero. For low latitudes there is initially a strong coastal current set 
up but as the planetary waves travel westward, the velocity near the coast declines, 
and by t = 20, when the pressure field is fairly flat, the velocity near the coast is 
very small. As the frontal zone travels westward the associated velocity decreases. 
This is because the velocity field is geostrophic to the pressure field and the frontal 
zone weakens as it travels westward. 
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Figure 11. As for Fig. 9, but for v. The incoming equatorial wave has v identically zero. 

11. Summary 

We have shown how a step-function equatorial Kelvin wave incident on an 
eastern meridional oceanic coast generates reflected planetary waves and coastal 
Kelvin waves. The low frequency approximation of § 8 gives a coastal Kelvin wave 
which is in good agreement with that in the exact case. The reflected planetary 
waves are approximated well in the region behind the initial inertia-gravity wave 
disturbance. These results give some idea of the confidence which might be placed 
in approximate solutions to other equatorial problems with meridional boundaries, 
for example the flow generated by a suddenly imposed wind-stress. In general the 
coastal Kelvin wave would be expected to be well approximated in most problems. 
Also, the reflected planetary waves would be well approximated but the initial 
inertia-gravity wave disturbance in the reflected wave would not. The techniques 
used to evaluate both the exact and approximate solutions are immediately ap-
plicable to these other problems. 

A cknowledgments. The authors wish to thank Drs. A. E. Gill and M. E. McIntyre for help-
ful discussions during the preparation of this paper. This work was supported by a N.E.R.C. 
fellowship (DLTA) and a N.E.R.C. studentship (PBR). 



1976] Anderson & Rowlands: Equatorial Kelvin wave 311 

APPEND IX 

For the exact eqs. (2.9-2.12) either (2.13), or (2.14) or the alternative 

2rm., - 2r"'., + (m+l) rm - (m+l)(m+2) q"'" = 0 (Al) 

can be used as boundary conditions, together with (2.15). They are in all respects equivalent. 
However, when the approximate versions of (2.9-2.12) are solved, (2.13), (2.14) and (Al) are 
not equivalent. The long-term behavior of the solution will be obtained correctly by the use 
of any of the equations, but for short times (2.14) gives results which are much closer to the 
exact solution than do the others. 

The ratio of terms in the exact case is, from (6.3) 

A m+2 

= {2s2 - ½[1 - (1 + 16 (m+312)s2 + 16s')~] + m + 2}- 1 (A2) 

whereas, using (2.14) in the approximate case it is 

Am•2 
A"' = {2s2 - ! [1 - (I+ 16 (m+3/2) s')! ] + m + 2}- 1 (A3) 

For (2.13) in the approximate case it is 

Am+:a 
A"' = [1 - s2/ (m+ l)] {m + 3/ 2 + s2 + ½ [1 + 16 (m + 3/2) s"]~}- 1 (A4) 

and for (Al) it is 

~"':• = [ 1 + (m+l~;m+2) ] 12s2 + m + 3/2 + ½ [l + 16 (m + 3/2) s"]~ f _, 
(A5) 

In the limit s 0, (A3-A5) all converge to the correct results (A2), but in the limit s 
oo, this is not true. 

(A2) l/4s2 

(A3) l/2s' 

(A4) - 1/(m+l) 

(AS) 
2 

(m+l)(m+2) 

Thus it can be seen that (A4), and (A5) will do very badly since they will lead to all com-
ponents being activated immediately. (A3) will give the correct temporal development though 
not of quite the correct magnitude. In section (9), it is thus eq. (2.14) which is used as 
boundary condition, and the approximate solution using this eq. is given in Fig. 8 for contrast 
with the exact solution of Fig. 5. 
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