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ABSTRACT 

The circulation in a coastal upwelling region with a shelf area is calculated. It is assumed 
that the circulation on the shelf is independent of the deep-sea circulation and consists of a 
surface Ek.man layer outflow, a coastal boundary layer upwelling and a bottom Ekman layer 
inflow. The resultant velocity distribution is used as a boundary condition for the deep-sea 
circulation. In the homogeneous ocean upwelling occurs on the shelf only, bottom inflow 
being fed by the transport of water within the frictional boundary layer extending to in-
finite depth. Introduction of stratifi cati on into the model produces, in addition to the ex-
pected weakening of the boundary layer and inflow into the shelf area from the oceanic 
interior, a secondary upwelling region above the shelf edge of very shallow extent. 

1. Definition of the problem'. 

The problem of the circulation in a region of coastal upwelling has been 
treated, during recent years, by various authors. A basic result of several 
theories is the fact that a realistic picture of the upwelling process cannot be 
obtained with a homogeneous model (for details, see Tomczak ( I 972)). In-
clusion of stratification, which necessarily leads to a model which takes into 
account diffusion at least in the vertical, results in a finit e depth of the up-
welling regime and, in some cases, in a weak poleward undercurrent. Despite 
these encouraging results, there are still large discrepancies between observation 
and theory. Some of these can be attributed to the fact that most of the the-
oretical work did not take into account a shelf area. For example, the maximum 
upwelling intensity usually is found off-shore above the shelf edge, and the 
upwelling undercurrent also seems to be linked with the shelf edge. Although 
the location of the maximum intensity can be understood by "natural rea-
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soning", the theories to explain it qualitatively are not at all frequent and 
mostly based on a numerical procedure of solving the hydrodynamic equations 
(O'Brien and Hurlburt, 1972; Killworth, 1973; Hurlburt and Thompson, 

l 97 3). 
The main problem for a theory of coastal upwelling which includes a shelf 

area consists in adapting the physical situation to the methods of solution on 
hand. The problem of the semi-infinite stratified ocean with a straight boundary 
is quite straight-forward today: Fourier transform, and boundary layer tech-
nique in the wavenumber domain. For the treatment of the semi-infinite ocean 
with a boundary of a given shape we have either to find another method of 
solution or to reduce the problem to the problem of the ocean with a straight 
boundary with modified boundary conditions. It is this second way which is 
done in the present paper. 

Consider an ocean as sketched in figure 1. Adjacent to an oceanic region 
which extends infinitely in x and z and is bounded by the surface at z = o and 
by the shelf edge at x = o for all z > H, there is a shelf region of depth Hex-
tending towards negative values of x. The ocean is continuously stratified with 
constant Brunt-Vaisala frequency N, and stratification is weak, so that the 
shelf area can be treated as homogeneous. The wind is blowing parallel to the 
co:istline and uniform in space. There are no barriers along the coast which 
allows us to assume that all along-shore gradients vanish. Under these assump-
tions the only possible circulation pattern on the shelf is the one shown in the 
figure (Verstraete, 1970): The mass transport directed off-shore is restricted 
to the surface Ekman layer and compensated by a fl.ow entering the shelf 
through the bottom Ekman layer and then rising towards the surface within 
the coastal boundary layer. Hence, the problem that remains is the determina-
tion of the circulation pattern in the region x > o, z > o. For this purpose, the 
influence of the shelf can be expressed in terms of a boundary condition on the 
horizontal current components at x = o. 

The treatment of the problem as described above is in a certain sense inverse 
to the problem treated by Hsueh and O'Brien ( 197 1) who investigated the 
effect of a given oceanic current on the circulation within the shelf area. How-
ever, the model of Hsueh and O'Brien did not take into account friction and 
thus could not include any Ekman layers, a procedure which might be in-
adequate in shallow waters such as shelf areas. 

2. Equations and boundary conditions 

The linearized equations in their Boussinesq form appropriate to the present 
problem have been derived in an earlier paper (Tomczak, 1970) which will 
henceforth be referred to as MT: 

-fv + p. - 1iHu•• -µVu•• = 0 
X r' XX ZZ 
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+u -µHv••-µvv•• = o jl XX ZZ 

Pz-gR= o 

N'w-gyR;;, = o 
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(2) 

(3) 

(4) 

(s) 
Apart from usual notations, µH and µV denote the coeffici ents of virtual hori -
zontal and vertical Austausch, y the coefficient of virtual vertical diffusion, 
and N the Brunt-Vaisala frequency which is assumed to be constant in the 
model. 

