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Minimal properties of planetary eddies 

by Melvin E. Stern1 

ABSTRACT 

An isolated barotropic eddy on the ti -plane can be in equilibrium only if it is composed of a 
coupled cyclone-anticyclone system, only if it is separated by a vorticity discontinuity (free stream-
line) from the surrounding fluid, and only if its rms vorticity exceeds t/R/y2, where R is the radius 
of the free streamline. The eddy having this minimum vorticity is called a "modon", and a close 
packed array of non-overlapping modons is also an equilibrium solution. The latter is called a 
"modon-sea" and its rms velocity is t/R2/7.6 . Although the equilibr ium modon-sea is probably 
dynamically unstable, so that non-linear Rossby waves wi ll develop, the total energy is invariant 
and related to the modon area by the previous relation. The variational principle on which the 
equilibrium theory is based bas also been generalized so that some baroclinic effects can be examined 
in future work. It is suggested that some of the statistical properties of mid-ocean eddies can be 
interrelated through the use of the "modon-sea" model. 

1. Introduction 

Any circularly symmetric vortex is an equilibrium solution in thef-plane dynamics 
for an ideal fluid bounded by two infinite walls, each of which is perpendicular to 
the axis of rotation. But Rossby (1948) pointed out that the situation is entirely dif-
ferent for the /3-plane dynamics (in a spherical annulus) because the average Coriolis 
force acting on the vortex will not vanish in general. To illu strate this point we assume 
a steady eddy having its center at some latitude y = 0, this center being partially de-
fined by the geometrical condition: 

ff ydA = 0 (1) 

1. Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island, 02881, 
U.S.A. 
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where the integration is taken over the entire horizontal area. The relative velocity 
v on the ,8-plane is non-divergent (v · v = 0), so that v = k x V'f/J where 'f/J(x,y) is the 
stream function and k the local unit normal. We also suppose that this eddy is 
"isolated" on the ,8-plane, in the sense that 'f/J and the pressure perturbation vanish 
" rapidly" with increasing distance from the center of the eddy. This means that the 
horizontal integral of the pressure gradient force is assumed to be vanishingly small, 
the integral of the non-linear momentum terms (v · vv) also vanishes, and the integral 
of the Coriolis force over the entire plane is 

Jff(y)k X vdA = -Jff(y)v'f/JdA = j,8Jf'f/)dA. (2) 

where j is the unit vector in the y (northward) direction. Thus the condition of equi-
librium requires the vanishing of (2), or the vanishing of the mean value of the stream 
function. If r denotes the vector distance of a point from the center of the eddy then 
the integrated relative angular momentum has the value 

Jfk· r x vdA = Ifr· v'f/JdA = -2Jf 'f/JdA = 0 

because (2) vanishes. 

(3) 

The foregoing consideration shows that if an isolated disturbance is to be in equi-
librium on the ,8-plane, then the eddy must have a dipole character, with equal and 
opposite amounts of cyclonic and anti-cyclonic angular momentum (3). The fluid 
parcels must also conserve absolute vorticity (/ + C), so that the steady state equation 

of motion is h :; 
i/ ~ Ii \. p V • ,t ..-.,,D 
(vJ""' '; t' 

V · V (,By + C) = 0 

V = k X V'f/J } (4) 

Since ov/ot = 0 we infer that the far-field vorticity must vanish identically, because 
v · v C would otherwise be too small to balance the linear v · v ,By term. Therefore if 
we want to investigate the strictly steady solutions then the eddy must be bounded 
by a free streamline across which the vorticity changes discontinuously. Accordingly, 
we specify that v = 0 = 'f/J for r > R, or 

'f/J(R,0) = 0 (5) 

where (r, 0) are the polar coordinates of the point (x,y) and R is the radius of the 
free streamline (Fig. la). Since the dynamic pressure is uniform for r> R, Bernoulli's 
equation implies that v2 = (V'f/J) 2 is uniform on r = R, and consequently 

_82_'f/J_(R_,_0) = O 
or80 

is the second boundary condition for the solution of (4). 

