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The Effect of a Coastal Shel:f on Long Waves 

in a Rotating Hemispherical Basin' 

Niels Christensen, Jr. 

Hawaii Institute of Geophysics 
University of Hawaii 
Honolulu, Hawaii 96822 

ABSTRACT 

Using finite difference methods, the effect on long waves of a coastal shelf in a rotating 
hemispherical basin, symmetric about the equator , is studied. Of the four modes investigated, 
with a shelf added to a constant-depth basin, two modes respond weakly: one is a planetary 
mode antisymmetric in the sea surface about the equator; the other is a gravity mode sym-
metric in the sea surface. The other two modes were affected strongly but differently: one, 
a symmetric planetary mode, increases in frequency, and the wave moves onto the shelf; 
the other, a symmetric gravity mode, decreases in frequency and its wave moves away from 
the shelf. 

Introdudion. In this paper, free barotropic oscillations in a hemispherical 
ocean centered on the equator of a rotating earth are investigated as a coastal 
shelf is added. The earth's sphericity and horizontal divergence are properly 
accounted for. The purpose is to study the effect on long waves of a feature 
such as the continental shelf. 

Veronis (1966), Longuet-Higgins (1968), Buchwald (1969), Rhines (1969), 
and others have considered the effect of bottom topography on long waves. 
Variously, they have shown that even minor topography can strongly affect 
these waves. In this paper, it is shown that different modes respond differently 
to a feature such as a shelf. 

Finite difference techniques are employed to find the normal modes, each 
represented by a frequency and a surface wave. That is, after solving Laplace's 
equations for a single dependent variable, derivatives are replaced with finite 
differences. Boundary conditions are also expressed in finite differences, and the 
result is a set of linear homogeneous algebraic equations. Solutions of this set 
of equations are approximate normal modes of the basin being modeled. 
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First, four solutions are found for a hemispherical basin with a flat bottom. 
These solutions are tentatively identified by comparing them with solutions for 
similar basins found by Longuet-Higgins and Pond ( I 970 ), Mofjeld and 
Rattray (1971), and Christensen (1972). Two are planetary modes and two 
are gravity modes. Then, a shelf is allowed to rise slowly along the boundaries 
as the frequency and surface wave of a solution are monitored. 

The Basic Equation. Laplace's equations are an adequate mathematical ex-
pression for long barotropic ocean waves. [See Lamb 1945 for a detailed deriva-
tion of these equations; also Hough ( 1 898) or Eckart ( 1960) for a discussion of 
their validity.] 

au g a c 
- - 2wvcos0= -- - . at a 8() 

av + 2wucos0= _ Kcsc0ac_ at a 8<p 
(1) 

ac = - ~csc () li_ (hu sin 0) + !__(hv)J. at a 8() 8<p 

Here a is the earth's radius, g is the acceleration of gravity, w is the earth's 
angular velocity, () and <p are colatitude and east longitude, respectively, u and 
v are horizontal orbital velocity components in the () and <p directions, respec-
tively, C is the elevation of the sea surface above its mean position, and h is the 
mean water depth. 

The independent space variables () and <p are already nondimensional. The 
following substitutions nondimensionalize the other variables and simplify 
equations ( 1): 

v = a3l•g•I• h- • U csc (); 

u = - a3l• g• I• h-• // csc (); 

I C = -a•l• g' l• w- • Z. 
2 ' 

I 
t = - w- 'T· 

2 ' 

h = 4azwzg-• H; 

a = 2WA. 

The frequency, a, is introduced by assuming periodic motion and by setting 
all dependent variables proportional to rt..h·. The following equations 
result : 
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Figure 1. Depth contours for a shelved hemispherical basin. 

i).U + cos 017 -H!! = o; 

cos 0 U - i). V - H sin 0 a z = o · ae ' 

csc'0!~ - csc e;: -i).Z = o. 

(3) 

Eqs. (3) can be reduced to a single equation, with Z as the only dependent 
variable. Using the first two equations, U and V can be solved in terms of Z. 

U=Ll-'H(i).:: + cos0sin0~!); 

v = ,1-, H(-i). sine~!+ cos e!!); 

(4) 

(5) 

here LI = cos' 0 - ).'. Substituting these expressions for U and V into the third 
equation of (3) gives 

. [ (a' z 0 . 0 a z . , 0 a· z ) ).sm'0Ll'Z-).LI H iJcp' +cos Stn 7Hi+s1n ae· + 

a Ha z . , a Ha z] . . ( a Ha z a Ha z) +acpacp+sm 080 7f{j -zLlcos0sin0 -acpae+aeacp - (6) 

- 2H). cos 0 sin3 0~! -i sin'0(cos' 0 + ).')H:: = o. 
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Figure 2a (left). Planetary oscillation (1,2,p) with period= 168.6 hr for a hemisphere with h = 
4 km everywhere. Figure 2 b (right). Planetary oscillation (1,2,p) with period= 107.4 hr 
for a hemisphere with a coastal shelf. Above: Re(Z). Below: Im(Z) . 

