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Tide-well Systems I: 

Some Non-linear Effects of the Conventional 

Tide Welt 

B. J. Noye 

Department of Applied Mathematics 
The Univ ersity of Adelaide 
Adelaide, South Australia 500I 

ABSTRACT 

Recent uses to which tide records have been put has revealed that modern analytical 
techniques have outstripped the quality of available data. Lack of knowledge of the response 
of the conventional type tide well has been a serious handicap to workers in this field. The 
analysis in this paper shows that non-linearities, caused by the flow through the orifice, pro-
duce the main features of the response of the system; the hydrodynamic filtering of waves, 
due to the depth of the orifice and the effect of the inertia of the water in the well, are rel-
atively unimportant. It shows that the quasi-steady model, used in some previous work, is a 
realistic one under most conditions and that results obtained using the quasi-steady theory 
still apply . Such previous theoretical findings agree well with some experimental results 
obtained using tide-well models. The most important feature of the response of the con-
ventional tide well is that it is non-linear; the water level in the well oscillates with the fre-
quencies of the oscillations in the sea level, plus higher harmonics and oscillations at sum and 
difference frequencies, and the amplitudes of the resulting well oscillations are non-linear 
functi ons of the amplitudes of the sea-level oscillations. This makes it almost impossible to 
correctly interpret small contributions in the results of a spectral analysis of a tide record. 
Finally, Cross's method of finding the lowering of mean level in a tide well in the presence 
of wind waves is improved and estimates of the "set-down" are computed. 

1. INTRODUCTION. Lennon ( I 967) has pointed out a fundamental weakness 
in recent research involving tidal data, namely, that the analytical techniques 
used are much more sophisticated than is warranted by the quality of the data. 
Advances in methods of numerical analysis, which have been made since the 
introduction of the electronic digital computer, have not been matched by im-
provement in instrumentation. As a result, the marine scientist must ask him-
self to what extent are certain features, apparent in tide records, real or to what 
extent are they due to instrumental distortion of the true tide. Two such 
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phenomena which must be critically examined from this point of view are the 
cusps of energy in the vicinity of the major lines in a tidal spectrum and the 
large number of small harmonic constituents obtained from the analysis of a 
distorted shallow water tidal profile. In particular, ignorance of the nature of 
the response of tide gauges has contributed to this uncertainty. 

There has also been some recent interest in the response of tide gauges to 
sea-level oscillations with different frequencies and amplitudes, for other rea-
sons. The introduction of digital tide recording has necessitated the choice of 
a suitable time interval between successive readings from the gauge. This 
choice must be based upon the frequency response of the tide gauge to prevent 
aliasing, which results in spurious components appearing in a Fourier analysis 
of the records. The same choice must be made when tidal components are to 
be determined by analysing tide heights digitised from a continuous record on 
a tide chart. Depending on the nature of the response, the components obtained 
may also require correction for attenuation at higher frequencies. 

Readings from tide gauges are also used to investigate harbour oscillations 
with periods varying between one and six minutes and tsunamis which have a 
period between 15 and 60 minutes. The record of these sea-level oscillations is 
superposed on the much longer period tidal oscillations. A knowledge of the 
frequency response of a tide gauge will indicate whether the readings of such 
waves, taken from a tide record, must be corrected for attenuation. 

The mean sea level calculated from the tide records is often used as a datum 
for land surveying. For this work, it has been assumed that tide gauges always 
read tide heights correctly, particularly in the presence of large wind waves, 
a false assumption for certain types of wells. 

A recent survey by Easton, 1968, of tide gauges on the Australian coast 
revealed that these consist of recorders which measure sea level inside a circular 
well, the water inside being connected to the ocean outside in several ways. 
In nearly every case, the connection is through a circular orifice near the bot-
tom of the well. 

A search of the literature on tide gauges revealed little information on the 
response of the conventional tide-well system (with an orifice connection) to 
sea-level oscillations. In 1950, O'Brien published some preliminary studies of 
the lag and reduction of range for this type of tide well. Keulegan (1967) pro-
duced a variation of O'Brien's method of approximate solution of the differ-
enti~l equation _which models. the conventional tide-well system, in his work 
on tidal effects In harbour basms; graphs of Keulegan's results were published 
by Cross (1968) in his st~dies of the standard tide gauge used by the United 
States Coast and Geodetic Survey. A numerical method for estimating the 
r~sponse of _the conventional _syst~m was devised by Shipley ( 1963); an alterna-
tive numencal method, which improved Shipley's results, was produced by 
Noye (1968). 

Theoretical studies of this tide-well system are described in Noye (1968, 
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1970, 1972), here-after referred to as N1, N2 and N3. By a quasi-steady 
theory, it is shown that a model for this system is given by 

dHw/dt+C,IHwl''"sgn(Hw) = dho/dt, (1.1) 

where Hw(t) is the head response of the tide well to the fluctuating sea level 
ho(t ), for tide wells with a sharp edged orifice connecting the water in the well 
with the sea outside; t is the time and C, a constant depending only on the 
dimensions of the tide well. 