(6) 
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(b} 
Figure 1. a) Schematic diagram of streamlines in a modon consisting of a cyclone ( - ), an anti-

cyclone ( + ), and a free streamline ( 'I' = 0). The center of the mod on is at y = 0 on the {/- plane, 
and 0 measures the azimuthal distance of any point from the easterly direction. 

b) A close packed array of non-interacting modons with v = 0 in the small " dead spaces" lying 
between three adjacent circles. 

A particular solution of (4)-(6) is discussed in Section 2, and in Section 3 we show 
that this solution has the smallest rms vorticity (for a given R) within the entire class 
of solutions of (4)-(6). The plausibility of the existence of such a minimal solution 
is indicated by means of the following analogy with a simple pendulum. If the am-
plitude of oscillation of the pendulum be small compared to its radius, so that the 
pendulum oscillates back and forth, we say that the system is in a "wave-like" mode. 
But if the amplitude is large, so that the pendulum rotates monotonically about its 
pivot, then we say it is in a "current-like" mode. Likewise, a small amplitude dis-
turbance on the ,8-plane wil 1 oscillate like a Rossby wave, whereas a monotonic 
current can occur if the "amplitude" exceeds a certain critical value. The minimum 
eddy mentioned above is called a "modon", and a close-packed array is called a 
" modon-sea". The relevance of this statistical model to the time dependent eddies 
observed in the mid-ocean is discussed in Section 4. The variational principle upon 
which the theory is based, is then (Section 5) extended to the case of a fluid having 
a free upper surface, this being the simplest model in which the (reduced) gravity 
force enters. Although this extension indicates the feasibility of incorporating the 
baroclinic effects, the question of the energy source and sink of eddies is beyond 
the scope of the investigation. Thus the problem at hand may be restated by assum-
ing the mean energy density of the eddies to be given, and by then asking for the 
related statistical properties, such as the mean eddy radius. 
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2. Particular solutions of the steady vorticity equation 

If P = [Jy + 1; = [Jy + v 2'1fJ denotes the absolute vorticity then (4) implies that vP 
must be orthogonal to v = k x 'v'lfJ, or P must be constant on a streamline. Thus we 
have the well known [Intersoll (1973)) result that P must be a function of 'If), or 
inversely 

where 

dF 
'lfJ = F'(P) = -

dP 

F(P) = a2P2+ _L anr 
n ,Ja 2 

(7) 

(8) 

is an arbitrarily chosen function, and the constants an are the coefficients of the power 
series expansion in the case where F(P) is analytic. 

Fofonoff (1954) obtained a solution for the case in which F'(P) = -Pf). is a linear 
function of P, in which case (7) becomes 

1; + [Jy = -A'lfJ (9) 

where - 1/J = 2a2 , and a0 , a1 , a3 , ••• all vanish. Fofonoff obtained the free solution 
for a rigidly bounded ocean basin, so that 'lfJ = 0 is the only boundary condition that 
must be satisfied, whereas in the present problem the isobaric boundary condition 
(6) must also be satisfied. Since the relative vorticity is v 2'1fJ, and since y = r sin 0 
in polar coordinates, eq (9) can be written as 

(10) 

( 
1 o o 1 02 

) 
--r- + -- +A 'lfJ = -{JrsinfJ 
r or or r2802 ' 

(R 0) = 0 = o2'1fJ(R,0)_ 
'If) ' or80 

(11) 

A particular solution of (10) is 'If) = - [Jy/J = -{Jr sin 0/J, and the solution of the 
homogeneous equation (V 2'1fJ + A'lfJ = 0) which must be added to satisfy the free 
boundary conditions (11) is also proportional to sin 0. By separation of variables 
we readily find that the relevant homogeneous solution is proportional to 'lfJ = sin 0 
11(r11.1! 2), where 11 is the Bessel function of the first order and kind. Consequently, 
the total solution satisfying the first boundary condition in (11) is 

(12) 

The final boundary condition in (11) implies O'lf)(R, 0)/or = 0, and consequently 

11(fill /2)-RJ1/21/(fill /2) = 0. 

By using the identity z1i'(z) = 11(z)-z12(z) we then obtain 
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R)..112 = 5.136, ... 

5 

(13) 

The vorticity is obtained from (9), (12), and for any one of the roots of (13) we find 

J (r)..1/2) 
C = - (JR sin 0 /(R)..112). 