The Numerical Setup. Following is the general procedure used in finding the 
normal modes of a basin; the details are given in Christensen (1972): A grid 
of points, rectangular with respect to the independent space variables, 0 and cp, 
represents the basin. Thus, the basin is a spherical rectangle (rectangular with 
respect to the coordinates, 0 and cp ), and the angular distance between the 
points in either direction is constant. One or more conditions on a single de-
pendent variable applies at each point. Some points are interior points while 
others are boundary or corner points; the conditions will be different in each 
case. 

At the interior points, the dynamic condition (6) is applied; at the east and 
west noncorner boundary points, the dynamic condition and the boundary con-
dition that U = o [from (4)] are applied; at the north and south noncorner 
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F igure 3a (left ) . Planetary oscil lation (r,r ,p) with period= 52.2 hr for a hemisphere with h = 4 km 
everywhere. F igure 3 b (right). Planetary oscillation (r,1,p) with period= 5r.6 hr for a 
hemisphere wi th a coastal shelf. Above: Re(Z). Below: Im (Z) . 

boundary points, the dynamic condition and the condition that // = o [from 
(5)] are applied; and, at corner points, U = o, /7 = o, and the dynamic condi-
tion are used. 

Each condition is put in finite-difference form. This is done by replacing 
derivatives in (4), (5), (6) with three-point central differences (as in Salvadori 
and Baron 1961; 80). It then becomes a linear homogeneous equation and 
only approximates the original condition. Central differences applied at the 
boundary and corner points involve points outside the boundaries. Dependence 
on these points is eliminated algebraically, so that there are as many equations 
as there are unknown values of the dependent variable and as there are grid 
points. The equations are homogeneous and the coefficients of the dependent 
variable are polynomials in the frequency parameter, .?.. 
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Figure 4a (left) . Gravity oscillation (1,1,g) with period= 44.3 hr for a hemisphere with h = 4 km 
everywhere. Figure 4b (right). Gravity oscillation (1,1,g) with period= 43·9 hr for a 
hemisphere with a coastal shelf. Above: Re(Z). Below: Im(Z). 

This is now a general eigenvalue problem, and nontrivial solutions of the 
matrix equation, 

(7) 

are sought. A is the matrix of coefficients and Z is a vector whose elements are 
values of the sea-surface oscillation at each grid point. For a grid of n points, 
A is an n-by-n matrix and Z is an n-by-1. A, Z, and A may be complex. 

A nearly hemispherical basin, centered on the equator, is used to study the 
effects on long waves of a shelf at the boundaries. At first, solutions are found 
for a basin that is 4 km deep everywhere. They can be tentatively identified 
from studies (Longuet-Higgins and Pond 1970, Mofjeld and Rattray 1971, 
Christensen 1972). Then, each solution is followed as a shelf is added at the 
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Figure 5a (left). Gravity oscillation (2,2,g) with period= 21.7 hr for a hemisphere wi th h = 4 km 
everywhere. Figure 5 b (right). Gravity oscillation (2,2,g) wi th period= 2 5.6 hr for a 
hemisphere wi th a coastal shelf. Above: Re(Z). Below: Im(Z). 

boundaries. Changes in frequency and in wave form are attributed to the addi-
tion of the shelf. 

A rectangular 8-by-8 grid of points represents the basin. The northern and 
southern rows of points are at 89°N and 89°S, respectively, so that the points 
are separated by I 78/7 degrees in the 0 direction. Western and eastern bound-
aries are meridians, I 80 degrees apart, so that points are separated by I 80/7 
degrees in the <p direction. 

The shelved basin has a final bottom configuration of the form 

H' = 4.0(1 -RrY'l2)(1 - RrX'f• )km, (8) 

where H' is the final depth configuration, R determines the depth at the bound-
aries, and X and rare scale distances from the boundaries. For an 8-by-8 grid, 
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Figure 6. Values of A. and wave amplitude on and off the shelf as a function of the minimum shelf 
depth for the (1,2,p) oscillation. 

R and the scale of X and Yare chosen so that the final configuration has a depth 
of approximately 1.2 km on the boundary at the equator. The shelf is confined 
to the boundary points and to the line of points adjacent to the boundary points. 
The final configuration is contoured in Fig. 1. A shelf of this form is shallower 
at the corners than elsewhere on the boundary. 

Modes of Oscillation. Four solutions were followed as the shelf was added. 
They are tentatively identified and ordered according to frequency as follows: 

( 1,2,p) the first symmetric planetary mode; 
( 1, I ,p) the first antisymmetric planetary mode; 
(1,1,g) the first symmetric gravity (Kelvin) mode; 
(2,2,g) the second symmetric gravity (Kelvin) mode. 

