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Finite amplitude edge waves 

by R. T. Guza1 and A. J. Bowen2 

ABSTRACT 

Large amplitude edge waves are shown to be modified by nonlinear effects in a way very 
similar to surface waves in deep water (Stokes, 1847); trapped harmonics tend to sharpen the 
wave crests and the natural frequency increases with wave amplitude, progressive edge waves 
propagating faster at large amplitude. A standing edge wave exhibits additional properties due 
to interaction between its two constituent progressive waves. Of particular interest, and the 
subject of laboratory experiments, is the observation that a standing edge wave, frequency u, 

radiates energy at 2u to the far field. This is a rather special example of the whole class of 
resonant interactions between edge waves trapped against a coastline and normal, surface 
waves propagating from, or toward, deep water. 

The resonant forcing of edge wave modes has been parameterized by an initial growth rate 
(Guza and Davis, 1974) which provides an estimate of the modes likely to occur but gives no 
direct indication of the maximum size the edge waves will attain, a question of obvious practi-
cal importance. Edge wave amplitudes are found to be limited by radiation, energy lost to 
other waves by further nonlinear interaction; by finite amplitude demodulation, the forcing fre-
quency ceasing to lie within the resonant bandwidth as the natural frequency increases with 
wave amplitude; and by viscosity. For the subharmonic resonance involving the lowest mode 
edge wave, radiation and demodulation are shown to be of comparable importance in limiting 
edge wave growth; viscosity is relatively unimportant. In this case, the edge wave amplitude at 
the shoreline is theoretically three times that of the incoming wave (which is strongly reflected 
in this case), in good agreement with previous laboratory observations. 

1. Introduction 

Several mechanisms have recently been suggested for generating waves on 
beaches, all involving the transfer of energy from the incoming waves by non-
linear interactions. On a shallow, sloping beach, nonlinear interaction occurs at 
second order in the form of triads, two waves interacting to transfer energy to a 
third. Gallagher (1971) showed that the interaction between two incoming waves 
may result in the resonant excitation of edge waves at the beat frequency. Guza 
and Bowen (1975) demonstrated that a monochromatic wave train, incident on a 
plane beach and strongly reflected, is unstable to edge wave perturbation. Here, 
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the most strongly excited resonance consists of two, mode zero, edge waves 
(Stokes' edge waves) with different frequencies, travelling in opposite directions 
along the beach. For the special case of incoming waves normally incident on the 
beach, the preferred resonance is a standing Stokes' edge wave at the subharmonic, 
a/2, of the incoming wave frequency, a (Guza and Davis, 1974). 

To consider the role that edge waves may play in beach dynamics, particularly 
the formation of beach features that are rhythmic in the longshore direction, it is 
necessary to understand not only bow edge waves are generated, but how large 
an amplitude they may reach. Indeed, an insight into the physical processes that 
limit edge wave growth is desirable not only for estimating the importance of edge 
waves in the field, but also in assessing the relevance of laboratory experiments to 
the real world; the relative importance of the various processes that limit edge 
wave growth might change with the scaling necessary for laboratory studies. 

The existing laboratory results show that subharmonic Stokes' edge waves with 
amplitudes (at the shoreline) substantially larger than the amplitude of the incom-
ing wave may occur when the incoming wave is strongly reflected by the beach 
(Galvin, 1967; Bowen and Inman, 1971; Guza and Inman, 1975). When the inci-
dent wave breaks cleanly this resonance seems to disappear (Galvin, 1965). 

Three possible processes which may limit edge wave growth are: 
(i) further nonlinear energy exchange: studies of the excitation of edge waves 

have neglected nonlinear, edge wave-edge wave interactions as these are ini-
tially negligible compared to interactions involving the primary wave. How-
ever, after the edge waves have grown to a finite amplitude, significant energy 
exchange can occur via edge wave-edge wave interactions, resulting in a loss 
of edge wave energy to other edge wave modes (Kenyon, 1970) or to the 
far field. 

(ii) detuning: the transfer of energy from incident to edge waves occurs most 
rapidly when the edge frequency and longshore wave number satisfy the 
dispersion relation for free edge waves. However, if an edge wave satisfies the 
dispersion relation initially, when its amplitude is small, it will no longer do 
so at finite amplitude as the natural frequency at fixed wave-number is ampli-
tude dependent. Continued growth of the edge wave may therefore be in-
hibited by finite amplitude detuning. In addition, detuning via the boundary 
conditions is important in a laboratory basin of fixed longshore dimensions 
where the possible wave-numbers are determined by side wall boundary con-
ditions; initial edge wave growth can occur only in certain frequency bands. 

(iii) frictional dissipation: in a study of the generation of a single edge wave by 
the interaction of two incident waves, Gallagher (1971) used a linear term 
(proportional to the surface displacement of the edge wave) to represent the 
energy dissipation due to bottom friction and scattering off bottom irregular-
ities. For constant forcing by the incident waves, edge growth is then even-
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tually limited by dissipation. However, for resonances involving only a single 
incident wave, a linear dissipative term has the effect of determining only a 
lower limit on the size of the primary wave which can initiate resonance 
(Guza and Davis, 1974). Frictional effects apparently do not limit subhar-
monic edge wave growth with surging incident waves when the assumption 
of a laminar boundary bottom layer (equivalent to a linear bottom friction) 
is valid. 

To consider the details of the processes which may limit the edge wave ampli-
tude it is useful to derive first some of the properties of edge waves of finite am-
plitude. In section 2, therefore, the theory for progressive edge waves is extended 
to include the small, nonlinear corrections due to the finite amplitude; these cor-
rections are generally similar to those known for surface gravity waves in a fluid 
of constant depth (Stokes, 184 7). However, standing edge waves are shown to 
possess properties which arise due to the nonlinear interaction between the two 
progressive waves (of equal amplitude, frequency and wave-number but moving 
in opposite directions) into which the standing wave can be decomposed. This is 
merely a special case of the general class of possible interactions between edge 
waves. 

One conclusion, that a standing edge wave should radiate energy seawards in the 
form of an outgoing progressive wave of twice the frequency of the edge wave, 
was investigated in the laboratory experiments discussed in section 3. 

