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Tide-well Systems II: 

The Frequency Response if a Linear 

Tide-well System' 

B. J. Noye 

Depar tment of Applied Mathematics 
The Univ ersity of Adelaide 
A delaide, South Australia 500I 

ABSTRACT 

Recent uses to which tide records have been put have exposed limitations of the non-
linear tide well with an orifice. By replacing the orifice with a long horizontal pipe connec-
tion, the system becomes essentially linear and the limitations of the conventional system no 
longer apply . The analysis in this paper shows that unsteady effects in the pipe flow produce 
the main features of the frequency response of the system; the hydrodynamic filtering of 
waves due to the depth of the pipe connection and the effect of the inertia of the water in 
the well are relatively unimportant. The response is governed by a tide-well parameter N, 
the optimum system having N = 1 / 3• For values of N less than 1/i the system amplifies certain 
wave components, and for values of N?. 5 the response is similar to that given by a quasi-
steady approximation . The linearity of the system depends on the pipe flow being laminar 
and criteria to assure this are given. Experimental results for some tide-well models show 
remarkable agreement with theoretical predictions. Three such systems installed in Australia 
before the development of this theory are critically discussed. 

1. INTRODUCTION. Most tide gauges measure the level of water inside a 
circular well, the well being connected to the sea through an orifice. The dis-
advantages of this conventional type of tide well have been considered by 
Lennon (1967), Noye (1968, 1970, 1972, 1974), Cross (1968) and Halliwell 
and Perry ( 1 969 ). Lennon discussed the recording of the water level in the 
well, the response of the system and the effect of the environment on the results 
obtained from the well. Halliwell and Perry were specifically concerned with 
the set-down of the well level due to tidal streams; Cross and Noye were con-
cerned with the nature of the response of the conventional tide-well system. 

The most important characteristic of the response of the conventional tide-
well system is that it is non-linear; the water level in the well oscillates with 
the frequencies of the oscillations in the sea level, plus higher harmonics and 
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Figure i. Notation used for the tide-well system with a long horizontal pipe connection near the 
sea floor. 

oscillations at sum and difference frequencies, and the amplitudes of the re-
sulting well oscillations are non-linear functions of the amplitudes of the sea-
level oscillations. This non-linearity creates difficulties when measurements of 
harbour oscillations, excited by tsunamis or other causes, are to be read from 
tide-well records. These relatively high frequency oscillations are superimposed 
on the periodic rise and fall of the tide. 

Problems also arise when records from a conventional tide-well system are 
analysed to determine tidal components. With an input which consists of super-
posed waves of different frequencies, such as the tidal components, it is not clear 
how much the non-linearity of the system contributes to the amplitudes of 
harmonics of these components, or to oscillations which occur at sum and dif-
ference frequencies of these components. It is likely that some of the energy 
attributed to shallow water components may not in fact be due to influences 
from outside the well, rather arising from non-linear effects at the orifice. 

The tide well with an orifice also gives readings which are too low when 
wind waves and swell are present in addition to the tides. Noye (1974) used 
the method of Cross (1968) to show that the mean level in the well may be 
up to 15 cm lower than that in the surrounding sea in such a case. It is there-
fore not feasible to use records from such a system to find mean sea-level for 
land surveying. 

The response of a tide well with a long horizontal pipe connection near the 
sea floor ( see Fig. 1) is very different from that of the conventional tide well. 
Provided certain criteria are satisfied, the How in the pipe is laminar and the 
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pipe acts as a linear filter. The response function of such a system is independent 
of the incident wave amplitude and the principle of superposition of solution 
holds. 

One estimate of the response function of such a system was made by O'Brien 
(1950) and similar results were derived by Noye (1968). In both papers, it 
was assumed that the Poiseuille formula for fully developed laminar flow in a 
pipe under a steady pressure gradient was a reasonable approximation for oscil-
latory laminar pipe flow with a given instantaneous pressure gradient; thus 
this theory may be described as quasi-steady. By this method the amplitude 
response CX1, the ratio of the amplitude of the well response to the amplitude 
of an incident wave of circular frequency w, is found to be 

(1.1) 

and the phase lag at this frequency is 

s, = arctan {J2 ( 1.2) 

where {J, is a dimensionless frequency given by 

(1 .3) 

Here vis the kinematic coefficient of viscosity of seawater (1.2 x I o-3cm2-sec1 

at sea temperature), Lp is the length of the horizontal pipe connection, Dp is 
the uniform diameter of this connection, Dw the uniform diameter of the well 
and g the gravitational acceleration. 

In obtaining this estimate, no account was taken of attenuation of wave 
pressure due to the depth of the pipe beneath the sea surface, of the effect of 
unsteadiness on the flow through the pipe and of the effect of the inertia of the 
water in the well. These three effects have now been investigated and the 
findings are reported in this paper. 