In Section 2, the analysis of the conventional tide-well system given in NI 
is expanded and extended. Unsteady effects in the flow are considered, as well 
as the hydrodynamic filtering of waves due to the depth of the orifice connec-
tion and the effect of the inertia of the water in the well. The results give a 
clear indication of the limitations which must be placed on the system, if ( 1.1) 
is to be a realistic mathematical model. 

In NI and N 2, estimates of the well response are determined for the con-
ventional tide well by considering the steady-state solutions of ( 1. I) with an 
input of circular frequency w, i.e., ho= a sin(wt). It is shown that such a tide 
well is a non-linear device, with a response which depends on the amplitude of 
the incident oscillation as well as the frequency. 

In contrast to the case of a linear system, there is no unique way in which 
one may define the response function of this non-linear tide-well system. The 
response to an input which is constant in amplitude and sinusoidal in time, in-
volves an oscillation at the same frequency as the input and odd harmonics of 
this fundamental. There are two ways of describing this response which are 
of use in practice. Either the amplitude ratio and phase lag of the fundamental 
and harmonics of the output relative to the input may be of prime importance; 
this is the case when spectral analysis of a tsunami or tide record is taken from 
such a system. Alternatively, the behaviour of the response as a whole may be 
of primary importance. Then one is concerned with the lag of the well response 
behind the input at their turning points, as well as the ratio of the maxima of 
the periodic output and the sinusoidal input. For example, if we have a tide 
record on which is superposed the record of a tsunami, then the lag at the turn-
ing point yields the exact time of arrival of the tsunami and the ratio of the 
maximum value of the output to the amplitude of the input yields the true 
amplitude of the incident wave. 

No exact solution to (1.1) with the sinusoidal input ho= a sin(wt) has been 
found. The well response at the fundamental frequency and its harmonics is 
determined for small frequencies of the input from an asymptotic solution and 
for higher frequencies from an exact solution for an "almost-sinusoidal" input. 
The overall response, estimated by a numerical method, is compared with 
Shipley's results which proved to be in error on two counts: firstly, his values 
for the amplitude response are too low at high frequencies and, secondly, his 
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results do not yield the different lag between input and output which occurs at 
the zero-crossings and the turning points. 

In Section 3, these theoretical results, for the well response at the funda-
mental frequencies and its harmonics and for the overall well response, are 
found to agree closely with a set of experimental values. 

In N 3, the method leading to an asymptotic solution is applied to the steady-
state solution of ( 1. 1) for any input composed of oscillations of either small 
amplitude or frequency. In particular, an input consisting of two waves of 
reasonably close frequency is considered. It is found that the well response in-
cludes oscillations of reduced amplitude at the input frequencies, together with 
oscillations at frequencies which are their sum, difference and other linear com-
binations of these frequencies. In Section 4, a series of experiments is described, 
which gave results agreeing closely with the theoretical findings. This points 
towards a major problem arising in the spectral analysis of records from a tide-
well with an orifice; since there is no simple relation between the Fourier com-
ponents of the input and output of such a system, it is not possible to transform 
the energy-density spectrum of the tide-well record into that of the sea-level 
fluctuations. In particular, one cannot be sure whether small peaks in the spec-
trum are direct contributions from sea-level oscillations or due to non-linear 
effects of the orifice. 

Finally, in Section 5, the effect of short-period wind waves on the mean 
level in the well is investigated. Cross ( 1968) has shown that a tide-well with 
an orifice gives readings which are up to 30 cm too low when wind waves or 
swell are superposed on the tides. It is therefore not advisable to use records 
from such a system to compute mean sea levels for land surveying. An im-
proved second-order expression for the mean wave pressure at a given depth 
is derived and applied using Cross's method. In this manner, a better estimate 
of the "set-down" in the tide-well is obtained: for an orifice near the sea 
surface in deep water, the results are similar, but when the orifice is close to 
the sea floor or the depth to wavelength ratio is small, the "set-down" is 
nearly halved. 

2. THE TrnE-WELL EQUATION. Let hw(t) denote the height of the water 
level inside the tide well and ho(t) the external level, both referred to the mean 
sea level (M .S.L.) (Figure 1). Denote the depth of the ocean floor and of the 
orifice beneath M.S.L. by dandy, respectively. 

Inside the well, application of Bernoulli's Theorem for unsteady flow with 
velocity potential <I> and velocity 'f::, at a height x above the orifice, yields 

d<I>/dt+1 /2lyl 2 +gx+p/e = F(t), (2.1) 

whe'.e p is the pressure at x, (! the density of sea water, g the acceleration of 
gravity and F(t) a function oft only. Equating values of F(t) at the water 
surface S and at the orifice 0, one obtains 
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Figure 1. Notation used for the conventional tide-well system in the presence of linear waves. 

d<P/dtls+ 1/2(dhw/dt)'+g(d+hw)+Pa/e = d<P/dtl 0 + 1/2172 +p0/e, (2.2) 

where 17 is the velocity of influx at the orifice, Pa the atmospheric pressure at S 
and po the wave pressure at the orifice. Introducing the pressure transmission 
factor (Kinsman, 1965, p. 143) 

ko = sech (xd) cosh x(d-y), (2.3) 

where xis the wave number, one has for xho<( 1 and ho<( d, the wave pressure 

Po= Pa+ egd + egkoho. 