The two numerical indices refer to indices of spherical harmonics, as described 
by Christensen (1973), and are in agreement with Longuet-Higgins and Pond 
(1970). Symbol p or g refers to a planetary or gravity wave, respectively, and 
the symmetry refers to the configuration of Z about the equator. 
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Table I. Wave frequency, J., and period, T, for the modes of oscillation in a 
basin with and without a shelf. 

Flat-bottom case Shelved-bottom case 
Mode ). T (hrs) ). T (hrs) Figure 

no. 

(1,2,p) .071184 168.6 .I 1175 107.4 2 
(1,1,p) .22976 52.2 .23239 51.6 3 
1,1,g) .27095 44.3 .27335 43.9 4 

12,2,g) .55315 21.7 .46845 25.6 5 
( 

Table I lists the nondimensional-wave frequency, J., and the wave period, 
T, in hours for the four modes in the basin, with and without the shelf. 

In Figs. 2 through 5, surface topographies are contoured on sinusoidal pro-
jections of a hemisphere. Two plots are necessary to adequately describe the 
surface wave. It is convenient to represent the surface wave as the real and 
imaginary parts of a complex quantity: Re(Z) and Im(Z). Then Re(Z) and 
Im (Z) are the wave at two phases, different in time by a quarter of a period. 
The sea-surface topography can be constructed for any phase, v, using the 
relationship 

Z(v) = cos v Re(Z) +sin v Im(Z). (9) 

The qifference in frequencies and surface topographies between the solu-
tions for the flat-bottom case and the solutions in Christensen ( 197 3) may be 
attributed to the differences in computational techniques, to the coarseness of 
the 8-by-8 grid, and to slight differences in boundary shapes. Because no direct 
correspondence between the two sets of solutions has been made, the identifica-
tion of modes is tentative, only a comparison of frequencies and sea-surface topo-
graphies having been made. 

For the planetary modes, frequencies increase as a shelf is added; for the 
gravity modes, they apparently can either increase or decrease. The shape of 
the surface wave changes very little for the ( 1, 1 ,p) mode ( cf. Figs. 3 a and 3 b) 
and for the ( 1, 1 ,g) mode (cf. Figs. 4a and 4 b ). For the ( 1 ,2,p) mode, the ampli-
tude of the surface wave appears to increase near the boundaries and decreases 
in the interior (cf. Figs. 2a and 2b). The (2,2,g) mode gives an opposite re-
sponse. Initially the wave amplitude is high on the boundary at the equator 
but moves to the interior with the addition of the shelf (cf. Figs. 5a and 5b). 

The migration of the waves on and off the shelf is seen more clearly by 
computing the rms amplitude of the wave on the shelf and in the interior. The 
shelf alters the depth at the boundary points and at the points adjacent to the 
boundary points. For an 8-by-8 grid, this involves 28 points. The other 36 
points are at points with a depth of 4 km. Curves of 
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Figure 7. Values of }. and wave amplitude on and off the shelf as a function of the minimum shelf 
depth fo r the (1,1,p) oscillation. 

as well as of A., are plotted against the depth on the boundary at the equator for 
the (1,2,p) mode (Fig. 6), the (1,1,p) mode (Fig. 7), the (1,1,g) mode (Fig. 8), 
and the (2,2,g) mode (Fig. 9). Z* is the complex conjugate of Z; the brackets 
indicate mean quantities weighted according to the surface area. 

The results of these computations verify the observed behavior of the surface 
waves. The ( 1,1,p) and ( 1,1,g) modes show littl e migration of wave amplitude, 
and their frequencies change only slightly as the shelf is added. In the case of 
the (1,2,p) mode, the wave amplitude increases on the shelf and decreases in 
the interior; the frequency increases sharply. For the (2,2,g) mode, exactly the 
opposite response is seen: the wave amplitude decreases on the shelf and in-
creases in the interior, and the frequency decreases as the shelf is added. The 
two planetary modes respond in a similar way, and so do the two gravity modes. 

For the ( I ,2,p) and ( 2,2,g) modes, Figs. 6 and 9 show the wave migrations 
to be more responsive to shelf changes for boundary depths between 2 and 
3.5 km. Frequency changes are less for boundary depths that are greater than 
3.5 km; they are greater and appear to be linear functions of boundary depths 
for values of less than 3. 5 km. Apparently the wave migrations are nearly com-
plete at the final boundary depth of 1.2 km whereas the frequencies would con-
tinue to change linearly if the shelf were made more shallow. 
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Figure 8. Values of). and wave amplitude on and off the shelf as a function of the minimum shelf 
depth for the ( r , r ,g) oscillat ion. 