The hydrodynamic filtering due to depth reduces the amplitude response 
below the value given in equation ( 1. 1) but leaves the phase lag unaffected. 
The effect of unsteadiness in the pipe flow is to increase the phase lag given in 
equation (1.2) at all frequencies and the amplitude response is higher at low 
frequencies and lower at high frequencies than the estimate (I.I). For large 
values of a parameter N, which is a function only of well and pipe dimensions 
(see equation (2.25)), the values of the amplitude response and phase lag are 
similar to the quasi-steady estimates CX1 and e,. For small values of N, the am-
plitude response can be greater than unity at low frequencies. Finally, at low 
frequencies, the effect of the inertia of the water in the well is to slightly in-
crease the amplitude response if the phase lag is less than n/2 and decrease this 
response if the lag is greater than n/2. 
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The first and last of these effects are not important until high frequencies 
are reached, when the amplitude response is already very small. On the other 
hand, for moderate values of N the unsteadiness in the pipe flow has significant 
effects at all frequencies and this is the major conclusion of the present paper. 

Criteria for the transition from laminar to turbulent flow in a long pipe 
under unsteady conditions under which the system remains linear have been 
established. Furthermore, it is shown that, unlike the conventional tide-well 
system, there is no difference in mean level inside and outside the well in the 
presence of wind waves. 

Using these results, three different models were designed and constructed for 
testing in the laboratory. Experimentally determined estimates of the response 
functions of these models were found by simulating a long ocean wave of known 
amplitude and frequency outside the well and measuring the response of the 
water level in the well. All experimental results agreed exceptionally well with 
the theoretical values. 

Three tide-well systems with a pipe connection have been in use in Australia 
for some years. All three have peculiar characteristics in their frequency re-
sponses which could have been predicted if the results of the present paper had 
been available at the time they were installed. One is a well and pipe system 
used to measure water level oscillations in lagoons in the south-east part of 
South Australia. The other two are used to measure tides, at Macquarie Island 
in the Southern Ocean, and at Cairns in Queensland. 

2. THEORETICAL FREQUENCY RESPONSE. Consider a tide well with a long 
horizontal pipe connection close to the ocean floor (Fig. I). The mean sea 
level will be taken as datum for all measurements, the pipe being a depth d 
below this level. Consider the response hw of the water in the well to an oscilla-
tion, the real part of 

(2.1) 

of the sea level about the mean, t being the time and w the angular frequency 
of the oscillation. Since the system is linear, we may write 

(2.2) 

where I Zwl / I Xo I is the amplitude response and arg (X0 /Zw) is the phase lag of 
hw relative to ho. 

For long period waves, such as harbour oscillations and tides, the pressure 
p at the ocean end of the pipe is 

Po = Pa+ egd + egkoho, 

where Pa is the atmospheric pressure, (! is the density of sea-water and ko is the 
pressu~e transmission factor introduced because of the hydrodynamic filtering 
occurnng through the depth d. This factor is given by 
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ko = sech ("d), 
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(e.g. Kinsman 1965 p. 143) where " is the wave number. Equation (2.4) is 
only an approximation for wind waves which are considered in detail in 
Section 4. 

In order to estimate the pressure Pw at the tide-well end of the pipe, assume 
that at any instant the velocity field in the well is constant throughout and is 
equal to that of the surface, dhw/dt. Application of Bernoulli's theorem for 
unsteady flow with velocity potential xdhw/dt, x being the vertical co-ordinate 
above the pipe, yields 

x--w + - ___3:1!_ +gx+p/e = F(t) d' h 1 (dh )' 
dt2 2 dt 

(2.5) 

throughout the well. Equating values at the water surface and at the pipe 
opening g1 ves 

(2.6) 

assuming that the amplitude of the incident waves is much smaller than the 
mean depth of the sea, i.e. hw<( d. 

The pressure gradient along the pipe into the well is 

(2.7) 

which, on substitution for Pw,Po, ho and hw from (2.6), (2.3), (2.1) and (2.2), 
respectively, becomes 

The factor 
kw= I -w'd/g 

l (2.8) 

(2.9) 

incorporates the correction for the inertia of the water in the tide well. 
Since the pressure gradient in (2.8) has the form 

( 2 . IO) 

where 
(2.11) 

an exact solution for the unsteady laminar Row of an incompressible viscous 
fluid in a pipe, due to a pressure gradient sinusoidal in time, will now be used. 

The result for the velocity profile due to the pressure gradient ( 2. 1 o) can be 

written (e.g. Lambossy, 1952) 
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( ) iA { ]o(i3f•ar/Rp)} twt 
v r,t = - I - J ('3/2 ) e , 

(!W o I <J 
(2.12) 

where r is the radial distance from the centre line of the pipe, Rp the pipe 
radius, and 

Then the instantaneous flux 

Q(t) = 2n J:P v(r,t)rdr, 

yields, on using the relation f xJo(x)dx = xJ1(x), 

nDp4 Ai{ 2J,(ai3l•) } twt 
Q(t) = 16ve. <12 1 - ai312 J 0 (ai312) e . 