Using the continuity condition 

(2.5) 

where Aw is the area of cross section of the well and .Ae is the effective 
area of the inlet, and substituting for po and 17 from (2.4) and (2.5) into 
(2.2), one finds 

d<P/dtls - d<P/dt lo = g(koho - hw) + 1/2 (dhw/dt)' (.Aw'/.Ae' - 1 ) . (2.6) 
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In order to obtain an estimate of the left-hand side of (2.6), we integrate the 
velocity vector over the streamline OS, with arc element d:,, to obtain 

<P,-<Po= J::·d:,. (2.7) 
OS 

If the well is long and narrow (i.e., Dw( ( y, where Dw is the well diameter), 
the velocity throughout the well will be approximately dhw/dt upwards and if 
the length of the curve OS is approximately equal to y (which is true for 
hw < ( y ), then 

Substitution in ( 2.6) gives 

where 

<P, - <Po = y (dhw/dt). 

kw= I + _l__ (d' hw) 
ghw dt2 

(2.8) 

(2.10) 

incorporates a correction arising from the inertia of the water in the well. 
For long period waves with circular frequency w, the response of the well is 

approximately sinusoidal with the same circular frequency, so that 

(2.11) 

Furthermore, one has w <( I for long waves, so that kw is nearly unity; for 
example, if the orifice is less than 10 metres below mean sea level, periods 
greater than one minute give w2yg-1 < .01. 

With ko =kw = I for long waves, Equation (2.9) simplifies to 

( 2. I 2) 

where 

( 2 . I 3) 

is the head response to the input ho. 
Rearrangement of (2. I 2) yields 

where 
dHw/dt+ C,1Hwi'12sgn(Hw) = dh0/dt, (2.14) 

C, = _ e I - _e (2g)1f•. .A { .A '}- 1/2 

.Aw Aw2 ( 2. I 5) 
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Since the effective area .Ae of the orifice may be written in terms of its actual 
area .Ap and its contraction coefficient Cc, viz. 

the value of the tide-well constant C1 becomes 

( 2. I 6) 

For flow through a sharp edged orifice, the theoretical value for Cc is 
n(n+2t'=o.61; assuming a small frictional loss, this value is close to 
Cc= o.6 (e.g., Dodge and Thompson, 1937). For a Borda mouthpiece, one 
has Cc= 0.5, while, for inlets through a surge cone, the value of the influx 
is approximately o.8 of that of the efflux. 

Equation ( 2. I 4) is essentially the same as that derived in NI using the 
quasi-steady theory. However, an improved value of the tide-well constant C1 
is given by ( 2 . I 6 ), which is approximated closely by the value given in NI for 
.Ap<( .Aw, 

(2. I 7) 

In order that ( 2. I 4) be a reasonable mathematical model, the following as-
sumptions have been made: 

(a) the motion is laminar, 
(b) hw« Y, i.e., the amplitude of the oscillations in the well are much smaller 

than the depth of the orifice below mean sea level, 
(c) Dw« Y, i.e., the well is relatively deep and narrow, 
(d) w<( (g/d) 1I•, -xd<( 1, which is true for most waves with periods greater 

than one minute. 

As in N 1, it is now convenient to rewrite equation ( 2.14) in terms of the 
dimensionless input X = ho/a, the dimensionless head response r = Hw/a and 
the dimensionless frequency /31 = w V;/Cx, where X and rare functions of 
0 = wt, and a and w, respectively, are the characteristic amplitude and circular 
frequency of the sea-level oscillations. Equation ( 2. I 4) then becomes 

{3, (dr/dl') + I Y1112sgn (r) = /3, (dX/dl'). ( 2. I 8) 

The head response r for a given input X must be found from this equation; 
the dimensionless well response, Z = hw/a, is then given by 

Z=X-r. 
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No exact solution to (2.18) has been found for the linear wave input 

I.e., 

ho= a sin (wt), 

X = sin -r. (2.20) 

Estimates of the well response to this wave are given in Section 3, where 
they are compared with corresponding values determined experimentally. The 
overall response of the tide well to such a sinusoidal fluctuation of the sea level, 
found using a numerical method in which the sine wave is approximated by a 
series of steps, agrees closely with the experimental values. The well response 
at the fundamental frequency and its harmonics, found for small {J, using an 
asymptotic expansion and for large /J, using an "almost sinusoidal" input, are 
given. These results are compared with some derived from the approximate 
solution of Keulegan ( 1967) to the same differential equation, as well as some 
experimental results. In particular, the ratio of the amplitude of the third 
harmonic to that of the fundamental, which can be used as a measure of the 
distortion of the response, is found by each method and compared. 

In Section 4, the response of the system to sea-level fluctuations, consisting 
of the sum of two sinusoidal oscillations with either small amplitudes or fre-
quencies, is listed. In particular, the response at the frequencies of the incident 
oscillations, their sums, differences and certain harmonics are examined in 
detail and compared with some experimental results. 