(13a) 

The mean square vorticity is now evaluated by noting that the indefinite integral of 
zJ12(z) equals z2/2 [J12(z)- J0(z)J2(z)]. Using (13) we see that 

ffC2dA = 2 J~ [ J1(rJ,.1/2) ]2dr = p2R2 
ff dA (J Jl (R)..1/2) 2 

0 

(14) 

is independent of}.., and therefore all of the discrete (and non-superimposable) solu-
tions of (10)-(11) have the same rms vorticity. 

What happens if we consider more complicated functions F(P), corresponding to 
the entire class of possible solutions in a given area nR2? This we shall do in the 
next section, and we shall show that (14) gives the minimum within the entire class. 
But the argument is rather abstract, and therefore we shall illustrate the point by 
fir st considering a slightly more general F(P), but one which is still amenable to 
explicit calculation. 

Let F' (P) = - (P + J,.JJ J.., and let C = v' 2$ denote the vorticity in this problem, 
where ).1 is another arbitrary constant. Equation (7) then becomes 

(15) 

We seek a solution having the form 

ip = 1/J(r,0)+'1/J*(r) (16) 

where the azimuthally varying part ( 1/J) satisfies (10), (12), and thus the permitted 
values of}.. in (15) are still determined by (13). By subtracting (10) from (15) we find 
that the new component in (16) must satisfy 

or 

1/J*(R) = 0 

and this 1/J* automatically satisfies the second boundary condition (6). (If an azi-
imuthal dependence in 1/J* were included then it would not have been possible to 
satisfy both boundary conditions). The solution of the above equation is 

* - 1 1 _ o __ ),_ [ J (r)..1/2)] 
1/J - - ;: - Jo(RJ,.1/2) 
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and the associated vorticity is V21P* = - .11 -A1P*, or 

Jo(rJl/2) 
r* _ ,,2,,,* _ -A _ _ _ 
" - v .,, - i Jo(R.11/2)' 

[33, 1 

(17) 

Since (17) is orthogonal to (13a), the mean square of C = C + C* equals the sum of 
(14) with the mean square of (17), and thus we see that the mean square vorticity 
increases with ,11

2• The minimum mean square vorticity corresponds to A1 = 0, this 
being a particular example of the general proposition discussed below. 

3. Variational principle 

Let 1P denote a solution of the non-linear partial differential equation (7) for any 
assigned F ( or any assigned a0 , a1 , a2 • •• ), let CJ( denote any variation of the vorticity 
from the equilibrium solution, and let CJ1/) be computed from v 2CJ1/) = CJ( with CJ1/) = 0 
on the unvaried boundary. Since O = CJ(f3y) = CJa1 = CJa2 • • • , and since 1P = 0 on 
the boundary, we have the relation 

CJ ff dA [Hv1P)2 + F(P)] = ff dA [v1P' CJ'71/) + F' (P) CJP] 

= ff dA [v • (1PCJV1P) -1PCJV21P + F' (P) CJ(] 

= ff dA [ -1PCJC + 1PCJC] = 0 l (18) 

when (7) is used. Thus we see that a solution 1P extremizes the first integral in (18). 
Conversely, if that integral is stationary for an arbitrary CJ( = v 2CJ1/) with 1P = 0 = CJ1/) 
on the boundary, then 1P = F' (P) is a steady solution of the vorticity equation. Note 
that the free streamline condition (6) has not yet been used. This variational prin-
ciple is a particular case of a result obtained by Blumen (1971) for a barotropic 
equilibrium in a uniformly stratified fluid. 

The variational principle can be more readily interpreted by introducing the ex-
pansion (8) in (18), and thus we have 

where 
(n = 0,1,2, .. . ) 

are the moments of the absolute vorticity. If we keep all these Pn constant in the 
variation then 

(19) 

and thus we see that the extremals of the kinetic energy determine the steady solu-
tions for the case of a fixed (1P = 0) boundary. The physical significance of the p 
constraints may be indicated by the following (time dependent) adjustment problem~ 
Suppose we have a flow field which is in equilibrium within a cavity whose lateral 
boundaries are rigid but deformable. Let us then change the shape of the boundary 
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adiabatically, so as to produce a new equilibrium state. The conservation of potential 
vorticity implies that all the Pn have the same value in the final as in the initial state, 
but the energy is not an adibatic invariant since work is done in changing the shape 
of the boundaries. Thus we may solve this adjustment problem by using the given 
initial Pn as the constraints in extremizing the kinetic energy of the final equilibrium 
state. 