The steady Poiseuille result is obtained in the limit o. 
However, by continuity, 

Combining (2.2), (2.11), (2.15) and (2.16) gives 

R(a) 
Zw = -,---(3 (kwZw - koXo) 

I 2 

where 

It follows that 
Zw ko 
Xo = kw - i /32 R-1 · 

(2. I 3) 

( 2.14) 

( 2. I 5) 

( 2. I 6) 

( 2. I 8) 

(2.19) 

Therefore a better estimate of the amplitude response for this tide-well 
system than that given by ( 1. 1) is 

(2.20) 

with corresponding phase lag e2 in [o,n] given by 

( 2.21) 

a. The Effect of Unsteadiness in the Pipe Flow. If w2d/g<( 1, it is clear 
that ko I and kw~ 1; this is the usual condition in practice, e.g. if the 
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pipe is less than 1 o metres below mean sea level, periods greater than one 
minute give w2d/g < 0 .01. The response function then becomes 

yielding an amplitude response of 

and a phase lag of 

However 

where 

e2 = arg ( 1 - i /32 R-'). 

a= (/32/ N) 1I•, 

N = I 28v2 LpDw2 

D 6 ) 
g p 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

so that R(a) = R(/321I• N-•I•) is a function of the dimensionless frequency /32 
and the dimensionless tide-well parameter N. Hence cx2 and e2 are also functions 
of these parameters. 

The approximations for small /32 and fixed N are 

/32 ( 1 ) CX2 = I - 2 1 - 3 N + 0 (/3!)' (2.26) 

and 
ez = /32 + O(f3V, (2.27) 

from which it is clear that for low frequencies the amplitude response exceeds 
unity if N < ½ and tends to unity as /32 o. 

The asymptotic expansions for large /3. and fixed N are 

SN{ (2N)'''} CX2 = /3~ I - p; + 0({3;3), (2.28) 

with 

(

2 N) 1
1

2 

e2=n- T, +0({3;'). (2.29) 

The amplitude response thus diminishes rapidly at high frequencies while the 
phase lag tends to n. The smaller is the value of N, the sharper will be the cut-
off in the amplitude response CX2. 

Also, for the values of the frequency which are of interest in tidal work, 
equation (2.24) shows that the larger is the value of N, the more nearly correct 
is the quasi-steady approximation ( a = o) when the amplitude response and the 
phase lag will be given by the estimates (1.1) and (1.2). 
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Figure 2. The amplitude response due to pipe effects, allowing for unsteadiness in the flow. 

The values of the real and imaginary parts of R(a) are obtained in terms of 
Kelvin functions (see Jahnke, Emde and Losch, 1960), from which <X2 and E2 

are found using 

and 

where 
tan e2 = cos 0(q{J;'- sin 0t', 

R = qe10. 

Graphs of <X2 and e2 against /J2 (Figs. 2 and 3) illustrate clearly the properties 
of the response functions referred to earlier. For N < ½, the amplitude response 
is greater than unity at low frequencies; the smaller is the value of N, the higher 
is the peak in the amplitude response. For all values of N, the phase lag is 
almost zero at low frequencies and tends to n at high frequencies. For large 
values of N, both the amplitude response and the phase lag are close to the 
quasi-steady estimates, provided /J2 is not too large. 

With regard to amplitude response, the optimum value of N is½- For such 
a system Fig. 2 shows that there is no amplification of waves, unit response is 
retained for the greatest range of /J2 and the cut-off is the sharpest. The value 
of <X2 remains near unity until /J2 = 1, when <X2 = 0.95, then falls rapidly to 
<X2 = 0.1 when /Jz = 4. A suitable choice of well and pipe dimensions will pro-
duce near unit response up to any desired frequency. For instance, with N = ½, 
a requirement that tides be recorded with no attenuation for all periods greater 
than one hour implies that /J2 = 1 corresponds to a period of approximately 
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Figure 3. The phase lag due to pipe effects, allowing for unsteadiness in the /low. 

30 minutes. In such a case {3, = 4 corresponds to a period of 7 ½ minutes, so 
that as the period decreases from 30 to 7 ½ minutes the amplitude response falls 
from a value of 0.95 to 0.1. 

From Fig. 3, it is clear that some phase lag occurs for most values of {3,. In 
the example just given, a wave with a period of one hour corresponds to {3, = 
0.5, so that the phase-lag is nearly n /6 radians and the time lag is nearly 6 min-
utes. The same time lag applies for both semi-diurnal and diurnal tides. For 
low frequencies (2.27) shows that the phase-lag approximates {32 radians, ir-
respective of the value of N. For tidal frequencies the time lag is therefore 

- '{3 T = W 2, ( 2 .33) 

which yields on application of (1.3), 

32vLpDw' 
T = gDp4 ' (2.34) 

i. e. the time lag depends only on the tide-well dimensions. As the system is 
linear, the same lag applies through the complete cycle for any tidal component. 
This is in contrast to the conventional tide-well system in which the lag in-
creases with increasing wave amplitudes and varies through the wave cycle 
(Noye, 1968). With the linear system, accurate corrections for phase lag can 
be applied to give the correct time of occurrence of tidal extremes and the 
correct phases of tidal constituents. 

b. Hydrodynamic Filtering due to Depth and Effect of Inertia of Water in 
the Well. If w2djg is not small, then the effect of ko and kw on the response 
function can no longer be neglected. 
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The pressure transmission factor ko has no effect on the phase lag e2; it 
simply multipli es the amplitude response OC2. The dispersion relation 

leads to 
w2 = gx tanh (xd) 

(xd) tanh (xd) = ql, 

where <p is a dimensionless frequency given by 

<p = w(d/g) •f2_ 

Combining (2.4) with (2.36), we can express ko as a function of <p. 