Combin ing (3) and (4) into 

N'w-yP••· = o zzz 

and introducing dimensionless variables 

z; ; u 'U aw 
Z= -

D 
X= -

aD 
U= -

Ur 
V = -

Ur 
W = -

Ur 

wi th the notations 

D' = 2 µV 
f 

• gD , 
R = --2 -R 

aur 

-+ 
-+ t 
T = --, 

u,. 

a new set of dimensionless equati ons is obtained : 

• I I 
- V + P z - - Uzz - - Uzz = 0 

2 2 

I I 
U- - Vzz - - Vzz = 0 

2 2 

• 
2 a Sw - P zzz = o 

Uz +Wz = 0 

(6) 

(7) 

(8) 

(9) 

(1 o) 

The only parameter in this set of equati ons is aS, composed of the vertical 
Prandtl number a = µV/y and a stability parameter S = 1/a.2 • N'/f'. Under 
natural conditions, a S ( ( 1 in the ocean which is the basis for the present 
boundary layer approximation (as the shelf area is taken as homogeneous, 
the second condition aS ( ( H - 4 must be satisfi ed simultaneously) . The hori-
zontal Prandtl number has been taken as zero from the very beginning and 
thus does not occur as a second parameter. The implicati ons of this assump-
ti on have been discussed by T omczak ( 197 3). 
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The boundary conditi ons in dimensionless form are 

u, V < oo at X -+ oo 

U = UE, V = VE at X = 0 

l l 
- - Uz = . x - - Vz = rY at z = o 

2 2 

U = V = W = 0 at Z -+ oo 

R z = w = o at z = o 

R = o at z-+ oo 

[3 2,3 

(II) 

(12) 

(14) 

(15) 

( 16) 

Here, -,;-x and -,;-Y denote the components of the wind stress t, and UE and VE 

the components of the Ekman current within the surface and bottom bound-
ary layer on the shelf, which, in the case H )) 1 to which the present study is 
restricted, are: 

UE = exp (-z)[(i-x +i-Y) cos z -(i-x - -,;-Y) sin z] } 

-exp (z -H) [(i-x + i-Y) cos (H -z)-(i-x --,;-Y) sin (H -z)] 

at at z .. H, UE = 0 z > H 

VE= - exp (-z) [(i- x--,;-Y) cos z + (i- x + -,;-Y) sin z] 

+exp (z-H)[(i-x--,;-v) cos (H-z) + (i-x +i-v) sin (H-z)] 

at z.;;H, VE= 0 at z > H 
} ( l 8) 

UE is shown in figure I for the case -,;-x = o. For simplicity, the inflow at the 
bottom has been assumed to be the inverted Ekman spiral. In general, this 
compares as well with a realistic circulation on a shelf area as a boundary layer 
fl ow satisfying u = v = o or Uz = oat the boundary, and it simplifi es the mathe-
matics. 

3. Method of solution 

Equations (7)-(10) subject to boundary conditions (11)-(16) are solved with 
the aid of a double Fourier transform. If we define the transform 

~ ~ co 
(U,f/) (x,z) = J (u,v)(x,z)sinxxdx 

0 

~ ~ co 
(Tx, Tv)(x) = f (i-x, -,;-Y) (x) sin xxdx (20) 

0 

~ ~ ~ co • • 
(R,P,W)(x,z) = I (R,P,w) (x,z ) cos xxdx 

0 
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and on the defined functions, defin e ano-
ther transform 

a, 

} (U,V,P )(x,C) = f (U, Y,P) (x,z) 
(22) a 

cos Czdz 

a, 

} 
(R, W ) (x,C) = f (R, W)(x,z) 

a (23) 
sin Czdz 

we obtain from ( 7 )-(Io), by appropriate 
integrati on, the algebraic set of equations 

I ~ 
- V - X P + - (xz + (2) U = T x 

2 

I 
+- x UE 

2 l 

o, ¢= 

H 

region 

of 

unknown o, ==> 

circulation 

F igure I . Theoreti cal model of coastal up-
wellin g used in the present study. 
0 : origin of coordinate axes. Dz , 
Dz: horizontal and verti cal Ek-
man layer width, respecti vely. 
The black curve is the x com-
ponent of the Ekman current 
prescribed at the "boundary" of 
the oceanic region , x = o, and 
the arrows indicate the direction 
of the integrated Ekman layer 
mass tr ansport . 