In section 4, the factors that determine the equilibrium amplitude and phase of 
an actively forced, standing edge wave are considered. The theory is found to be 
in general agreement with the laboratory observations in suggesting that the edge 
waves are generally larger than the incoming waves at the shoreline. The effects 
of finite amplitude detuning and energy radiation due to nonlinear interactions 
are shown to be formally of the same order and both detuning and radiation seem 
to be important in determining the equilibrium amplitudes reached by the edge 
waves. The theoretical results are generally in very good agreement with the equi-
librium amplitudes of edge waves observed in laboratory experiments (Guza and 

Inman, 1975). 

2. Edge waves of finite amplitude 

The equations governing the edge wave motion are the standard, nonlinear, 
shallow water equations (Stoker, 1957; Mei and Le Mehaute, 1966) on a plane 
beach of slope, tan,8. The velocity potential cf,, sea surface elevation r,, and wave 
frequency u are expanded in terms of the (small) parameter e, where 

e = au2/ g tan2,8 . (1) 

a is the wave amplitude and g the gravitational acceleration. Then 
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<p = <po + E<p1 + E2
<p 2 + • • • (a) 

TJ = 'f/0 + E'f/1 + E2
TJ2 + • • • (b) (2) 

U = Uo + EU1 + E2
U 2 + , , , (c) 

In addition, the possibility of energy transfer at time scales which are long in 
comparison with a wave period is anticipated by allowing the wave amplitude to 
vary slowly in time, 

da dt,....., O(E) or 0(E2
) • 

The lowest order, linear solution for progressive edge waves of mode n = 0 
(Appendix, Eq. A4) is 

age-k"' 
<po = --- COS (ky - ut) 

u 
(3) 

u 2 = uo2 = gk tan,8 

where x and y are the offshore and longshore coordinates and k is the longshore 
wave-number. Then the solutions at second order are readily shown (A 7) to be, 

necessarily, from symmetry arguments, and 

cf,1 = 0. 

Curiously, for the edge wave of mode n = 0 only, the velocity potential and sea 
surface elevation have no harmonic corrections of frequency 2u. However, there 
is a second order term in the sea surface elevation, which represents the set-down 
of mean sea level close to the shore, of magnitude 

ETJ 1 = - _!!!_ e- 21'3! 
2 

(4) 

Extending the analysis to third order (All, Al 2) shows that the wave propa-
gates with constant shape 

da __ ,....., O(E3) 

dt 
and 

0-2 = .25uo . 

The term cf,2 contributes a small alteration in the offshore (x) dependence of the 
basic wave form given by (3). The variation in the wave frequency (at fixed wave-
number) is given from (2) and (5) as 

a2 = gk(l + E2 
/ 2) tan,8 . (6) 
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Then, for waves of a given frequency, as the wave height increases the wave num-
ber decreases and the phase velocity increases. A similar result for progressive, 
surface waves in constant depth is well known (Stokes, 1847). 

For a standing Stokes' edge wave (A4), additional terms occur in the second 
order equations which can be regarded as the cross interactions of the two pro-
gressive waves forming the standing wave. The second order solutions for the 
n = 0 (Stokes) mode of a standing wave are, from (A9), 

c/>1 = ag [p( x) COS2CTt + q(x) sin2CTt] 
(T 

2 
_ 4(2CT)2X 

X - g tan,e 

where p(x), q(x), complex functions of the offshore distance, are given by (A8). 
However, at offshore distance greater than a few wavelengths. 

lim age1(00) . 
-+oo c/>1 = - 8 . 1r(lo(x)cos2CTt + Y o(x)stn2CTt) 

X CT 
(7) 

where e1 (oo) = .541 and 10 and Y 0 are zero order Bessel functions. cf, 1 is therefore 
an outgoing, progressive wave of frequency 2CT. A standing edge wave therefore 
leaks energy to the far field at second order. This energy exchange can be regarded 
as being the interaction between two progressive edge waves of longshore wave-
number +k and -k, and frequency CT, resulting in a free wave propagating directly 
seawards of zero longshore wave-number and frequency 2CT. These three waves, 
satisfying the interaction condition that the sums of the longshore wave-numbers 
and frequencies are both zero, provide a special example of the general class of 
interactive wave triads that may occur on a beach. 

The second order solution for the surface elevation is 

1 ac/>1 a - •k"' (l + 2 2 t) TJ = - -- - - - -- e - cos (T 1 g at 4 

The second term gives a set-down, steady in time (equivalent to the sum of the 
set-downs associated with two progressive waves of amplitude a/ 2, and a forced 
oscillation of frequency 2u. The first term describes the oscillations of frequency 
2(1 associated with the radiated waves. 

The extension of the calculations to third order shows that for a standing, 

Stokes edge wave (Al 5) 

where O" i is again zero. The dispersion relation then becomes 

a-2 = gk tan,(1(1 + .l le2
) (8) 

and again, at fixed frequency, the wave-number decreases with increasing wave 



274 Journal of Marine Research [34, 2 

amplitude. At third order, the edge wave amplitude is a slowly varying function 
of time where (A15) 

(9) 

consistent with the intuitive expectation that if a wave at the harmonic frequency 
is radiated, energy is continuously lost to the far field. In the absence of an energy 
source, the edge wave amplitude slowly decays. The offshore energy flux associated 
with the radiated wave (7) is readily shown to be 

pga27re2e,2( co )u 

64k 

The edge wave energy, per unit longshore length is given by 

- pga2 
E- 8k 

so that the rate of change of E, from (9), is given by 

pga da _ pga2 
2 

4k dt - - 2k 7raei( 00 h u 

(10) 

(11) 

(12) 

As the rate of loss of energy from the edge wave (12) must be exactly balanced by 
the energy flux in the radiated waves (10), a and e1 ( oo) satisfy the condition 

ei(oo) = 32.0 a 

and the independently calculated values do, indeed, satisfy this equation (provid-
ing a useful check on the numerical methods). 

An expression for the instantaneous rate of decay of the edge wave energy is then 

} dE 7r E 2 

-- -- = - --e/ (oo)u = - 0 115 e2u E dt 8 . 