(2.35) 

( 2.37) 

Rossiter and Lal ( I 963) developed an approximate formula for the attenua-
tion of pressure with depth, viz. 

ko = exp ( - <p), 

by substituting the shallow water approximation for (2.35) in the deep water 
approximation for the decay of wave pressure with depth. In Fig. 4, this ap-
proximation is compared with the exact evaluation of (2.4) with (2.36). Large 
differences occur for intermediate values of <p; for waves with period 6.3seconds 
in Io metres of water the pressure transmission factor is o. 36 by the expo-
nential approximation and 0.55 by the exact evaluation. A rapid decrease in 
the value of the pressure transmission as <p increases through unity is clear from 
Fig. 4 ; this causes the amplitude response for large values of /J1 to decrease 
even more rapidly than shown in Fig. 2. 
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Figure 5· An " optimum" tide-well system with N - '/J for use in ten metres of water. The solid 
line indicates the contribution of the pipe to the response, the dashed line is the complete 
response. 

The effect of the inertia term kw, given by 

kw= I - <p\ (2.39) 

is to change both the phase lag 1::z and the amplitude response ix2 • The complete 
response, given by equations (2.20) and (2.21), becomes 

(2.40) 
and 

tan 82 = cos 0(kwqfJ-;'-sin 0t', 82 in [o,n]. 

However, it must be realised that the approximations used in deriving equation 
(2.6) imply that w2d/g(< I. Consideration of (2.40) and (2.41) shows that, for 
values of <p which are small compared to unity, the effect of kw is to sli ghtly 
increase ix2 when the value of the frequency is small enough that 82 < n/2 and 
to decrease ix2 when 82 > n/2. 

Therefore, at low frequencies, the effect of the inclusion of both ko and kw 
in the amplitude response ix2 is very small, particularly since one tends to com-
pensate for the other. At higher frequencies, they combine to cause a reduction 
in the amplitude response. This is seen in Fig. 5 where, for the tide-well in 
question, the complete amplitude response is shown as the dashed line, whereas 
the result of ignoring the pressure attenuation and the inertia of the water in 
the well is shown by the solid line. This situation corresponds to the extreme 
case when the pipe is deep, approximately ten metres below mean sea-level, 
and the effects of pressure attenuation and inertia of water in the well are even 
more pronounced than is to be expected normally. The tide well was designed 
to permit unattenuated linear recording of tides with maximum range of 2 
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metres and suspected four minute harbour oscillations up to 20 cm in height, 
while suppressing wind waves of maximum height 60 cm and greatest period 
8 seconds. 

3. CONDITIONS FOR LAMINAR FLow IN THE PIPE CONNECTION. It has 
been assumed in the preceding analysis that throughout the whole pipe connec-
tion the flow is laminar. In other words it has been assumed, firstly, that 
throughout the pipe, the Reynolds number Re is less than some critical value 
Re*, where _.a 

[(3.1) 

/7 being the mean velocity in the pipe and, secondly, that the end effects are 
negligible. Minimisation of the end effects requires that Lp))Dp, the usually 
accepted condition being (Duncan et.al., 1960, p. 397) 

Lp> 100Dp. (3.2) 

Little is known about the stability of time dependent laminar flow in pipes, 
although it has been demonstrated by Combs and Gilbrech (1964) and others, 
that modulation of steady flow in a pipe generally has a stabilising effect. The 
only measurements of critical Reynolds numbers for oscillatory pipe flow about 
a zero mean velocity appear to be those of Binnie (1945), Ury (1962) and 
Sergeev (1966). Binnie's results cover only a very limited range of the fre-
quency parameter and, further, the Reynolds number used was not defined. 
The results obtained by Ury are not directly applicable, because a U-tube was 
used rather than a long straight pipe and the oscillations were damped and 
hence not exactly periodic. Therefore Sergeev's results for forced oscillatory 
flow in a vertical pipe are the most appropriate. Fig. 6 is a plot of his values of 
Re* against the parameter a in the case of undamped oscillations. 

Ury (1962) also used a semi-empirical approach to determine the critical 
Reynolds number for oscillatory flow in a U-tube, by finding the "kinetic" 
Reynolds number Rk at which the friction factors for oscillatory laminar flow 
and turbulent flow are equal. He introduced the concept of a "kinetic" Rey-
nolds number, in order to define an equivalent Reynolds number for oscillatory 
flow which is equal to that for a steady flow with the same average kinetic 
energy. It was defined by the relation 

(3.3) 

where 02 > 1 is an apparent-mass factor for the liquid in the U-tube. This 
factor occurs because the distribution of flow velocities over the cross-section 
of a tube leads to a total amount of kinetic energy which is always greater than 
that computed on the assumption of constant velocity, equal to the arithmetic 
mean, over the entire cross-section. 
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Figure 6. The cri t ical Reynolds number for oscill atory flo w in a long pipe. 

_Dry's method can be applied to oscill atory laminar fl ow in a long pipe by 
using 

(3.4) 

where v is the velocity in the pipe, given by (2.12). The corresponding critical 
Reynolds numbers, for different values of a computed in this way, are shown 
by a dashed line in Figure 6. This estimate is slightly lower than Sergeev's 
experimental values, applicable for a ;::::: 4, and lower than the accepted empirical 
value Re•~ 2000 for steady pipe fl ow. For steady fl ow, the frict ion factor 
method yields Re*_,.,_ r 330. 