Alternatively, we can fix the energy as well as P1 , P 3 , P 4 ••• • and extremize P 2 • 

With a circular boundary of radius R this can be expressed as 

½ff (,;;;np) 2dA = constant 

ff ({Jy + C)dA = constant 

off ({Jy + C)2dA = 0 

'f/J(R,0) = 0 I 

ff ({Jy + C)3dA = constant . . . . II 

(20) 

Now we tum to the case of a free streamline, in which the foregoing "constants" 
must, themselves, be constrained so as to satisfy the dynamic boundary condition 
(11), or 

fJ_2_'f/J_(R_,_0) = O 
fJrfJ0 

The two boundary conditions imply that 

r 
O'f/J] RfJ'f/)(R,0) I2:n ff y(dA = ff dA v · (YV'f/J)- - = --- y(R,0)d0 = 0 
oy fJr 

0 

because the mean valve of y(R, 0) vanishes on a circle. 

III 

Illa 

The class of free eddy solutions may be obtained by varying (20) with respect to 
functions satisfying the constraints I-II, and by then restricting the values of the 
Lagrange multipliers so that III is satisfied by the extremals. Let 

(21) 

denote the smallest value of the mean square vorticity in this dynamical class (note 
that the trivial solution 'f/J = 0 is excluded by the constraint on (V'f/J) 2 in I). The solu-
tion that minimizes (21) will also be the one that minimizes ff C2dA, because Illa 
implies that ff yCdA = 0 for all solutions. 

If we relax any of the constraints, or any of the boundary conditions, then the 
minimum value of ff ({Jy + C)2dA so computed must clearly be less than or equal to 
P2*. Accordingly, we consider a class of functions C' (and v 2'f/J' = C') with 

'f/J' (R,0) = 0 

½ff (v1P')2dA = constant 
(22) 
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where the permitted values of the constant are such as to satisfy the weak boundary 

condition Illa, or 
ff y('dA = 0. (22a) 

If we now minimize the mean ({Jy + C')2 in this class, the result will not exceed P 2 *, or 

(23) 

The equality sign in (23) will apply only if the extremal C' happens to be a dynamical 

solution (satisfying III). 
Let -1.' denote the Lagrange multiplier in the variational problem (22)-(23), so that 

for arbitrary oC' we have the Euler equation 

{Jy + C' + -1.'1P' = 0, C' = ,;:;
21/J' 

1P' (R,0) = 0 

and the partial integration of (22a) gives 

f
in a , 
sin 0__}!_ (R,0)d0 = 0. ar 

0 

} (23a) 

(23b) 

A solution of (23a) which satisfies (23b) is given by (12) provided -1.' = A. Moreover 
there is no additional analytic solution of the homogeneous equation (,;:; 2

1j)' + A1j)
1 

= 0) 
having this eigenvalue. Therefore the minimum value of the mean (C')2 is equal to 
(14), and the extremal solutions (1P') are, in fact, dynamical solutions satisfying the 
strong boundary condition III. Thus we have shown that the equality sign in (23) 

applies, or 
- {JR 

((2)1/2 = -= v2 (24) 

is the smallest value of the rms vorticity within a (circular) boundary of given area. 
These minimal solutions are called modons, and the bar indicates an average taken 

over the modon. 

4. Statistical aspects and possible oceanic applications 

The modon in Fig. la is a sketch of the stream function (12) for the smallest root 
of (13), and the higher roots will correspond to a larger number of vortices within 
the free streamline boundary. The modon is composed of a low pressure vortex 
lying to the north of an anti-cyclonic eddy, and the east-west width of either vortex 
is roughly twice as large as the north-south width. The dipole structure is the simplest 
manifestation of the fact that each oceanic vortex must interact with the surrounding 
fluid . Since two or more non-overlapping modons have no dynamical interaction, 
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they may be superimposed to form the equilibrium "modon-sea" shown by the close 
packed array in Fig. 1 b. 