However, as e2~a2~E, the rate of decay decreases as the edge waves become 
smaller; the nonlinear processes being most important at large amplitudes. In the 
absence of other dissipative effects, the full solution for the energy decay due to 
radiation is then 

1/ E - 1/ £
0 
= 0.92 kSu(t-to) 

pg 

where £ 0 is the edge wave energy at an initial time t0 • 

3. Laboratory experiments 

The concept of offshore radiation at the harmonic of a standing edge wave was 
investigated in a simple laboratory experiment. In a wave tank the solution for the 
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Figure 1. Experimental configuration: edge waves were generated by a wavemaker on the 
beach face and the resulting sea surface slope tilt was measured by changes in the reflection 
plane of a laser beam. Far field sea surface displacements were measured with a capacitance 
gauge. 

radiated wave is modified by the boundary conditions imposed offshore by the 
end of the tank at x = X o. The theory is complicated by the possibility of longi-
tudinal resonances in the tank, between the beach and the offshore wall. However, 
for tank lengths which are several wavelengths (of the 2u wave) long, the band-
width of this resonance is sufficiently wide that there are, in practice, no observable 
resonances. 

A small, rectangular, plexiglass wave basin (15 cm wide, 200 cm long, and 30 
cm deep, and of very similar dimensions to that used by Ursell (1952) in his edge 
wave experiments) was fitted with a plane beach of variable slope. A paddle (15 
cm long) was hinged to the tank wall 21 cm from the shorelin e and made to oscil-
late periodically with a maximum displacement of 0.75 cm (Fig. 1). The tank was 
filled with tap water treated with Photoflow 200 to reduce unwanted surface ten-
sion effects at the shoreline and sidewalls. The maximum edge wave response 
would be expected (and was observed) when the paddle frequency forced a mode 
whose wavelength divided into twice the width b of the tank, is close to an integral 
number m. Using Ursell's formula, which is more exact on the steep beaches used 
in these experiments, 

ua2 = gk sin(2n + 1)(3 (13) 

where 
k=m-rr / b. 

The edge wave response was determined by measuring the on-offshore slope of the 
sea surface very near the shoreline with a laser, the angular displacement of the 
reflected laser beam being proportional to the slope. The wave motion in the far 
field was measured 1 cm from the offshore wall by a sensitive capacitance wave 
gauge. Some typical results for the measurement of the far field are shown in Fig. 2. 
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Figure 2. Far field, sea surface displacements: when large edge waves are present on the beach 
face (1.28, 1.33 Hz.), the far field consists primarily of motions at the 2nd harmonic. The 
time axes are in units of edge wave (and wavemaker) periods. 

Periods of oscillation of the wavemaker are shown on the time axis; the elevation 
is in arbitrary units (maximum displacements are approximately 3 mm). For this 
particular experiment (tan/1 = .38) the maximum response of the edge wave was 
observed at 1.33 Hz, close to the theoretical value of 1.35 Hz given by (13) when 
n = 0, m = 1. Fig. 2 shows that, away from the observed edge wave resonance 
(1.19 or 1.45 Hz), the far field consists primarily of oscillations at the paddle 
frequency. Close to resonance (1.33, 1.28 Hz) a large component of the motion 
occurs at twice the paddle (and edge wave) frequency. 

Experiments using several different beach slopes and tank lengths showed that, 
regardless of the configuration of the wave tank, the 2u component of the far field 
was strongly correlated with the size of the edge wave observed on the beach. 
Fig. 3 shows the relation between the normalized edge wave slope (SN) near the 
shoreline and the normalized amplitude of the 2u oscillation at the deep end of the 
tank (taniB) = 0.30). The results are very similar for two tank lengths, one theo-
retically resonant, suggesting that the tank was long enough to eliminate variations 
in the 2u wave due to longitudinal resonances. The positions of the theoretical 
edge wave resonances (13) for the modes (m = 1, n = 0), m = 2, n = 0) are 
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Figure 3. Normalized edge wave slopes SN and the sea surface displacement of the harmonic 
'r/ N for tan,8 = 0.3. Xo is the distance from the beach to the offshore wall. The dashed line in 
B) is the theoretical estimate of the far field from eq. 14, appropriate for the smoothed ob-
served curve for the edge waves shown by the solid line in A). The theoretical resonant 
frequencies for edge waves are indicated by the arrows. 

indicated by the arrows. The far field elevation "l oo at frequency 2o-, theoretically 
from (1) and (7), varies as 

"l oo ,....., ae = g(ak)2 I o-2 = g ( : ) 
2 

, S = ak (14) 

where S is the maximum slope of the surface at x = 0, due to the edge wave 
motion. This slope, measured directly, is shown in Fig. 3a, normalized by the 
response at the (m = 1, n = 0) resonance. In Fig. 3b the theoretical value of T/ oo 

(calculated from the observed values of the slope), again normalized by the value 
at (1, 0), is shown in conjunction with the measured values. The agreement is 
generally good, although there is some scatter at small values of T/«>• The actual 
magnitude of "loo at the (1, 0) resonance was again of the order of 3 mm and the 
small values therefore represent very small disturbances. There is no doubt that 
the general trend of the results shows the elevation at 2o- in the far field varying 
as the square of the edge wave slope, in accord with the theoretical predictions. 
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4. Equilibrium edge wave amplitudes 

a. Resonant growth. The forcing of edge waves by a normally incident, mono-
chromatic wave train through a weak nonlinear interaction was investigated by 
Guza and Davis (1974). The conditions for resonance and the initial growth ratio 
of small perturbations in the form of free edge waves were determined. However, 
the growth rates are not, in themselves, the most interesting measure of the possible 
importance of edge waves in the nearshore environment. The important parameter 
is the maximum size to which an edge wave will grow, the equilibrium amplitude 
at which the forcing is balanced by other processes. 

For a normally incident wave train, strongly reflected at a beach, the edge wave 
perturbations which are forced most strongly in theory are two progressive Stokes 
waves, at the subharmonic frequency of the incoming wave, propagating in oppo-
site directions along the beach; in combination, these form a standing, subharmonic 
edge wave of mode n = 0. 

The basic equations describing the initial excitation are obtained by expanding 
the lowest order velocity potential as the sum of the normally incident, primary 
wave of frequency 2CT and the two progressive edge waves (which appear as a 
standing edge wave) at the subharmonic frequency CT. 