Smith ( r 960) and other authors consider that turbulent fl ow may com-
mence in the inlet region and be carried into the pipe. Although little is known 
about inlet conditions for unsteady fl ow, a theoretical study of steady fl ow by 
Tatsumi (1952) yielded a stabil ity limit with a minimum cri tical Reynolds 
number of 9700 in the entrance region. However, disturbed conditions at the 
entry do not imply turbulent fl ow throughout a pipe; unless the magnitude of 
a disturbance is very large, it will die out as it passes along the pipe. Patel and 
Head ( r 968) quote many cases when reverse transiti ons may occur, i.e., when 
turbulent fl ow reverts to laminar fl ow as a result of favourable pressure gra-
dients. 

Basing the criteri a for laminar pipe fl ow on the results of Sergeev's experi-
ments and the results of the fri ction factor method, one may suggest for the 
cri tical Reynolds number, in the range o < a < 40, the empi ri cal formula 



168 J ournal of M arine Research 

Re* = 1300 + I oo a31•. (3 .5) 

The curve computed from (3.5) is shown dotted in Fig. 6, where it is seen to 
be similar to the results obtained by the friction factor method, although it 
takes slightly smaller values. 

For a single incident wave-train, at circular frequency w, one can determine 
an upper limit am, to its amplitude a, at which the flow will remain laminar. 
By continuity, one has 

where the upper bound on V is 

Substitution in the necessary condition 

Re::;Re* 
yields, by (3. 1 ), 

Dpv Re* 
a <--. --

- Dw2 WCX.2 • 

The right-hand side of this inequality gives 

Fig. 7 shows graphs of the dimensionless amplitude 

plotted against /32, for different values of N. 

[(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

The upper bound for the permissible recorded amplitude is given by the 
ri ght-hand side of the relation 

DpvRe* 
acx.2::; DwZ w· (3.12) 

When n wave trains of amplitude ar and circular frequency Wr are super-
posed, then the maximum value of dhw/dt is 

(3. I 3) 
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It follows that V m, the maximum value of the mean pipe velocity, satisfies the 
inequalit y 

The maximum possible Reynolds number for the pipe fl ow in the system is 
therefore 

If 
Rem ax < I 300, 

laminar pipe fl ow will be assured. This criterion for laminar fl ow is, in fact, 
rather severe, since in (3.14) V m is usuall y much less than the ri ght-hand side. 
For applications to normal tide wells, considerati on of only dominant tidal 
components, harbour oscill ations and wind waves in (3. 15), will give a good 
estimate of Remax· 

4. THE EFFECT OF Wrno W AVES. Formulae (2.3) and (2.4), fo r the pres-
sure at the sea end of the pipe, imply that the wave amplitude I ho I max sati sfies 
the two relations 

and 
lholmax(< d. 

For long peri od waves such as tides, tsunamis, and harbour oscill ations, when 
amplitudes are much smaller than wave-lengths, (4.1) is satisfi ed; if the pipe 
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lies in sufficient depth of water, condition (4.2) is also met. Hence it follows 
that the condition under which (2.6) applies, viz. 

(4.3) 

is also fulfilled, since for a normal tide well N?:.. ¼ and the amplitude response 
to the above oscillations will be at most unity. 

For wind waves, either (4.1) or (4.2) may be violated. Assuming that the 
amplitude response of a well to waves is negligible, the oscillations in the well 
will be negligible, and (4.3) will be satisfied. However, since infinitesimal wave 
theory no longer applies, expression ( 2. 3) for the wave pressure at the sea floor 
has additional small terms added to the right hand side. Typically, the pressure 
at a depth y beneath the mean wave level can be given by Stokes' second order 
wave theory ( see, e.g., Wiegel, l 964 p. 3 l ), viz. 

p = e g(y + C, cos wt+ C2 cos 2 wt+ C 3), (4.4) 

for a wave of circular frequency w. Ci, C2, and C3, are coefficients dependent 
upon wave height H, wave number u, and the depths dandy, e.g. 

uH2 

C3 = - -
8

- cosech (2ud) cosh 2u(d-y). (4.5) 

The tide well will have negligible response to the harmonic of frequency 2w, 
but the term C3, being a non-zero constant term present so long as the waves 
persist, will have an apparent effect of lowering the mean level in the well 
relative to the mean level outside. Cross (1968) used this second order wave 
theory to show that the difference in mean levels is large in the case of the non-
linear conventional tide-well system. 

However, it must be remembered that (4.4) is an expansion only to second 
order and that further terms in the expansion may change the nature of the 
term C3• As an alternative we may use the result of Longuet-Higgins and 
Stewart ( l 964 ), who derived the exact expression 

p = egy-ew2, (4.6) 

where p is the pressure and w is the vertical velocity due to the waves at the 
depth y. The bar implies time-averaging. 

Following the same reasoning as Cross, we consider an "equilibrium" time 
period, long compared with the wind wave period yet short enough to consider 
that the tide level remains constant. During this time the net flow into the 
tide-well is zero, i. e. 

Q = 0 . (4.7) 
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For the linear tide-well system, one may combine equations (2.7), (2.10), 
( 2 . l 5) and ( 2 . l 8) to obtain 

Q = nDp4(Pw-Po). R(a) 
128veLp ' 

which on substitution into (4.7) yields 

Po-Pw= O. 