2 a SW - (3 P = C R o (26) 

(27) 

where U, V, W , P are unknown functions of X and C, 'i x and TY are known 
f~nctions of x, UE and VE are known functi ons of C given in appendix A, and 

Ro is an unknown functi on of X which has to be determined by applying the 
only boundary condi ti on not used in the derivati on of (24)-(27). This proce-
dure has been described in MT and led to the result that the influence of the 
thermodynamic boundary condi tions is of the order of cc • which in the ocean 
is of the order of r o- 6• We anticipate here that the same result is true in the 
present problem and facilit ate the presentation of the computati ons by neglecting 

Ro in (26). 
If we now restrict our attention to the case of a uniform windstress directed 

parallel to the coastline, we have -i;x = o, -,;Y = I. As, for applying Fourier 
transform techniques, all functions have to vanish at large x, we replace this 
condition by 
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Tx = o, 

(see Oberhettinger (1957), p. 121), and we replace (II) by u = v = o at 
x co. The parameter A is chosen in a way that -,;Y is essentially constant over 
a distance of the order Io off- shore but, apart from this condition, arbitrarily. 

Applying Cramer's rule to (24)-(27), we obtain for the vertical velocity 

and for the off-shore component of the horizontal current 

U(x, C) = D4N [ , 4 4 ( 1 - cos c H) (8xC6 + 4 x3 C4 + 16 W + x2)xa S) 

wi th 

- ---;:/- xc sin CH Wx 2 + 2 x2 + (4 + 4 C-4) 
', +4 

- (J(C~ + 4/ C2 + 2) W + x2)xaS sin CH+ fv] 

This soluti on can be transformed back into the x, z-domain. The detail s of 

the procedure yielding W(x,z) are given in appendix B. The result is 

~ I 
W(x,z)= ( 4 )[2[exp(- q;+z)(2cosq;- z +x2 sinq;-z) 

4 X +4 

~ I 
- 2 cos '1/)Z exp (-1Pz)J (TY X - 1 )- - exp ( - q;+ (z - H) sign (z - H)) 

2 

[[ q;+(x2 - 2) + q;-(x2 + 2) - 2 x2 sign (z - H)] sin q;- (z -H)sign (z -H) 

-[4 sign (z- H) -(x2 + 2)q;+ + (x2 - 2)q;- J cos q;-(z -H)] 
I 

- 2 exp (- '1/)(Z + H)) [(4 + 7P(x2 + 2)) cos 7P(z + H) + 1P(x2 + 2) sin "P 

I 
(z + H)] - 2 exp (- 1P(z - H) sign (z - H)) [(4 sign (z -H) 

- 7P(x2 + 2)) cos 7P(z - H) - 1P(x2 + 2) sign (z - H) sin "P(z - H)]] 

q;+, <p- and "P are functions of X and are defined as 

(32) 
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[
(x4 + 4)1/2 + xz] 1/2 

<p+ = 
2 
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(33) 

(34) 

The transformation of W(x,z) into w(x,z) is done numerically and the result 
is presented in the form of streamlines. The streamfunction G(x,z) is de-
fined by 

Gz = u, Gz = - w (35) 

The boundary conditi ons fo r <p are obtained in the following way: By defini-
tion, G = f wdx + F(z) where F(z) = G(x = o, z). 

At the shelf edge x = o there is no ri gid boundary at all depths z < H, and 
F(z) is given by G(x=o, z)= - f udzlz =o , which, from (17) and (18), 
results in 

- F ( z) = 1:z exp ( - z) sin z - 1:Y exp ( - z) cos z 

+ exp (z - H ) (1:z sin (H - z) -1:Y cos (H -z)) 

atz<H, -F(z)=-1 at z ~H 

} (36) 

In the special case 1:z = o, 1:Y = exp ( - Ax) treated here, we have 

F(z) = exp (-z) cos z+exp (z-H) cos (H -z) 

at z < H, F(z) = 1 at z H 
} (37) 

4. Results and discussion 

Before the results are given in the form of streamlines, some comments on 
the soluti on help to understand the physics of the circulation. The first term 

of eq. (32) takes into account the variation of the wind stress TY, it describes 
the form of the surface Ekman layer in response to a wind which varies in 

space. In the present example where fv is given by (28), this term is very 
small as compared with the other two groups of terms and for A o in fact 
tends to zero. 