<po = <p i + </> e 
where 

a;g J ( ) . 2 <p i = O X Sill CTt 

a g . <f,. = _ e_ e- 1,;:r; cos ky COS(CTt + 0) 
CT 

(15) 

The expansion of the potential to second order gives the terms involving the 
self-interaction of the edge wave which have been discussed in section 2, terms 
involving the self-interaction of the incoming wave (which give set-down and 
harmonics at 4a), and the terms arising from the cross-interaction between the 
incoming waves and edge waves which describe the resonant excitation of the edge 
wave. The growth of the edge wave is (A20) 

where 

and 

ddate = a.[2aCTe, {l - ( 2 t:.CT ) 2 
aEiCTf 

+ O(e.2, e.2, e,ee)] 

_ Q i (2CT)2 

E· -
' g tan2/3 

t:,.CT = CT( - CT • 

1/• Cvv1/2 o-5/2 

} - - 2112g tan2/3 

(16) 
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" i is a measure of the nonlinearity of the incident waves, a1 is the natural frequency 
of free edge waves of wave-number k and !:!..a is the difference between the actual 
edgewave frequency and the natural frequency. Initially, when c.2 == 0., a f == a 0 • 

Viscous effects are included by computing the edge wave damping due to laminar 
boundary layers, Cv is a constant which depends on the type of boundary layer at 
the free surface. With an uncontaminated surface, damping in the bottom boundary 
layer is dominant and Cv = l.; as in Guza and Davis (1974). With contaminated 
surfaces the damping is substantially increased and Cv may reach values of up to 
Cv = 3 (McGoldrick, 1970). 

When edge waves are forced in a laboratory basin of fixed longshore dimensions 
b, the possible longshore wave-numbers are restricted by the condition that the 
longshore orbital velocities must vanish at the boundaries, hence 

k = m-rr/ b; m = 1, 2, 3, ... 

For a given longshore wave-number, edge waves can be excited over a range of 
frequencies determined by (16). The frequency band within which the edge waves 
will grow is centered on a1 = a0 , where the initial growth rate is maximum and 
has band-width. 

where 

1- 8 1 + 8 
<If 

8 = 2aEi [ 1 

(17) 

The reduced forcing away from a = a0 leads to an increase in the minimum 
incident wave amplitude, a0 , which is needed to overcome the viscous damping. 
However, once ai > a0 resonant growth occurs, provided the frequency is within 
the band-width given by (17). Growth is not limited by viscous effects as the ratio 
between the forcing and viscous terms in (16) remains constant. This is very dif-
ferent from Gallagher's (1971) suggestion for the forcing of edge waves by the 
interaction of two incoming waves, amplitudes ai <1 >, a; <2> where the resonance 

equation takes the form (very schematically) 

where G is a coupling coefficient and C a damping parameter. In this case, the 
forcing may remain approximately constant and the linear damping limits the edge 

wave amplitude to Ga; <1>a; <2> /C. 
One of the interesting parameters in (15) is the phase between the incoming 

wave and the edge wave. For resonant forcing of the edge waves (neglecting vis-

cous effects), 
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(18) 

At the lowest frequency at which resonance is possible, u = ut(l-8), 6.u = l>CT 

= 2aew so 0 = 0, at the highest frequency 0 = --rr/2, and at the central frequency 
of the band (6.u = 0), 0 = --rr/4. The inclusion of a small viscous term alters the 
phase by approximately a0/ 2ai, 

b. Edge wave-edge wave interactions. Initially, when u is sufficiently close to the 
natural frequency, the edge wave grows exponentially. The natural frequency of 
the edge wave, however, depends on the wave amplitude via the nonlinear term 
Ee

2 in (8), as does the rate of energy loss via radiation (12). This is crucial, for it 
means that instead of growing indefinitely, the edge wave will approach a steady 
state at some finite amplitude if u is within the frequency band for resonance. 

Consider an initially small edge wave which satisfies the condition for resonant 
growth having frequency (J' (which satisfies (17) at small ee), that is 

_u_= 1 +co+ 0(e/ ) (19) 
<To 

where 
-l<c<l. 

In the absence of radiative losses, the edge wave amplitude, and natural frequency 
would increase until the resonance condition (17) is no longer satisfied. Growth 
ceases when the edge wave frequency is at the lower end of the resonant band 

_u_= u =1-o 
<TJ uo(l+ .055ee2

) 

Therefore, at equilibrium, with radiative losses ignored, 

.055e.2 = (1 + c)o 

and if viscosity is negligible (ai > > a0) 

e/ = .615(1 + c)ei, 0 = 0. 

(a) 

(20) 

(b) 

At equilibrium, 0(ee) ~ 0(q 112
) and since Ei :s; 0(1) it follows that the edge wave 

amplitude is larger than the incident wave. The edge wave equilibrium amplitude 
is maximum when c = + 1. 

Radiation limits growth, if natural frequency changes are temporarily ignored, 
when the edge wave amplitude decay due to radiation (12) exactly balances the 
forcing by the incident wave (which remains constant since the natural frequency 
is now assumed constant) 

(21) 
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Figure 4. Equilibrium amplitude for a subharmonic, Stokes edge wave and its phase in relation 
to the incoming wave as a function of frequency, when the resonance is limited by detuning 
or radiation or detuning and radiation together. 

If the viscous effects are small, then at equilibrium 

(22) 

the phases being given by (18). The maximum edge wave amplitudes occur when 
c = 0 (a = a0). Again, O(F.e) ~ O(ei½), the edge wave grows to be larger than the 
primary wave. 