(4.8) 

(4.9) 

When the system has practically no response to wind waves, one may write 

(4.10) 

where Hw is the mean depth inside the well over the "equilibrium" time 
period. If Ho is the corresponding mean level outside the well, use of (4.6) 
and (4.10) in (4.9) gives the difference between these mean levels as 

Ho -Hw = w 2/g. 

Provided the pipe is on the ocean floor, one has w = o, and the mean levels 
are the same. 

Application of this method to the conventional tide-well system, as in Noye 
( 197 4), is difficult because Q is a non-linear function of the pressure difference 
(po - Pw) and time averaging does not lead to a simple expression of the form 
(4.9). 

5. DESIGN CRITERIA. Using the results of the previous sections, tide-well 
dimensions can be chosen to give any desired response. The value of N selected 
defines the type of response (see Figs. 2 and 3) and the non-dimensional fre-
quency /32 which corresponds to the desired cut-off frequency f cycle~/hour 
determines the pipe diameter Dp. Equations (1.3) and (2.25), together with 

w = 2nf/3600, 

D = {72oov{J2}' '
2 

P nNf . 

(5.1) 

(5.2) 

A suitable value of the pipe length Lp is then chosen so that (3.2), i.e. Lp > 
100Dp, is satisfied. The well diameter Dw is then calculated from a rearranged 
form of (2.25), viz. 

_ { gNDi.__}''
2 

Dw - 8 2 L · (5.3) 12 V p 

Larger values of Lp reduce end effects in the pipe flow as well as increasing the 
maximum permissible amplitude am of the incident oscillation, since from (3.2) 
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F igure 8. Schemati c diagram of the apparatus used fo r experimental work. 

we have am a: Lp. However, the pipe length Lp cannot be increased indef-
initely without the well diameter Dw becoming impractically small. N ormally, 
Dw must be large enough to get a fl oat into the well for attachment to a re-
corder, although other methods of sensing the water level in the well can 
be used. 

Finall y, the maximum permitted amplitude for linear recording must be 
compared with expected tidal amplitudes. In practice, the simplest way to 
fi nali se the decision on dimensions is to use a computer program which gives 
the complete frequency response for the chosen dimensions together with the 
values of the greatest incident amplitude all owed. 

The above procedure was used to select the dimensions of the tide wells 
used in a series of experiments described in the next secti on. 

6. EXP ERIM ENTA L INVESTIGATION. Amplitude responses and phase lags of 
three types of model tide well s with pipe connections were determined experi-
mentall y and compared with theoreti cally predicted values. 

The model tide well was connected to a large reservoir of water (Fig. 8) 
and the method used was simil ar to that described full y in N oye (1974). As in 
the previous experimental work, the probes were recalibrated before each test, 
by comparing chart readings with 2 mm steps in water level. Again, after 
running the apparatus long enough to eliminate starting transients, at least ten 
oscill ati ons of the input were recorded and the rati o of the output to input 
amplitudes and the lag of the output behind the input, measured. 

In the choice of the dimensions of the models, attention was concentrated 
on responses in the frequency band 10-360 cycles/hour, since these were most 
convenientl y produced in the laboratory. Furthermore, since the amplitudes to 
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F igure 9. The theoretical amplitude response and phase lag (solid lines) compared with the experi-
mental results (symbols) for the model with N = 1 / 3 . The dashed lines are the quasi-
steady estimates. 

be used in the experiments were to range from one to four centimetres, the 
models had to be linear for amplitudes up to approximately four centimetres. 

For the first model tested, the selection N = ½ was made. This is an optimum 
system; Fig. 2 shows that in this case a unit amplitude response is retained for 
the greatest range of the non-dimensional frequency /32. With a pipe diameter 
8.4 mm, pipe length 3.55 metres and well diameter 5.2 cm, the model had the 
theoretical amplitude response and phase lag shown by the solid line in Fig. 9. 
The experimental results are plotted on the same figure, three different symbols 
being used for the three different amplitudes of input. The results obtained 
between the frequencies 80 to 200 cycles/hour at the largest input amplitude 
are slightly lower than the others and in fact violated the criterion for laminar 
flow established in Section 3. 

For the second model tested, the choice was N = 5. For N?::. 5, the theoret-
ical response is similar to the quasi-steady approximation. This time the pipe 
diameter was 2. 7 mm, the pipe length 2 7 cm and the well diameter 2. 1 cm. 
The theoretical amplitude response and phase lag are shown in Fig. ro, to-
gether with the experimental results and the quasi-steady estimates. In this 
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est imates. 

model, the system remained linear for all amplitudes up to 7 cm, irrespective 
of frequency. 

The third model, with N = 0.004, had a peak amplitude response of 4.0. 
The dimensions were chosen such that this peak occurred at a frequency of 
140 cycles/hour; the pipe diameter was 2.69 cm, the pipe length 15 metres and 
the well diameter 8. 1 cm. The theoretical response curves and the experimental 
results are shown in Fig. 11. The larger amplitudes in the frequency range 120 
to 180 cycles/hour violated the criterion for laminar flow, as well as the crite-
rion (2.6) since Jhwlmax/d was of the order 0.3 at the frequency of greatest 
gain. The non-lineariti es introduced thereby may explain the fact that the 
experimental values are slightly low. For the two other models, the typical 
value of the ratio Jhwlmax/dwas 0.05. 