3. RESPONSE TO THE LINEAR WAVE X = sin •· a. Theoretical results: The 
response to an input, which is constant in amplitude and sinusoidal in time, 
involves an oscillation at the same frequency as the input and odd harmonics 
of this fundamental. 

If the behaviour of the response as a whole is of primary importance, then 
one is concerned with the lag of the well response behind the input at their 
turning points, as well as the ratio of the maxima of the periodic output and the 
sinusoidal input. Because ( 2 . I 8) has an analytic solution for a constant input, 
the tide-well response for the input X = sin T can be found by replacing the 
sinusoid by a series of steps. This method is described in NI and justification 
for the superposition of step responses in such a non-linear system is given in 
N 2. The graph of the overall amplitude response is reproduced in Figure 2, 

with some values computed by Shipley (1963) using a variation of the Runge-
Kutta method to solve the same differential equation. His values at {J, = 2.5 
and 5 are low and his results do not indicate a rather distinctive feature of the 
response, namely, that the lag at the zero-crossings is greater than that at the 
turning points. These lags are compared with Shipley's results in Figure 3. 
Agreement is good between some experimental results, determined by the 
method described later in this section and plotted on the same graphs, and the 
values computed by the step method. 
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Figure 2 . Estimates of the overall amplitude response of the conventional tide well to a sinusoidal 
input. 

These results are particularly useful in tsunami studies. If we have a tide 
record on which is superposed the record of a tsunami, then the lag at the 
turning points is used to determine the time of arrival of the crest, and the 
overall amplitude response is used to give the true amplitude of the incident 
wave. 

If the amplitude ratio and phase lag of the fundamental and harmonics of 
the output relative to the input are of prime importance, the results obtained 
in N 3 can be used. With the input X = sin -r, a perturbation solution correct 
to O (/3, 6), for small /3,, gives the well response 

Z = rx./' l sin (-r - 0/1l) - /3,' {/3,' sin 3 -r + - 8- (1 - 29 /3,4) cos 3 -r} + 
15n 

+ i (Cm/3i'+Dm/3,4)cos(2m-1)-r+0(/3,8), 
m=3 

l (3 .• ) 

where Cm and Dm are constants. The amplitude response at the fundamental 
frequency is 

and the corresponding phase lag is 

) 8/3,' 6 
0/' = - + 0(/3, ). 

3n 

(3.2) 

(3.3) 

For small /3,, the values of rx./ 1l may be compared with the values of the 
approximation by Keulegan (1967) to the solution of (2.18). He finds a solu-
tion in the form 

Y = 2 .A,n-, sin (2n - l)<p + 2 B,n-, [cos(2n - 1)<p- cos (2n + l)<p], (3.4) 
n=I 
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Figure 3. Estimates of the phase lag of the overall response of the conventional tide well to a sinus-
oidal input. 

where q; = -r + VJ, and VJ is a zero of Y(-r) = 0. The coefficients .Ax,.A3 and B, 
are evaluated by truncation of the series for rand a process of iteration, using 
approximate values of these three coefficients in the given differential equation 
to obtain more accurate values. Besides the complete omission of all harmonics 
of order greater than three, there is partial omission of the contribution of the 
third harmonic since this involves the coefficient B3• This observation explains 
why, when using Keulegan's results in the range O < {J, < 0.5, it is predicted 
erroneously that the amplitude response of the fundamental oscillation in the 
output exceeds unity (Figure 4). 

Using an exact solution for an "almost sinusoidal" input to this system, 
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Figure 4. Estimates of the amplitude response, at the input frequency, of the conventional tide well 
to a sinusoidal input. 
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Figure 5. A comparison of estimates of the phase lag of the fundamental oscillation in the output 
behind the input, for the conventional tide well. 

estimates of the amplitude response and phase lag of the fundamental oscillation 
in the output can be found for large /31. In N1, Equation (2.18) is solved 
assuming the head difference is a sinusoid, viz., Y = sin -r. The Fourier series 
representation of the corresponding input is 

X = (1 + 1.24 /3; 2 ) 1l2 sin (-r - arctan I. 11 3 /3; 1) + 

+ /3; 2 ( 0. 0 5 3 COS 3 i + 0. 0 I 4 COS 5 i + . . . ) . 
} (3.5) 

In the limit as /3, X sin -r. The well response to this input Xis 

= - p-- I (I.I I 3 cos i + 0.05 3 cos 3 i + 0.014 cos 5 i + ... ) . } (3.6) 

The resulting estimate for the amplitude response to a sinusoidal input is, for 
large /3,, 

rx./•l = ( I + 0.8 I /3,'t "2, (3.7) 

with corresponding phase lag 

0/2 > = arctan ( 0.90 /3,). (3.8) 

Graphs of these estimates are displayed in Figures 4 and 5 for /3, > 1, where 
they are compared with values obtained using Keulegan's data and some exper-
imental results. 