It is clear that detuning and radiation, taken separately, both predict equilibrium 
amplitudes of very much the same size and are therefore of roughly equal impor-
tance in limiting edge wave growth. It is therefore necessary to consider the com-
bined effects of detuning and radiation. Equilibrium amplitudes then occur when 

[ ( 
t:..a ) 2 ] i Cvv112a5/2 

2aat:i 1 - 2~•,a = e,21rae1(oo)a + 1 21 2gtan2,e (23) 

where 
a,= (1 + .055e.2)a0 • 

Fig. 4 shows the theoretical response curves for the amplitude and phase of the 
edge wave at equilibrium as functions of frequency for detuning alone, radiation 
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alone, and for detuning and radiation together, in the absence of viscous effects. 
When detuning and radiation are both included, the equilibrium amplitude is 
always less than the value for detuning alone, but may exceed the radiation limited 
value for c 0.4 as the changes in the natural frequency of the edge wave due to 
finite amplitude effects influence the radiation condition. The maximum possible 
amplitude is reached when the actual frequency equals the natural frequency, now 
including finite amplitude terms. This maximum has exactly the same value 

EeEi-! = ,767 

as is predicted by radiational condition alone, but the natural frequency at this 
amplitude is now not u0 but (1 + c5)uo, 

c. Experimental results. The theoretical results have been derived under the as-
sumption that Ei, Ee < < l ., a condition not satisfied in typical laboratory experi-
ments. Indeed, if an edge wave resonance is to occur (16) suggests that, for er = uo, 

( 2u) i ai -v- 7.4 Cv 

and even with clean water (Cv = 1) and relatively low frequency edge waves 
(0.2 Hz) on a fairly steep beach (say f3 = 5°), the minimum value of e. at which 
resonance may occur is Ei = 0.4. Viscous damping cannot be overcome unless the 
primary waves are moderately nonlinear. Garrett (1970) derived finite amplitude 
detuning results, conceptually similar to (20), for the excitation of subharmonic 
cross waves. These compared well with the amplitude-frequency measurements 
for small primary waves. For large primary waves, however, the response curves 
were of different shape as higher order terms became significant. For edge wave 
resonances, the problem of strong primary wave nonlinearities is more complex; 
not only is the convergence of the formal expansion in doubt, there is the addi-
tional complication that as the incoming waves increase in height they eventually 
begin to break, forming dissipative bores. The nonlinear theory of Carrier and 
Greenspan (1958) predicts that the transition to breaking occurs when Ei = 1.0, 
compared with an early, linear theory of Miehe (1944) which suggested that the 
reflectivity of the beach decreases, from a value of 1.0 when Ei ""= 0, with increasing 
Ei - As the reflectivity decreases when e i > l , itis clear that formal analysis to 
O(e.2) is pointless at large values of Ei, even if the solution converges, unless the 
assumption of total reflection is relaxed. However, any modelling of the breaking 
processes must involve rather gross approximations even in the lowest order solu-
tions. 

However, most of the laboratory data deals with the situation with e, 1.0, a 
surging wave beginning to break at the shoreline, and this seems also to be a con-
dition in which features such as beach cusps are frequently observed to form in 
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Figure 5. Subharmonic edge wave resonant band-widths: data from Birchfield and Galvin 
(1975), A spontaneous resonance, e induced resonance, O no resonance; theory from (I 7). 

the field. Although the theory is reaching the limits of validity, it is clear that its 
predictions are the first step in understanding the processes that limit edge wave 
amplitudes in moderately nonlinear cases. If the wave breaking introduces entirely 
new physics, as in the generation of longshore currents, the present theory will not 
provide appropriate predictions. 

The present theory provides three predictions which can be compared with the 
experimental data. 

(i) the band width of the resonance (Fig. 5) 
(ii) the edge wave amplitudes at equilibrium (Fig. 4) 
(iii) the phase between the incoming wave and edge wave at equilibrium (Fig. 4). 
Fig. 5 shows the data on the resonant band-width given by Birchfield and Galvin 

(1975) for the case n = 0, tan,B = 0.132, o-0 = 3.15 compared to the theory (17) 
for Cv = 0 (inviscid) and Cv = 1 (viscous, clean surface). The triangles indicate 
spontaneous resonance and fall generally within the theoretical band-width; closed 
circles indicate resonances which did not occur spontaneously but, if initially 
forced, would subsequently maintain themselves; these tend to occur at the fringes 
of the band. At large values of ei, the resonance is skewed toward lower frequen-
cies. This may be associated with the set-up associated with the breaking waves, 
the decrease in the effective beach slope decreasing the natural frequency of the 
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edge wave. Birchfield and Galvin (1975) attribute this skewing to the importance 
of terms of O(e.2) in determining the limits of the resonance band. They have to 
assume that the wave is still totally reflected although it seems unlikely that the 
effects of wave breaking can be ignored when ei ==' 2.0 or more. Furthermore, as 
discussed in detail in the appendix, their analysis contains errors of 0(ei ) resulting 
from incorrect averaging of the basic resonance equation (Al 7). 

Data collected at the Scripps Institution of Oceanography, summarized in Guza 
and Inman (1975), suggest that in a large wave tank the subharmonic resonance 
generally ceases (or is much reduced in amplitude) when e, == 2.0, rather than at 
e, ""' 7.0 as observed by Galvin in a narrow tank. Indeed, with ei determined by 
the wave amplitude at the shoreline, it seems unlikely that such large values of ei 

are possible. The Scripps data are not suitable for detailed studies of the resonant 
band as the variations in beach slope (even of ± .05°), unavoidable on a large 
beach, lead to uncertainties in the location of the central frequency of the resonant 
band u0 which are typically of the order of one quarter of the whole band-width. 
However, the total band-widths observed agree reasonably well with the predic-
tions of (17). For example, with ei ==' 1.6, longshore wavelength 1.62 m, on a 
beach of slope 5.1 °, the resonant band was 0.12 Hz wide, compared to a theo-
retical width of 0.13 Hz. 

Fig. 6 shows the comparison between the laboratory observations (Guza and 
Inman, 1975) of the equilibrium, horizontal edge wave displacement at the shore-
line R 0 where 

Ro = 2ae/ tan/3 

and the theoretical values obtained from (23), independent of beach slope, for 
various values of c •. The value shown is at the center of the band u0, and could be 
as much as 15% greater at u = (1 + 8)u0 • The actual location of the observations 
relative to the band-center is uncertain due to the uncertainties in estimating the 
beach slope. The agreement in Fig. 6 is good considering the crudeness of the data 
and the rather large values of ei and e. involved. However, Galvin's (1967) data 
seems to show similar trends for ei < 2.2. 