For all three models, the experimental results agree extra-ordinarily closely 
with the theoretical curve, provided the conditions for laminar flow were 
met. Even when pockets of turbulence were probably produced during part 
of a cycle, such as in the region of the peak response of Fig. 11, the 



1974] 

.; 
z 

Noye: Linear Tide-well Systems 

4.0 ,----------.....---------~-l ·· /\ 
/ . '\ 

_.,.,,. . 
1.0 f--- ---==e!I=::.• ______ ------ __ t 

,---------- ........ 
EXPERIMENTAL 

0.5 1-- • 1.7 CM. AMP. 

4 3.SCM. AM P. 

4.5 CM. A MP. 

• ALL THR EE SUPER-IMPOSED 

\ ',,, 

\ 
__ ....... -:~ \ :::::::::::::::::=::i 

<C 2TT/3 

/r''' 
!!, 

" 
,l 

s 
w 

f lT/3 r • .. 
J . 

- --~~.:-::',! ____ _ -·· 10 10? 10' 

FREQUENCY (CYCLES/HOUR) 

175 

Figure 1 1. The theoretical ampli tude response and phase lag (soli d lin es) compared with t he experi -
mental results (symbols) for the model with N = .004 . T he dashed li nes are the quasi-
steady estimates. 

agreement is good. Perhaps the most remarkable feature of the experimental 
results is the veri ti.cat ion of the gain of 4.0, predicted for the model with 
N = 0.004. 

T he linearity of the system is evident, since the amplitude response and 
phase lag were practically unchanged at a given frequency, when there were 
large changes in the input amplitude. The linearity was further tested by digit-
ising long sections of the input and output records and subjecting the resulting 
ti me series to Fourier analysis on a CDC 6400 computer. In all cases, the 
results indicated that the input was essentially a single sinusoid in time and the 
output contained no signifi cant higher harmonics of the fundamental frequency, 
except in those cases which exceeded the limi ts for laminar pipe flow. 

7. A NALYS IS OF SoME A cTUAL MEASURING SYSTEMS. Three tide well s of 
this ki nd have been in use in Australi an waters for some time. Aft er install a-
ti on, each of these showed peculiar response characteri sti cs which could have 
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Figure rz. The amplitude and energy response of the water level indicator used at the Coorong. 

been anticipated and avoided in their design, if the present theory had been 
available when they were constructed. 

One system of this kind is a water level indicator used to measure surface 
oscillations with periods from twenty minutes to several days, in the Coorong 
lagoons in the south-east of South Australia. These lagoons are very shallow 
and are approximately 50 kilometres in length and 2 kilometres in width. 
Their only connection to the sea is through a very narrow channel. At in-
strument sites, the largest wind waves observed had a height of 20 cm. The 
well, with an internal diameter of 10 cm and pipe-connection 10 cm long with 
internal diameter 0 .22 cm, located about 2 cm from the bottom, was placed 
into about 50 cm of water. It's tide-well parameter N = 260 and the theoret-
ical amplitude response (Fig. 12) agrees essentially with the quasi-steady esti-
mate (I.I). Some experimental estimates of the frequency response carried out 
in the laboratory for periods less than ten minutes, are also shown. Application 
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Figure r 3· Maximum permissible amplitude, inside and outside the water level indicator used at the 
Coorong. 
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Figure 14. Amplitude and energy response for the Macquarie Island tide gauge and suggested modifi-
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of the criteria of Section 3 shows that the system remains linear in the presence 
of water level oscillations of all periods, provided their amplitudes are less than 
10 cm (Fig_ 13)- For periods greater than one hour, the permissible amplitudes 
may be much larger; for example, semi-diurnal oscillations can have amplitudes 
of up to 2 metres without turbulence occurring in the pipe flow_ 

A second system of this type is the tide-well installed at Macquarie Island, 
in September 1967, by the Flinders University of South Australia_ In view of 
the prevailing rough coastal conditions a pipeline, about 76 metres long with 
internal diameter of 2.55 cm, was run in a trench from a well with an internal 
diameter of I 5 cm about 50 metres inland, into water about 2 metres deep. 
Application of the theory developed in this paper shows that the tide-well para-
meter for this installation is N = o. 12 and that the amplitude response has a 
gain which is measurably greater than unity for the frequency range 8-80 
cycles/hour (Fig. 14). Also, fifteen second swell has an amplitude response of 
approximately o. 1, so that these waves, which occur consistently with heights 
of at least one metre (Noye and Radok, 1966), produce 10 cm well oscillations 
of the same period. In practice these well oscillations blur the tide record very 
badly. For the dominant tidal oscillations and swell, this system gives a value 
Remax 3000, so that (3. I 6) is not satisfied and turbulent flow may be ex-
pected in the pipe at some time or other. Fig. I 5 shows that a critical range of 
frequencies exists between 1 o and IOO cycles/hour; for waves of height 8 cm 
or more, non-linear recording may occur. 