The ratio of the amplitude of the third harmonic to the amplitude of the 
fundamental in the output is a measure of the distortion of the output. By (3. 1 ), 

the amplitude of this harmonic is, for small /3,, 
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Figure 6. The ratio of amplitudes of the third harmonic to the fundamental oscillation in the output, 
for a conventional tide well. 

at=~:~ { 1 + (2:~t -29) p,4} + 0 (P,8), (3.9) 

and the required ratio is 

Comparing this result over the range o < Px < 0.4, with the same ratio cal-
culated from Keulegan's approximate data, it is found that the latter value is 
approximately 25 per cent larger throughout (Figure 6). For large p,, we find 
from (3.6) that 

(3, I I) 

and the corresponding measure of distortion is 

The same ratio calculated from Keulegan's data is 0.042. Figure 6 shows 
how this relative distortion of the output increases from a negligible value for 
very low values of Px to a constant value of nearly 5%. 

These results clearly show the presence of higher harmonics in the response 
of a conventional tide well to a sinusoidal input. Therefore care must be taken 
in the interpretation of the results of Fourier analysis of tide records. Some or 
the components found may not exist in the fluctuations of the sea level outside 
the well; they may appear in the oscillations of the water inside the well simply 
because of the non-linearity of the tide-well with an orifice. 
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Figure 7. Schematic diagram of the apparatus used in the experimental work with a sinusoidal input. 

b. Experimental Results: Estimates of the amplitude response and phase lag of 
model tide wells have been determined experimentally and compared with the 
theoretical results. 

The apparatus (Figure 7) consisted of a large reservoir of water in which 
were placed model wells, with an internal diameter of 1 o cm and with sharp 
edged circular orifices of various sizes. The surface level in the reservoir was 
varied sinusoidally in time with different amplitudes and frequencies, by means 
of a partially submerged weight of uniform cross section, which oscillated ver-
tically in simple harmonic motion. The level of the water in both the reservoir 
and the well were recorded on a paper chart by means of capacitance-type 
wave probes. Since the wave heights to be measured were small, errors due to 
the meniscus effect on the probe became relatively important. In contrast to 
the results on p. 29 of Kinsman ( 1964), the distortion consisted of a lag in the 
recording with cutting off of the troughs and crests. This defect was finally 
overcome by putting a layer of kerosene on the surface of the water. It was 
found that there was then no change in the shape of the meniscus at either the 
water-kerosene or the kerosene-air interface, during a complete period of the 
simulated wave motion in the apparatus, even at the highest frequency used. 

The experiments were carried out in the following manner. Having fixed 
the new frequency and amplitude of the oscillation of the water level in the 
reservoir, the amplifier gain for each probe was adjusted to give full width 
recording on the chart. The recorder was then calibrated by noting the chart 
readings for 2 mm increments in water level over the whole chart width. The 
apparatus was then run for several minutes to eliminate starting transients. 
Twenty oscillations of the reservoir and well response were then recorded. 
From this record, the overall amplitude response namely the ratio of the max-
imum values of the output and input amplitudes, was determined and also the 
lag of the output behind the input at both the zero-crossings and the turning 
points. 

In addition, the records of both input and output were digitised, using an 
automatic digital curve reader capable of chart reading to 0.05 mm. (Norrie 
et.al., 1965), calibrated and Fourier analyzed on a CDC 6400 digital computer. 
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The results were used to check that the input was a single sinusoid in time and 
did not contain any harmonics of the fundamental frequency, and to calculate 
the amplitude response and phase lag of the fundamental oscillation in the out-
put. The ratio of the amplitude of the third harmonic relative to that of the 
fundamental oscillation in the output was also calculated. These estimates were 
then compared with the theoretical values. 

For the overall response of the conventional type tide well, the comparison 
between numerical and experimental values are seen in Figures 2 and 3. Agree-
ment is excellent throughout. The experimental results for the amplitude re-
sponse and phase lag at the fundamental frequency are shown in Figures 4 and 
5, where they are compared with the theoretical results of Keulegan (1967) 
and of the method employing the "almost sinusoidal" input. Experimental 
values for the amplitude ratio of the third harmonic to that of the fundamental 
are shown on Figure 6. Agreement is good, even though relatively small am-
plitudes of oscillation were involved. 

4. RESPONSE TO THE SuM OF SEVERAL LINEAR WAVES. a. Theoretical Results: 
If the input ho is a sum of sinusoidal functions with varying frequencies, viz. 

N 

ho= 2 an sin (wnt + On), 
n=I 

the position becomes more complicated. The non-linearity of the system does 
not permit the superposition of separate solutions for inputs 

The output of such systems might contain components with sums and differ-
ences of frequencies 

Wt ± Wj' i,j = I' 2, 3, ... ' N, i 'I= j' 

as well as the fundamental frequencies 

and their harmonics 
Wn, n = I, 2, 3, .. . , N, 

p Wn, p, n = I, 2, 3, ... . 

The following questions can be asked: Does the tide well because of its non-
!. ' inear characteristics, give measurable oscillations in the tide record which do 
not e:'ist !n the sea-level fluctuations outside the well? Is it possible that under 
certain circumstances these spurious oscillations contribute to or even are 
mistaken for, small constituents such as certain shallow wat:r tidal com-
ponents? 
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The solution to the particular sea level fluctuation 

ho= a sin wt-an(n+ 1t' sin (1 + 1/n)wt, 

which gives the dimensionless input to (2.18) 

X = sin -r-n(n+ 1t1 sin (1 + 1/n)-r, 

143 

(4.1) 

(4.2) 

has been found in N 3 using the asymptotic expansion method for small /3,. 
The well response is found, correct to O (/3, 6), in the form 

"' 
Z = {3i'ao + L IXp sin (p-r/n - ep) (4.3) 

p=I 

where aa is a constant. IXp and ep are the amplitude response and phase lag of 
the oscillation at frequency pw/n, in the output to the system. 