As indicated in Fig. 4, the predicted maximum edge wave amplitudes are very 
similar to those which would occur if radiation was the only limiting factor. How-
ever, phase measurements provide further insight into the actual mechanism. The 
sea surface displacement at the shoreline is (15), 

71; = -a; cos2ut 

7/e = a. sin(ut + 0) cosky 

and the displacement of the water line on the beach depends on 0. The time his-
tory at an antinode (cosky = 1) for 0 = 0, -1r/ 4, -rr/ 2 is shown in Fig. 7 for the 
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Figure 6. (Left) Maximum horizontal displacement at the shoreline of Stokes edge wave at 
equilibrium amplitude; data from Guza and Inman (1975), with Te = 5.54 sec., and beach 
slopes; D = 4.17°, ,.\ = 5.08°, = 6.0°, • = 6.83°. Vertical lines indicate the onset of 
wave plunging, e, = 2.0; theory from (23) when u=uo, for each slope. 

Figure 7. (Right) Horizontal displacement at the shore R for various phase differences, e, be-
tween the edge and incident waves (24), for •e1 oi = 3 .0. 

case EeEi -½ = .75 (a. = 3ai ). The horizontal displacement at the shoreline, which 
is the most easily seen feature in laboratory experiments, is then 

R = 'T/ i + / " = ai tan,B-'(-cos2ut + 3 sin(ut + 0)) 
tan 

When 0 = 0, the edge wave is maximum (or minimum) when the incident wave 
has its maximum, positive value (i .e., is furthest up the beach) and zero displace-
ment at maximum run-down of the incident wave. For 0 = -1r/ 2, the pattern is 
reversed with zero displacement of the edge wave at the time of maximum run-up. 
When 0 = -1r/ 4, edge wave maxima occur when the incident wave is at its mean 
position, the total displacement being skewed so that the uprush is noticeably more 
sudden than the backwash. 

Detailed phase measurements are not available, but it has been generally noted 
that the displacement of large edge waves are very noticeable at the maximum 
run-up of the incident wave (Harris, 1967; Bowen and Inman, 1969; Guza and 
Inman, 1975). A run-up pattern of the form given by 0 = --rr/ 2 has not been re-
ported. The laboratory observations are therefore consistent with the theoretical 
suggestion that O > 0 > -1r / 4 for detuning and radiation, but would also be in 
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line with the detuning condition alone (0 = 0). However, as the observed ampli-
tudes seem to be most accurately predicted by radiation and detuning or radiation 
alone, the general indication is that both processes are significant. The theoretical 
predictions are then consistent with all the observations, and quantitatively in good 
agreement with the limited data available. 

5. Discussion 

The present analysis considers the growth of a standing Stokes, edge wave 
resonantly excited by a normally incident, monochromatic wave train. This reso-
nance, apparently involving only two discrete waves, is, in fact, a special case of 
the general class of interactive wave triads which may occur on a sloping beach. 
There is a strong analogy to resonant interactions between gravity-capillary waves 
(McGoldrick, 1970), where there is a particular frequency for which a triad of 
progressive, capillary waves degenerates to only two waves, one of which is the 
subharmonic of the other. McGoldrick's analysis shows that, an initially large, 
progressive capillary wave of frequency IT loses energy to the harmonic at 21T, even 
if the harmonic initially has zero amplitude. This transfer of energy from frequency 
IT to 21T is also characteristic of the standing, Stokes edge wave, in the absence of 
forcing. Furthermore, inspection of McGoldrick's equations reveals that a primary 
wave of frequency 21T is unstable to subharmonic perturbations, again in very 
close analogy to the case of waves normally incident on a beach. 

The detailed calculation of the equilibrium values of the amplitude and phase 
of the edge wave have been shown for the particular case of normally incident 
waves and the lowest mode (n = 0), subharmonic edge wave. However, the same 
physical processes of radiation and finite amplitude detuning will limit the growth 
of any edge waves which are members of resonant triads. If a normally incident 
wave excites two edge waves of different frequency and mode number then formal-
ly, at equilibrium, 

0(c,) = 0(ce<1 >i;e<2 >) 

where Ee(n l is the nonlinearity parameter of a particular mode. However, the use-
fulness of this type of general statement is limited because the relative importance 
of the forcing, radiation and detuning depend on the numerical values of the ap-
propriate coupling coefficients. The subharmonic, Stokes mode, resonance is 
known to be the most strongly forced (Guza and Davis, 1974), other resonances 
cannot reach comparable amplitudes unless the numerical values associated with 
radiation and detuning are comparatively small. In practice, none of these other, 
possible resonances has ever been observed in the laboratory. 

A non-normally incident wave, cf}, may form a resonant triad with two progres-
sive edge waves travelling in opposite directions (cp+, cf,-), generally with different 
frequencies, and possibly different mode numbers. In the most easily excited reso-
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nance, cp + and cf>- are of mode number zero, and have frequencies slightly differ-
ent from the subharmonic of the incident wave (Guza and Bowen, 1975). Because 
the coupling coefficient for this resonance is so similar to the subharmonic Stokes 
resonance, it would be expected that cp+ and cf>- will each have an equilibrium 
amplitude approximately half that of resonant standing subharmonic Stokes wave, 
and that both detuning and radiation will be important. 

The beat edge wave generated by the non-linear interaction of two incident 
waves (Gallagher, 1971) interacts with each of these waves to radiate energy at the 
frequency and longshore wave-number of the other. In this case, radiation limits 
growth only when Ee = 0(1), but detuning is limiting when 

and it appears that detuning will limit growth at a lower order than the radiation. 
At equilibrium, if e/1

> ei<2J, 0(ee) ~ 0(e,.~) and the edge wave may become 
larger than the primary waves. However, the edge waves forced by a single 
incident wave are formally larger, 0(e.) ~ 0(e;l). The precise relations and the 
importance of viscous effects again depend strongly on the numerical values of 
the coupling coefficients involved. 