An optimum system (N = ½), with an amplitude response of one half at a 
frequency of 40 cycles/hour, could replace this system by using a well 10.8cm 
in diameter attached to a pipe with a diameter of 2. 1 3 cm and a length of 
104 metres so its open end lies in water approximately 6 metres deep. In this 
case Remax 1300 and linearity of the system would be assured. The ampli-
tude response to fifteen second swell would be o.o l 5 and no blurring of the 
tide records would occur (Fig. 14). The previous restriction on wave-heights 
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Figure r 5. Maximum permissible wave amplitude for the Macquarie I sland tide gauge and suggested 
modifications. 

in the critical frequency range is raised to 32 cm (Fig. 1 5). Such a system would 
record, without attentuation, waves with a period greater than 4 minutes and 
would be admirable for the recording of tides and the unique 6 minute waves 
of several centimetres amplitude reported by Longuet-Higgins (1967). 

If only tidal periods down to 1 hour are of interest, the present pipe may be 
replaced by one of half the diameter (N = 7.4, Fig. 14). Then Remax::!!::: 1250 
and the critical frequency band for laminar Row is 4-40 cycles/hour, when 
wave-heights must be restricted to 40 cm or less. 

A third tide well of this kind, located at Cairns in Queensland, is described 
by Easton ( 1968). Since the sea floor is exposed occasionally at very low tides 
at the chosen site, a 6. 7 metre long pipe with a diameter of Io cm was run from 
the well, approximately 1 metre in diameter, to deeper water. This system has 
N ::!!:: 0.002; hence there is a large peak in the response, such that there is a 
gain of 7.0 for waves with a frequency of 60 cycles/hour, followed by a very 
sharp fall in response, until wind waves of 300 cycles/hour or higher are trans-
mitted with less than one-twentieth of their incident amplitude. The records 
obtained from this well show no signs of blurring, verifying that the system 
does not respond to wind waves. Some occasional bumps in the record, reported 
to occur when rain squalls hit the harbour, are undoubtedly due to the ampli-
fication of the appropriate long wave components produced. This amplification 
will no doubt also cause non-linearity in the system; waves with amplitude 
greater than one and a half millimetres at a frequency of 60 cycles/hour might 
produce turbulence in the pipe Row. The non-linearity due to end effects will 
also be relatively large, since the condition (3.2) is not met. Use of the quasi-
steady approximation gives misleading results for this system, as it does for the 
experimental model with N = 0.004 (Fig. 11); it gives an estimate of the 
amplitude response according to which waves in a wide frequency band, in-
cluding wind waves, are transmitted into the well with negligible attenuation. 
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8. CONCLUSION. The advantages of a tide-well system with a pipe-connec-
tion near the sea floor over the conventional tide-well system are many-fold. 
The most important of these is that the system is linear. Consequently, records 
of harbour oscillation may be extracted from tidal records by removing the pre-
dicted tide and then correcting for the attenuation caused by the tide-well 
system. This process would not give the true harbour oscillations, if applied to 
records from a tide well with an orifice. Also, the amplitude and phase of tidal 
constituents computed from tidal records can be corrected directly for the at-
tenuation and phase lag of the system, a process not possible after an analysis 
using records from a conventional tide well. Finally, such a system does not 
suffer from a set-down error in the presence of short period wind waves, in the 
way that the conventional tide well does. Records from the system can there-
fore be used for the determination of mean sea level for surveying purposes. 

The excellent agreement between experiment and theory in this paper shows 
that unsteadiness in the pipe flow is a major factor in determining the nature 
of the response of this type of tide well. The nature of the response is deter-
mined by the value of the tide-well parameter N. With N = ½, the system has 
a unit amplitude response and small phase lag for a large range of frequencies, 
followed by a sharp cut-off. With increasing values of N this cut-off becomes 
smoother, until with N"?. 5 the result is indistinguishable from the quasi-steady 
approximation found by assuming Poiseuille pipe flow. For values of N which 
are less than ½, the system could be used to selectively amplify certain wave 
components. In order for the system to be linear the pipe-flow must remain 
laminar and this can be assured by choosing the dimensions of the system suit-
ably. 

Incorrect choice of dimensions, based on the quasisteady approximation, may 
result in accentuation of certain waves instead of attenuation, with small waves 
at some frequencies causing turbulence in the pipe flow. The Cairns tide-well 
system typifi es this. 

Most conventional tide-well installations can be converted to linear systems, 
with chosen response characteristics, by replacing the orifice with a suitable 
long horizontal pipe connection. This can be done quickly and simply and at 
little cost; the last feature becomes a major consideration when one realises 
that there are 77 tide-well installations operating along the coast of Australia 
alone. 

The tide well with a long pipe connection also has an important physical 
advantage over the conventional system, because the tides can be sensed at a 
place some distance from the well and recorder. The Macquarie Island tide-
gauge is an illustration, with the well located at a sheltered spot inshore and the 
tides measured as an exposed location away from the very rough coastline. 
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NOTE: A computer program, written in Fortran IV, was used to calculate 
the response characteristics of the tide wells with a long pipe connection, given 
the well and pipe dimensions. The output listed both energy and amplitude 
response, phase and time lag and the maximum permissible wave amplitude 
over the frequency range 0-1000 cycles/hour. The calculations included the 
effect of pressure attenuation due to the pipe depth and the effect of the inertia 
of the water in the well, in addition to the effect of the unsteadiness in the pipe 
flow. A listing of this program is available from the author. 
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