Figure 8 shows a typical set of contributions to the well response at different 
frequencies for a double sinusoidal input of this kind, for /3, = 0.4 and n = 3, 
4,5. A tide well with an orifice-to-well diameter ratio of 1/20, in the presence 
of semi-diurnal tides of 2 metres amplitude, gives approximately this value 
for /3,. 

There are significant contributions at side-bands to the frequencies of the 
incident oscillations. For instance, with n = 3, the frequencies of the incident 
oscillations are wand 4w/3. An amplitude of 2.89% of the incident amplitude 
at frequency w occurs at the frequency 2w/3 and an amplitude 6.48 % of the 
incident amplitude at frequency 4w/3 at the frequency 5w/3. It is noteworthy 
that such a significant contribution as 1Xn-, occurs at a lower frequency than 
either of the incident waves, viz. (1 - 1/n)w. 

The contributions to the output at harmonics of double the incident fre-
quencies and the sum of these frequencies (see am, a,n+• and a,n+,) are small 
compared with the contributions around three-times the incident frequencies. 
The third harmonics of the incident frequencies are given by a

3
n and a

3 
n+

3
• 

For n = 3, the third harmonic of the wave with frequency w has an amplitude 
of 2.61 % of the incident amplitude at that frequency and the third harmonic of 
the wave of frequency 4w/3 has an amplitude of 4.59% of the corresponding 
incident amplitude. The most striking feature of all is the large contribution 
at frequencies given by doubling one incident frequency and adding the other; 
for all values of n up to n = 20, a3 n+, and a3 n+• are greater than 7 % of the 
incident amplitudes. In the past, contributions at such linear combinations of 
the frequencies of the incident waves have been attributed to effects outside 
the tide-well system, e.g., non-linear effects on the tides due to shallow water. 
Such harmonics may be wholly or partly due to the non-linear effects of the 
orifice. One would suspect that many of the 114 tidal constituents computed 



144 Journal of Marine Research [32,2 

100 n=3 
I INPUT AMPLITUDES 

----- THEORETICAL OUTPUT AMPLITUDES 

X EXPERIMENTAL OUTPUT AMPLITUDES 

'o ... 
't + I 
I )( I I 

)( f I I I ,k I I I I I I 
I I I I I I I I I I I 

j 
2 4 6 8 10 12 

100 

"""4 

'o ... 
)( 

X 10 I 
l:I + I 

I I 
)( 

t I I )( I I 

+ I I I I 
I I I I I 
I I I I I I I 

16 i 2 4 6 8 10 12 14 
100 

oc. 

n=5 

'o ... 
)( X 10 

t ·- I 
l:I I )( 

I )( I I 

I I I I I 
I I I I I f I I I I f I I I I I I I I I 

2 4 6 8 10 12 14 16 18 i 
Figure 8. Tide-well response at various frequencies for an input consisting of two linear waves wi th 

/3, = 0-4-



1974] Noye: Non-linear Tide-well Systems 145 

MOTOR 

Figure 9. Pulley and weight system to model the input consisting of the sum of two linear waves. 
Pulley I has radius (n + 1) units, Pulley 2 has radius n units. 

for Anchorage, Alaska, by Zetler and Cummings ( 1967 ), might include non-
linear contributions from the orifice. The same contributions might be included 
in the tidal constituents computed for Southend on the Thames Estuary, by 
Rossiter and Lennon (1968). In this analysis, over 20 of the constituents had 
amplitudes less than 3 mm, compared with the M2 component with ampli-
tude 2 metres. 

b. Experimental Results: Estimates of the response of three models of the con-
ventional tide-well to an input of the form (4.1) have been found experimen-
tally and compared with the theoretical results. 

The apparatus used (Figure 9) and the procedure adopted for recording in-
put and output were similar to that described in Section 3. Pulleys I and 2, 

with diameters in the ratio of n: ( n + 1 ), were driven off co-axial pulleys of 
equal radii. The connection between Pulleys I and 2 and the partly submerged 
weight produced the required oscillation in the water level of the reservoir con-
taining the tide-well model. The motor speed was adjusted so that, using the 
appropriate values for the tide-well constant and the amplitude of oscillation, 
the value of {Jr = 0.4. 

As in the previous experimental work, long sections of recorded input and 
output were digitised, using the automatic digital curve reader, calibrated and 
Fourier analysed. The results were used to calculate IX.J, j = 1,20, for n = 3, 
4,5. For each value of n, the average of the results obtained from the three 
tide-well models was compared with the theoretical values (Figure 8). Ex-
cellent agreement between the two sets of results was found. 
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Figure 10. Notation for the conventional tide-well system in the presence of non-linear wind waves. 