The second term or rather group of terms is important in a corner region 
only where a horizontal and a vertical frictional boundary layer merge. The 
role of this type of terms has been elucidated in MT. In the present case these 
terms are important only in the area of small x and values of z which come 
close to z = H, i.e. near the shelf edge. It can be shown that they contribute 
to the solution only for values z :5 H. 

The last group of terms (involving '1./J) is the only one which exhibits a 
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O O X 

z_ -, as 
02s-CC---"'i 

:~·~~;,) ,,.._ _ 0 

I ---
6 l ", 

I \ 
I \ 

B I I 
I I 
I <-0.1 I 

10 I I 
, I I 

I I 
12 ol I 

I -0/ 
I I 
I I 

dependence on stratification. The general type 
of solution has again been described in MT. 
The special form which these terms attain in 
the present solution corresponds to the boundary 
conditions: In the homogeneous case the terms 
vanish for all z H; at z < H they result, for x 
large enough, in a constant value of - I counter-
balancing the value of F = r given in (37) 

Streamlines of the flow perpendicular to the 
coast are shown in figures 2-4. The circulation 
on the shelf (which is prescribed as a boundary 
condition) is not shown. As can be seen from 
fi g. 2, the effect of a shelf, which is sufficiently 

Figure 2. Streamlines of the fl ow deep in order to display a simple boundary layer 
produced by .x = o, 
.Y = exp (- a.oar x) in circulation with an interi or at rest, on the circu-
a homogeneous ocean lation of a homogeneous ocean is simply the 
(a S = o), given in units combination of two circulations, both of which 
of G as defined by (35) 
and (37). display a flow restricted to the frictional bound-

ary layers, into a single one where again all 
transport occurs in the boundary layers. Thus, at the surface upwelling is 
present only at the inner end of the shelf (the coastline), while subsurface 
upward motion occurs along the coast and along the shelf edge. Above the 
shelf edge there is no upwelling at the surface; the wind-driven Ekman fl ow 
is completely uniform (the shape of the zero-streamline at large x is not very 
signifi cant since for large x the stream functi on is close to zero at all depths 
except within the Ekman layer). 

The circulati on in a stratifi ed ocean is given by fig. 3 and 4. It can be seen 
that the bottom inflow into the shelf area is no longer fed by a frictional bound-
ary layer along the shelf edge; appearance of the diffusive scale '1/J causes the 
infl ow to be fed to a large part from the oceanic interior. This result is well 
known from MT. More important is the fact that above the shelf edge verti-
cal fl ow occurs very close to the surface which is accompanied by an increase 
of off- shore velocity. The circulation establi shed here can be described as a 
secondary center of upwelli ng bounded on its seaward side by a region of dif-
fuse downwelling. The effect is essentiall y restricted to the Ekman layer ; 
"upwellin g" above the shelf edge in the present model occurs as a decrease of 
Ekman layer thickness rather than additi onal transport into the Ekman layer. 
This of course is mainly due to the boundary conditions: It has been assumed 
that the Ekman layer transport generated on the shelf enters the ocean com-
pletely. As a consequence additional inflow into the Ekman layer in the 
oceanic region is impossible because of mass continuity. 

It must be noted that the numerical examples are not completely consistent 
with the basic assumptions (a)-1/ 4 )) H )) r. As H = 5, the second condition 
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Figure 3. Streamlines of the flow 
produced by -cX = o, 
-cY = exp (-0.001 x) in 
a stratified ocean (aS = 
0.002.). 

Figure 4. Streamlines of the flow 
produced by -ex = o, 
-cY = exp (-0.001 x) in 
a stratified ocean (a S = 
0 .02.). 
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is met to a certain extent. The first condition, however, strictly holds only for 
figure 2. As a consequence, the shelf area in figures 3 and 4 is weakly stratified. 
This is of importance for the upwelling circulation outside the shelf only with 
respect to the physical truth of the boundary conditions: For a stratified shelf 
area, ( I 7) and ( I 8) have to be replaced by a more exact circulation scheme 
which can be obtained from the solution presented in MT. 

In the present calculation, however, it does not seem feasable to introduce 
the more complicated fl ow of a stratified shelf region as a boundary condition; 
too little is known about the velocity distribution on real shelf areas which 
might allow us to choose a truly realistic input into the system at the shelf edge. 
In order to demonstrate the principle influence of the circulation on the shelf 
and stratification in the deep ocean, the present soluti on is adequate. 