The average kinetic energy ½('v'l/J)2 in each modon bears a simple relation to the 
mean square vorticity, as can be seen by multiplying (9) with C = 7 2 '1/J and averaging 
the result over the area of the modon. By using Illa, (24), and (13) we then obtain 

-- c2 {J2R4 
('v 'l/J)

2 
= ;:- = 2 (5.136)20 (25) 

Also note that {3y 2 = -A'l/JY follows from (9), and therefore 'l/JY < O, as shown in 
Fig. la. 

We can compute the rms velocity ( v2) 1 i 2 over the entire x-y plane by multiplying 
(25) with the fractional area covered by the modons, this area being distinguished 
from the " dead-space" (v = 0) lying between three closepacked circles. Accordingly, 
we connect the centers of three adjacent circles, thereby constructing an equi-lateral 
triangle whose side equals 2R and whose area equals R2 V3. This triangle contains 
1/6 of the area of three individual modons, each being of area nR2/6. Therefore 
nR2/2 is the area of the modons within the equi-lateral triangle, and (n/2 V3) is the 
fractional area occupied by modons in the entire x,y plane. Thus the rms velocity 
in the entire (x,y) plane is 

{3R2 (n/2)112 {3R2 
<v

2>112 
= v2(5.136) V3 = ii• (26) 

The observations of quasi-geostrophic eddies in mid-ocean suggest an rms veloc-
ity of ( v2) 1 / 2 10 cm/sec, and reference is made to Koshlyakov and Grachev (1973) 

who analyzed five months of velocity measurements in a closely spaced network and 
obtained a picture of a single anticyclone drifting slowly thru the network. A "smaller 
dimension" of 90 Km was cited for the elliptical vortex, and if this ocean eddy can 
be associated with half of a modon then I estimate the corresponding modon radius 
to be R = 3 (90) = 270 Km. The latter figure will now be compared to a theoretical 
estimate of R obtained from (26) by using the observed ( v2) 1i 2 10 cm/sec and 
{J = 2.2(10-13) cm-1 sec-1• Thus we compute R = 190 Km, in acceptable agreement 
with the observed dimension. In contrast with our model, however, the oceanic 
anti-cyclone was time dependent, baroclinic, and its axis was obliquely inclined to 
the meridian. Therefore we must now consider the rationale for applying our model 
to the real ocean. 

The primary importance of the oceanic eddies undoubtably lies in their average 
transport and dissipation properties. Therefore our original intent was to formulate 
a first approximation to the statistically steady state, such as would apply to in-
dependent "snapshots" of the entire ocean taken at large time intervals, and such 
as would describe the relationship between average eddy amplitude and dimension. 
The ensemble which we allude to needs to be distinguished from the synoptic realiza-
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tion and its detailed evolution over a relatively short time interval like " five months". 
On the other hand, we only have a small number of synoptic observations, and there-
fore some speculation on the connection of our model with observables is in order. 

Reference will also be made to Rhines' (1973, 1974) numerical integration of the 
barotropic vorticity equation, wherein the arbitrarily specified initial state is com-
posed of relatively small horizontal wavelengths. Consequently the initial vorticity 
balance is between the v · '<J C and 8C/8t terms. But Rhines observes the well known 
"infra-red cascade" as time increases, whereby energy is systematically transferred 
to longer wavelengths. Thus the f3 term eventually becomes important in the vorticity 
equation, and the associated planetary restoring force inhibits the energy cascade. 
A kind of equilibrium spectrum then appears, with (v{J, v · '1C,8C/8t) all having 
(roughly) equal magnitudes, and with the spectral amplitude being consistent with 
(26). Our starting point, on the other hand, involves a detailed balance between the 
v · '<J C and f]v terms. But such a realization (Fig. lb) is undoubtedly dynamically 
unstable because F"(P) = - I/). < 0 (cf. eq. (9)), and the Rayleigh-Fjortoft condition 
for stability is not satisfied (Blumen (1968)). Thus an infinitesimal perturbation in-
troduced into Fig. I b will probably lead to finite values of 8C/8t, and the subsequent 
evolution of the modons will probably resemble Rhines' results. Note that the modon 
area and the total energy are temporal invariants of our model. The mean square 
vorticity will also be an invariant because of the statistical homogeneity (the statist-
ical average of any Reynolds stress must be non-divergent). These invariants will 
provide the parameters upon which the temporal statistics of the modon sea depends. 