5. RESPONSE TO NoN-LINEAR WIND WAVES. For wind waves of significant 
amplitude, linear infinitesimal wave theory is no longer sufficiently accurate 
and the expression (2.4) for the wave pressure at the orifice should have addi-
tional small terms added to the righthand side. 

The pressure at orifice depth Jo beneath the mean wave level, which is do 
above the sea floor (Figure 10), may be given by Stokes' second order theory 
( e.g., Wiegel 1964, p. 31) as 

p0 = eg(Jo + C, cos wt+ C, cos 2wt + C3) (5. I) 

for a wave of circular frequency w. C,, C, and C3 are coefficients which depend 
on the wave height H, wave number x, and the depths Jo and do: 

I 
C, = - H sech xdo cosh x(do - Jo), 

2 

C 3xH2 h ( d) {cosh 2x(do - Jo) 1} 
2 = -- cosec 2 x o -----'--.=........:.. - -

8 sinh2 xdo 3 ' 
(5.2) 

C3 = - (xH2 /8) cosech ( 2 xdo) cosh 2x(do - Jo). 

If it is assumed that the tide-well system has negligible response to the oscilla-
tion of the pressure at frequency w, then it will also have negligible response to 
the harmonic of frequency 2w. The term C3, being a non-zero constant term 
present as long as the waves persist, will have the effect of lowering the mean 
level in the well, relative to the mean level outside, by a constant amount. 
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Cross (1968) used this second order wave theory to show that the difference 
in mean levels is large for the conventional tide-well system. 

However, it must be remembered that (5.1) is an expansion only to second 
order and that further terms in the expansion may change the nature of the 
term C3 • As an alternative, one may use the result of Longuet-Higgins and 
Stewart ( I 964), who derived the exact expression 

- 2 Po = (!gJo - (! W ' (5.3) 

where w is the vertical velocity at depth yo due to the waves at the orifice and 
the bar implies time-averaging. 

An alternative expression for C3 may be obtained from (5.3) in the following 
manner. By (5. I), 

(5.4) 

which, by comparison with (5.3), yields 

C3 = -w'/g. (5.5) 

Substituting the expression for the vertical velocity ( e.g., Wiegel 1964, p. 31 ), 

w = wH cosech (xdo) sinh x(do - Jo) sin wt+ O(H') (5.6) 
2 

in Equation (2.5), one obtains, after application of the dispersion relation 

w 2 = gx tanh (xdo), (5.7) 
the expression 

C 3 = - (xH'/8) cosech ( 2xdo) { cosh 2 x (do - Jo) - I}+ 0 (H3). (5.8) 

This result differs from the expression for C3 in (5.2) and to second order it 
appears to be more realistic; for example, it gives a time-averaged pressure on 
the ocean floor which is equivalent to hydrostatic pressure due to the mean 
wave level. For long waves (xdo(< 1) or when the orifice is close to the sea 
floor (yo -:D::. d0), Equation (5.8) gives smaller values for C3 than (5.2). 

Following the reasoning which Cross used, we consider an "equilibrium" 
time period, long compared with the wind wave period yet short enough so 
that the tide level remains constant. During this time, the net Row into the 
tide well is zero, i.e., 

Q = o, (5.9) 

where Q(t) is the Row rate into the well. Since it has been shown in Section 2 

that under the given conditions one may assume that the steady Row relation-
ship holds, then 
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Figure 11. Comparison of set-down in a conventional tide-well using Stokes' formula for C3 and the 
improved formula for C3, with an orifice depth of 3 metres and sea depth 6 metres. 

(5, IO) 

where Jp is the differential pressure across the orifice. 

LJp = Po -Pw, (5.11) 

where Po and Pw, respectively, are the pressures just outside and inside the 
orifice. 

If the response to the wind waves is negligible, the pressure inside the ori-
fice can be taken to be hydrostatic, i.e., egJw, where Jw, the distance from the 
surface inside the well to the orifice, is assumed constant during the "equilib-
rium" time period. Substitution of(5.10) and (5.11) into (5.9) gives 

I•nfw 

0 
IS(t)l 11• sgn {S(t)}dt = o, (5. I 2) 

where S(t) = Jo - Jw + C, cos wt+ C1 cos 2wt + C3• For several values of the 
orifice depth Jo, the water depth do, the wave height Hand the wave frequency 
w, Equation (5. 1 2) has been solved numerically using successive approxima-
tions to Jw• The "set-down", i.e., the lowering of the mean level in the tide-
well, is then given by 

iJ r = Jo-Jw• (5, I 3) 
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Figure I 2. Set-down LI r cm plotted against wave-heights H metres for an orifice depth yo = 3 metres 
and sea depths d0 = 3, 6, 9 and I 2 metres. 

Figure I I compares the results of Cross, using computations based on 
Stokes' value of C3, and the improved values obtained using C3 from (5.8). 
The latter gives a smaller set-down for large wave heights, particularly at 
higher periods. Note that, for the improved value of C3, higher periods have 
a maximum set-down for rather low wave heights and that increasing the 
height then reduces this; for example, for T = 16 sec, the set-down is a 
maximum of I 2 cm for a wave height of 1.5 m and it is smaller for bigger 
wave heights. Also, at low wave heights, the higher period waves produce 
a greater set-down in the well; for example, for T = I 6 sec, the set-down 
is 8 cm for wave heights of I m and, for T = 10 sec, it is only 2.5 cm for 
the same wave height. For high waves, lower periods generate the greater 
set-down. 