The results shown in fig. 2-4 reaffirm some conclusions which have been 
drawn from other theoretical work on upwelling. They demonstrate in partic-
ular the limits of two-dimensional models: Consideration of stratification leads 
to a finite depth of upwellin g, consideration of a shelf area to a weak secondary 
upwelling zone above the shelf edge. The fact that a reasonable strong up-
welling undercurrent does not exist in the present solutions points to the need 
of the three-dimensional models. The fact that the secondary upwellin g zone 
in reality is much stronger than indicated here and usually is accompanied by 
a frontal zone separating it from the oceanic regime, supports the idea ex-
pressed already some time ago (Tomczak, I 972) that the overall concept of 
modelling friction and diffusion should be changed. Instead of using constant 
eddy and diffusion coeffici ents (which, in order to come to reasonable results, 
have to be chosen rather large) within the whole ocean, restriction of the dif-
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fusive process to a small coastal area seems to be much more appropriate. Three-
dimensional, quasi-geostrophic models with point sources within the upwelling 
region and distributed sinks at large distance will be able to improve the results 
presented here. 

It is important to note that the problem of a more realistic model of the dif-
fusive processes is not restricted to the /-plane model; even if a p-plane model 
is used and the correct matching of the upwelling regime to the oceanic in-
teri or as discussed by Garvine (1974) is achieved, the dynamic importance of 
mass diffusivity remains the same and cannot be described by constant coeffi-
cients. Boundary layer theory is an adequate tool for describing the effect of 
turbulent diffusion of momentum, it fails when applied for the description of 
turbulent diffusion of mass. 

Appendix A. Fourier Transform of the Ekman Current 
If we write equations (17) and (18) as 

denoting by the index S the surface boundary layer, by B the bottom boundary layer, we 
can easil y evaluate (22) for uEs and 'VES (Oberhettinger (1957), p. 18/20) and find 

For_ the bottom boundary layer, the integral (22) has to be evaluated from o to H . By ap-
plymg simple theorems for harmonic functions, we have 

l ~ ~ 
UEB = - - exp (-H) (TX+ TY) 

2 

H 

Hf exp (z) [cos(z(1 +C)-H) +cos (z(1-C)-H)]dz 
0 

l ~ ~ 
- -;_--exp (-H)(TX-TY) 

H 

Hf exp (z)[sin(z(1 +C) -H) +sin (z(1-C)-H)]dz 
0 

This can be integrated (Grobner and Hofreiter (1965), eq. 334.4 and 334.5) taking into 
account H » r and thus evaluating the integral at z = o only. The final result is 

UEB = _ fx . C3 sin CH+ 2 t;" cos C H -2 C sin CH 
(4 +4 

- TY . C3 sin CH + 2 C sin CH + 4 cos C H 
(4 + 4 
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V fx C3 sin t;, H + 2 t;, sin t;, H + 4 cos t;, H 
EB = . t;,4 + 4 

-TY . t;,3 sin t;, H + 2 t;,• cos t;, H - 2 t;, sin t;, H 
t;,4 +4 

Appendix B. Transformation of W (x, C) to W (x, z) 
Since W is an odd function of t;,, we have 

+a:> +a:> 

W(x,z) =.:.. J Wsint;,zdt;.=_:_. J Wexp(i t;,z)dt;, 
n nz 

0 _., 
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W has simple poles in the complex plane which for aS « r have been given in MT: 

vvx4 +4-x• ·V Vx4 +4+x1 
• t;,, = - t;,5 = - -'----- +I -'----- = -<p- + t<p+ 

2 2 

VaSx4 
t;,4 =-Cs= (-r +i) - - · = (-r +i)'I/J 

X4 +4 

T hus, we may write approximately 

Writing the terms cos t;, H and sin t;, H as exponentials, the integrand reads 

W exp (if;, z) = A0 exp (it;, z) +A, exp (it;, (z + H )) +Az exp (it;, (z-H)) 

The path of integration in the complex plane consists of the path from - oo to + oo along 
the real axis and a semi circle in the upper half plane for the fir st two terms and the third 
term for z-H> o. For z - H < o we take a semi circle in the lower half plane. The integral 
then is equal to 2 ni times the sum of the residues in the upper half plane for positive imaginary 
parts in the arguments and -2ni times the sum ofresidues in the lower half plane for negative 
imaginary parts. Thus we have 

which leads to (32). 
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