5. Variational principle for a baroclinic eddy 

The purpose of this section is to show how the model can be extended so as to 
incorporate some baroclinic effects. The simplest case is a two-layer fluid, with the 
deep lower layer being at rest, and with g denoting the reduced value of gravity 
(based on the density difference between the two fluids). This system is dynamically 
equivalent to that of a single fluid having a free surface at a height h(x, y) above a 
level rigid bottom surface. Accordingly, we now examine the steady solutions in the 
latter system, for which the continuity equation becomes '1 · (vh) = 0. If '1/J (x,y) is 
now used to denote the mass transport function, and C the vertical component of 
relative vorticity, then we have 

vh = k x '1'1/J 

C = k. '<J X V = '<J · h- 1 '1'1/J 

For steady motion we know that the Bernoulli function 

B = gh + v2/2 

} (27) 

(28) 

is conserved by each fluid column, and also the steady horizontal momentum equa-
tion can be written as 
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The use of (27) then gives 

where 

(f(y) + C)k x v = - 7B. 

f+ C 
P =-

h 

11 

(29) 

(30) 

(31) 

now denotes the potential vorticity. For steady motion the conservation of potential 
vorticity gives 

(32) 

and consequently 1P must equal some explicit function of P, or 

1P = F'(P). (33) 

We readily verify that the solutions of (33) satisfy (32) because hv = k x 'ii"1P = 

1P" (P)k x 7P is orthogonal to 7P. Since (28) is also conserved, the Bernoulli function 
must also equal some explicit function B(P) of the potential vorticity. The substitu-
tion of these two functional relations in (30) then gives 

PF"(P) = B'(P) 
or 

PF'(P) - F(P) - B(P) = constant (34) 

Consider a steady flow with 1P = 0 on the boundary, let o( be an arbitrary variation 
in vorticity, let oh be an arbitrary variation in the layer thickness, and let 01j) be 
computed from (27), or 

with 01j) = 0 on the fixed boundary. The three integrals listed below then have the 
following variations: 

off hF(P)dA = ff dAoh [F - PF'] + ff dA(oC)F' 

off ½hv2dA = ff dA [h- 171P · O'ii"1P - ½h-2(71P)2oh] 

= ff dA ['ii"1P · o (h-171P) + th- 2(71P)2ohJ 

= - ff dA1Po( +½ff dAv2oh 

off½ gh2dA = ff dAghoh 

(35) 

where the boundary condition '1/J = 0 has been used in obtaining the last line in (35). 
The sum of these three integral relations is 
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bff dA[hF(P) + ½hv2 + ½gh2] = ff dA(F' -VJ)M; + ff dA[F-PF' +B]bh. (36) 

Equation (34) implies that F -PF'+ B is independent of (x,y) and therefore if the 
volume of the eddy be held constant in the variation, or 

ff hdA = constant (37) 

then the last term in (36) vanishes, while the preceding term also vanishes according 
to (33). Therefore any steady solution yields the extremum 

b ff dA[hF(P) + ½hv2 + ½ gh2
] = 0 (38) 

and the converse is readily established. 
By expanding F(P) in a power series, and by introducing the constraints 

I IC: 'rhdA = pn = constants (39) 

we then conclude that 
(40) 

or the sum of the kinetic and potential energy is an extremum. The significance of 
the constraints (39), as mentioned in Section 3, is that they are adiabatic invariants 
for a time dependent adjustment problem. 

6. Conclusion 

We have obtained variational formulations for the steady motion of a fluid on 
the ,8-plane, in the belief that the minimal states will be useful for the formulation 
of a statistical model of mid-ocean eddies. In the simplest case (Sec 2) we showed 
that no steady state solution is possible unless the rms vorticity exceeds a lower 
bound. The mean energy density of the modon sea is related to the mean radius by 
a relation which is in reasonable agreement with observations, and a possible con-
nection with Rhines (1973) numerical calculation was suggested. The generalized 
variational formulation given in Section 5 suggests the feasibility of incorporating 
baroclinic effects. 
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