Figures 1 2 and 13 illustrate the set-down LI r in a tide well for different 
wave heights H, periods T = 6,8,10,12,14,16sec, water depths do= 3,6,9, 
15 m and orifice depths Jo= 3 and 6 m. Figure 14 shows H,o plotted against 
T for various values of Jo and do, where H,o is the wave height which produces 
an error LIY = 10 cm. Clearly, in shallow water, quite small wave heights can 



50 

40 

30 

5 20 
:>-
<l 

10 

0 
0 2 3 

H m 

Journal of Marine Research 

30 

E 20 
u 

:>-
<l 

10 

0 

4 

0 

T = 12 

5 

2 3 

Hm 

60 

40 

30 
E 
u 

:>-
<l 20 

10 

0 
0 

-T = 16 

- T = 14 

-T = 12 
-T = 10 
-T=8 
-T=6 

2 3 4 5 

Hm 

Figure 13. Set-down LI r cm plotted against wave height H metres, for an orifice depth yo = 6 metres 
and sea depths d0 = 6, 9 and I 5 metres. 

produce a set-down of Io cm; for example, in 3 metres of water, waves of 
height less than 2 metres produce a set-down of at least Io cm. 

Small oscillations with two to three minute periods, which often appear on 
tide-well records at exposed locations, may not be due to standing oscillations 
of nearby waters, which has been the explanation in the past, but could have 
been caused by gradual variation of the set-down due to incident amplitude-
modulated wind waves. Oscillations with periods of several minutes are evident 
in the records from the tide well at Point Lonsdale at the entrance to Port 
Phillip Bay, Victoria. Incident sea waves with a period of I 5 seconds, arriving 
in groups of eight in each wave-envelope, would modulate the set-down with 
a period of two minutes, giving the impression that two minute standing oscilla-
tions were occurring in the sea state. The water in the bay to the North of the 
tide well, or on the continental shelf to the South, would oscillate naturally 
with periods greatly in excess of a few minutes, in fact with periods of the order 
of hours. 

6. CONCLUSIONS. The conventional tide well, cons1stmg of a well with an 
orifice, has been shown to be a non-linear device with all the inherent dis-
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Figure 14. Wave Height Hrn metres and period T seconds which causes a ro cm lowering of the tide-
well level. 

advantages of non-linear systems. On the basis of mathematical analysis checked 
experimentally, it has been found that the water level in the well may oscillate 
at the frequencies of the oscillations in the sea level, on which higher harmonics 
and oscillations, with frequencies which are sums and differences of these fre-
quencies, are superimposed. Furthermore, the amplitudes of the resulting well 
oscillations are non-linear functions of the amplitudes of the sea-level oscilla-
tions, a fact which creates many difficulties in the use of the tide-well records; 
for example, in the analysis of harbour oscillations. Pseudo-response functions 
give a rough idea of the attenuation and lag of a system, but they are difficult 
to use, because the response depends on the amplitude as well as the frequency. 

Problems also arise when records from a conventional tide-well system are 
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analysed for tidal components. With an input which consists of waves with 
different frequencies, such as tidal components, it has been shown that the non-
linearity of a system may contribute to the amplitudes of harmonics of these 
components and to oscillations which occur at sum and difference frequencies 
of these components. It is likely that some of the energy attributed to shallow 
water components may not, in fact, be due to influences from outside the well, 
but rather arise from non-linear effects at the orifice. 

Since no response function exists for the conventional tide well, power 
spectra of tide records taken from such a system cannot be corrected in the 
same way as spectra of records from a linear system. Tidal spectra, often used 
today to determine tsunami frequencies and amplitudes (Hatori, 1968), cannot 
be corrected to give the true spectrum of the incident sea-level oscillations and 
might give misleading results. 

The computed effect of non-linear wind waves on the mean water level in 
the well, first examined by Cross, is large, even with an improvement of Stokes' 
second order expression for the mean wave pressure. It is clear that large wind 
waves greatly affect tide records from a conventional tide well, resulting in 
possible spurious oscillations appearing in the record and a lowering of the mean 
sea level. The results given show that the magnitude of the effect is less than 
was anticipated by Cross. 

The great disadvantage of the tide well with an orifice connection is its 
non-linearity. The advantages of a linear tide-well system over the conven-
tional tide well are many-fold. Records of harbour oscillations may be extracted 
from tide records by removing the predicted tide and correcting for the known 
reduction in range and time lag; the amplitudes and phases of tidal constituents, 
computed from tide records, can be corrected directly for the attenuation and 
phase lag of the system; and the tide records can be used for the determination 
of mean sea levels for surveying purposes, as the set down error due to short 
period wind waves can be minimized. A linear tide-well system, in which the 
orifice is replaced with a pipe connection near the sea floor, is presently being 
investigated. 
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