All these triad interactions involve energy exchange between the far field and 
the modes trapped in shallow water. The total energy in the nearshore region is 
not necessarily conserved, energy from the far field may be fed into edge wave 
modes both by the direct interaction of the edge waves with the primary waves 
and by further interactions among the edge waves themselves (Kenyon, 1970). 
At a given frequency, the energy in an edge wave spectrum is determined by a 
very complex balance between nonlinear processes and viscous effects. The 
analogy to surface gravity waves suggests that the important interactions will in-
volve a continuous shifting of edge wave energy from the source frequency to 
lower frequencies. Of course, all interactions arising from the instability of a single 
wave, either an incoming wave (Guza and Bowen, 1975) or a progressive edge 
wave (Kenyon, 1970), necessarily involve a shift to low frequency; the growing 
perturbations must have lower frequencies than the initial wave to satisfy Has-
selman's (1967) rule. 

6. Conclusions 

The principal result of the present analysis is the identification of the processes 
that limit the growth of resonantly forced edge waves. Equilibrium is reached for 
the subharmonic, Stokes wave generated by a normally incident wave when, ap-
proximately (Figs. 4, 6), 
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Table I. Total horizontal displacement at the shoreline of an edge wave generated by surging 

incident waves (e; = I.) 
Frequency Period Slope Displacement 

Hz Te (sec) tan,B Ro (m) 

1 .01 (.1) .0038 (.038) 

0.2 5 .01 (.1) .095 (.95) 

0.1 IO .01 (. 1) .382 (3.82) 

0.05 20 .01 (.1) 1.52 (15.20) 

a value in good agreement with the existing laboratory measurements. The total 
horizontal displacement at the shoreline R 0 associated with this wave, when the 
incoming wave is just beginning to break and surge, s i 1.0, is then given by 

R0 = 2a./tanj1 = 1.54 gtanj1/CTe2 
• 

As shown in Table 1, long period swell on a steep beach may generate large edge 
waves. Typical laboratory waves (Te = 5 secs, tanµ = .1) should have amplitudes 
of 0(1 m) as observed. Even though there are many additional complications which 
may become important in various field situations, the present results suggest that 
low frequency edge waves are likely to be a significant factor in the generation of 
sedimentary features in the nearshore region. For the case of a wave gently surging 
on a beach, a situation reported to be favorable for the generation of beach cusps, 
the theoretical results predict that at the shoreline of a plane beach the edge wave 
should reach an amplitude a factor of three larger than that of the incoming wave, 
a prediction in accord with the laboratory observations. 

APPENDIX 

The basic equations are the standard, nonlinear, shallow water equations which are valid 
close to the shore on a sloping beach. The approximations made in deriving these equations 
are discussed in detail by Mei and Le Mehaute ( 1966). Mass conservation gives 

'1, + [u(11+h)]. + [v(11+h)]v = 0 (Al) 

where 77 is the displacement of the free surface, h the depth and x,y (u, v) the offshore and long-
shore coordinates (velocities). The motion is assumed irrotational so 

u=V•,t, 

where ,t, is the velocity potential. The momentum equations may be integrated to obtain a 
Bernoulli equation for shallow water (Stoker, 1957). 

1 
'1 = - -g- [,t, , + ½(<t>.2 + ,t,/)] (A2) 

Then, eliminating 11 from (Al) and (A2) 

L(,t,) = Q(,t,,,t,) + C(,t,,,t,,,t,) (A3) 
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where 

L(¢) = -¢., + (gh<t>.). + (gh¢.). 

Q(</>,4') = 2¢.¢., + 2¢v¢v, +¢,(¢ •• +¢vu) 

( 
¢.'+¢ 2) 

C(¢,¢,¢) = (¢ •• +¢vu) 2 " + </>.'¢., + ¢/ </>., + 2</>,¢.¢,. 

The velocity potential, sea surface elevation, and natural frequency are expanded in the non-
linear ordering parameters, e (1,2). The amplitude, a, is allowed to have slow time variations; 
a, = O(e) or 0(e

2
). Lowest order (linear) edge wave solutions (L(</>o) = 0(•)) are given by 

</>o =...!!_LL (2kx) e_., 5 cosky cosut l 
u " I cos(ky - ut) I (A4) 

where (A4) is the solution for either a standing or progressive edge wave, L. is the LaGuerre 
polynomial of order n (Eckart, 1951), and 

u.2 = gk(2n + l)tan fJ (A5) 

Linear incoming waves, approaching normal to the beach and therefore having no loogshore 
dependence are 

a ,g . 
'Po=~ (lo(x)cos u,r - Yo(x)sm u,t) (A6) 

where 

x 2 = 4<T,2x/ g tan fJ 

and lo and Yo are Bessel functions of zero order. An out-going progressive wave would have a 
plus sign before Yo. A wave totally reflected from the beach has a solution in l o only, being a 
standing wave of the form 

a,g 
'Po= -- l o(x)cos <T,t . <T, 

Second order edge wave solutions are given by substitution of (A4) and (A5) into (A3). 

where 

eL(¢,) = , Q(</>o,</>o) - 2wg<T,e-.. L .(2kx) 5 cos(kky cos u)t] 
/cos y - ut 

_ 2a,gL.(2kx)e-"" 5 c~s ky sin ut l 
I sm(ky - ut) I 

Q("' ¢) = 5 (f(x) + g(x)cos 2ky)sin 2ut l 5 _ _ 
2
._ l 

""
0

' 
0 I F(x )sin 2( ky - ut) \ I e a g u \ 

(A7) 

and the upper and lower terms in curly brackets refer to standing and progressive edge waves 
respectively. It is obvious by inspection that a, = 0., to 0(,), and u, = 0. For mode n = 0, 
the most algebraically simple case, L .(2kx) = l. ; F(x) = g(x) = 0., f(x) = 1. Only the Stokes 
mode, n = 0, will be explicitly considered at high order. For a progressive Stokes edge wave, 
¢, = 0, and the elevation correction, 7/,, obtained from the expansion of (A2), is given by (4). 

The second order correction to the standing edge wave is more interesting as, although the 
longshore variation in (A7) has again dropped out, a time and x dependence remains. The 
general solution, using the standard method of variation of parameters, is 

¢, = - a:; [{(e,(x)+r,)Yo(x)- (e,(x)-r,)lo(x)}sin 2ut 

+ {rJo(X) + r,Yo(x)}cos 2ut] (AS) 
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where 
x 2 = 4(2u )'x I g tan (3 

{e,(x),e,(x)} = f Z{lo(Z), Y o(Z)}e-z!'/ 8dZ 

and the ,. are constants associated with the homogeneous solutions to be determined by the 
boundary conditions. The boundary condition of finiteness everywhere requires r, = r. = 0. 
The offshore boundary condition, when the beach slopes into deep water, is that there is no 
incoming wave energy at large values of x. Then r, = e2 (co) = .854, r, = e, (co) = .541, 

numericaJly, and 

<f,1 = - a:: [{e ,(x)Yo(X) + (e,(co)-e2(X))Jo(x)}sin 2ut 

+ e,( co )Jo(x)cos 2ut] 

so that offshore, as x co 

lim ag1re,(co) . 
co <I>, = - Su (Jo(x)cos 2ut + Yo(x)sm 2ut) 

which is an outgoing progressive wave of frequency 2u. 
Third order equations are 

_ Zage'u,e-•• j cos ut cos ky l _ Za,ge-"" j sin ut cos ky l 
1 cos(ky - ut) \ 1 sin(ky - ut) \ 

For the progressive Stokes edge wave, <I>, = 0., and 

It is clear that (All) is satisfied with a , = 0 + 0(e'), and that 

ag 
<l> o = -u- f(x)cos(ky - ut) . 

(A9) 

(AlO) 

(All) 

It can be shown, using a normal mode expansion for f(x), that </>2 (finite everywhere) exists 
only if 

(A12) 

so 
u, = uo/4 . 

The third order equation for the standing Stokes edge wave is algebraically complex because 
<I>, (A9) enters into Q. The result is, schematically, 

e2L(<l> 2) = g cos ky sin ut{- 2a,e-"" + aue'd,} 

+ g cos ky cos ut {- 2ae2
u2 + aue2d2} 

+ ague' cos ky {d, sin 3wt + d, cos 3wt} 

(A13) 

where the d. are complicated functions of x. The 3u terms are generally small harmonic cor-
rections to the velocity potential. However, it is possible for 3u and k to satisfy the linear 
dispersion relation for free edge waves on very shallow beaches where 
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(3u)2 = gk(2n + l)tan f) ; n = 4 
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and on any beach for which there happens to be a value of n for which the exact linear dis-
persion relation (Ursell 1952) is satisfi ed 

(3u)2 = gk sin(2n + l) fJ 

In these cases energy may be transferred to higher frequency and mode number. This inter-
action will not be considered further because it is weaker (0(,')) than the second order inter-
actions (0(, )) that transfer energy between edge wave modes (Kenyon, 1970) or between edge 
waves and incoming or outgoing waves. The terms of frequency u and longshore wave-number 
k satisfy the dispersion relation for the first order solution (A5), and </>, finite everywhere, and 
not growing with time, can exist only if 

(A14) 

2u, f e->z.e- "' dx = u f 00 

d,.e- .. dx . 

That is, the parts of the "forcing term" which are not orthogonal to the free solution, e-••, 
result in amplitude and natural frequency variations. Numerical solution of (A14) gives 

U2 = .055 U o 

a, = -au,'e,(oo)27Ta; a = .0169 

To model the interaction of a normally incident wave and a standing edge wave let 

</>0=<1>'+<1>' 

where 
a,g ( ) . 2 </>' = Jo X SID ut 

</> ' = _!!_L e_., cos ky 
u 

(AI5) 

(a) 

(b) 

(A16) 

(c) 

(a) contains edge wave amplitude, phase, and frequency information. Temporarily neglect-

ing cubic terms and the interactions of each wave with itself, (A3) becomes, 

L W ) = Q(<l>' ,<I> ' ) + QW ,<t>') 

and substitution of (A16) gives 

where 

e-"'(att + agk tanfJ) = - , ,(2ua,/,(x)sin2ut 

+ agk tanfJ /,(x)cos2ut) 

f ,(x) = (4x-•J, (x) + 4gk(2u)-•x- 'J, (x))e-"' 

t ,(x) = (4x- 'J, (x))e- "" . 

(A17) 

In the absence of incident waves (,, 0), (Al 7) describes free linear oscillations with lowest 

order natural frequency 
uo' = gk tanfJ . 
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The x dependence of (A17) is removed, leaving an equation for a(t), by the condition that 
only the portion of the r.h.s. which is not orthogonal to the free solution, e-••, can contribute 
to resonant forcing. This statement is formall y justified in Guza and Davis (1974), and fol-
lows from the fact that the linear operator L (with fixed u and k , ) is of the self-adjoint, 
Sturm-Liouville type possessing a complete set of eigenfunctions and eigenvalues. If the non-
linear interaction terms, i.e., the right hand side of (Al 7), are orthogonal to the free edge wave 
solution, it can be proved that no resonance occurs, only small, forced corrections expressible 
in terms of normal mode solutions. The nonorthogonal portion of the interaction terms, the 
part which can drive the resonance, is obtained by multiplying (Al 7) by e->z and integrating 
from x = 0 to x = co. The subharmonic resonance theory of Birchfield and Galvin (1975) is 
incorrect, at lowest order, because they directly spatially average an equation similar to (A17), 
implicitly assigning a weighting function of 1., rather than e-••. Applying the orthogonality 
condition results in 

a,. + u.'a + 2e,uo'(2u)- 2{ 2ua,!.' sin2ut 

(A18) 
+ auof/ cos2ut} = 0 

where f.1 = f 
0

00 

e-••t,d(kx); l = 1,2 . 

With the transformation (Garrett, 1970) 

a = b exp[e,uo'(2u)- 2f.' cos2ut] 
(A 18) becomes 

b,. + buo'[I + 2e,(2u)-•cos2ut(f/ uo' + 2u'//)] 

(A19) 
+ O(e.') = 0 , 

which is the Mathieu equation. Following Bogoliubov and Mitropolsky (1961, ch. 17), and 
Garrett (1970), resonantly growing solutions for b and hence for a, exist when 

ul u, =I ± 2ae, 

where u, is the natural edge wave frequency. The amplitude, a, is proportional to e8 ' where 

S = ((2e,au)' - (u1 - u)") ! (A20) 

so the growth rate is maximum when u = u1• The phase fJ is given by (18). 
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