The behavior of the planetary modes may relate to theories of Buchwald 
(1969) and L onguet-Higgins (1968). They have found that long waves prop-
agating along discontinuities in depth, with the wave amplitude dropping off 
exponentiall y to either side, are possible. 

Conclusions. Normal modes can respond in several ways to the addition of a 
shelf at the boundaries of an otherwise constant-depth hemispherical basin. 
The mean depth is less with a shelf, and according to curves of}. versus H 1l 2 

of L onguet-Higgins and Pond (1970), a decrease in depth always results in a 
decrease in A. Therefore, one response to the shelf might be a decrease in 
frequencies. 

Bottom features can act as a wave guide to long waves (Longuet-Higgins 
1968, Buchwald 1969). For planetary modes particularly, the addition of a 
shelf would result in an increase in the wavelength of the modes. In going from 
the eastern boundary to the western boundary, waves moving along the shelf 
would travel a longer distance than if they moved through the central basin. 
In the case of planetary waves, an increase in wavelength means an increase 
in A. But in gravity waves, an increase in wavelength results in a decrease in A. 
This offers a second way for modes to respond to the additi on of the shelf! 

2. One of the referees prefers to summarize the effects of variable bathymetry by categorizing the 
effects into fou r types: 

(i) The enhanced beta effect, since the potential planetary vorti ci ty,f/h, varies because of both the 
Coriolis parameter,/, and the depth, h; 

(ii) The smaller phase speed c = (gh)112 of gravity waves near the boundari es, affecting part icularly 
the gravity modes; 

(iii) The smaller decay rate,f/c, fo r Kelvin modes near the boundaries, affecting also Poincare modes; 
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Figure 9. Values of A and wave amplitude on and off the shelf as a function of the minimum shelf 
depth for the (2,2,g) oscill ation. 

Of the four numeri cal solutions deformed, two respond strongly to a shelf: 
the (1,2,p) mode and the (2,2,g) mode. It is of interest to speculate about the 
probable causes of these responses. In the case of the (2,2,g) mode, the wave 
moves away from the boundaries with the addition of the shelf (Fig. 9). This 
would effectively decrease the wavelength and increase A. But A decreases in 
accordance with a decrease in depth. This is not surprising, for Kelvin-type 
gravity waves are closely associated with the boundaries. In adding a shelf, 
depth is decreased near the boundaries. 

On the other hand, the (1,2,p) wave moves onto the shelf (Fig. 6). Without 
the shelf, this mode had highs and lows moving through the central basin with 
essentially no motion near the boundaries. Therefore, this represents a funda-
mental alteration in the behavior of the mode. In accordance with an increase 
in wavelength, the frequency increases with the addition of the shelf. 

Acknowledgments. I thank Gordon W. Groves for his invaluable support, 
advice, and contributions throughout the study. I am also grateful to M . S. 

(iv) The effects on the length scale (c//3)1 ' 2 , which determines whether the oscillations are equato-
rially trapped. 

Examples of each effect of variable bathymetry can be seen in the figures. For example, the equatorial 
trapping can be seen in Fig. 3 for (1,1,p). The mode (1,2,p) in Fig. 2 a is not equatorially trapped in the 
constant depth ocean, and the corresponding mode with bathymetry seems to propagate along the bound-
ary rather than along the equator. 



1973] Christensen: Effect of a Coastal Shelf 

Longuet-Hi ggins, Brent Gallagher, George Platzman, George Carrier, and 
Merl Hendershott for their assistance, and to Gary Meyers for checking some 
of the most difficult algebra. 

I thank Ethel McAfee and Rita Pujalet for editorial help; the figures were 
prepared by Dick Rhodes and his staff. 

Most of the support for this work came from the National Science Founda-
tion through grants GA-1117, GP-4254, and G A-1 7137. 

REFERENCES 
BUCHWALD, V. T . 

1969. Long waves on ocean r idges. Proc. ray . Soc. London, (A)308: 343-354. 

CHRISTENSEN, JR., NIELS 
1972. Numerical simulation of free oscillations of enclosed basins on a rotating earth. 

Hawaii Inst. Geophys., Univ. of Hawaii. Rep. 72-9; 181 pp. 

1973. On free modes of oscillation of a hemispheri cal basin centered on the equator. 
J. mar. Res., JI (3): 168-174. 

ECKART, CARL 
1960. Hydrodynamics of oceans and atmospheres. Pergamon Press, New York. 290 pp. 

HOUGH, S. S. 
1898. On the application of harmonic analysis to the dynamical theory of the tides. II: 

on the general integration of Laplace's tidal equations. Phil. Trans., (A)I9I : 139-
18 5· 

L AMB, H ORACE 
1945. Hydrodynamics. D over Publications, New York, 738 pp. 

LoNGUET-HIGGINS, M. S. 
1968. On the trapping of waves along a discontinuity of depth in a rotating ocean. J . fluid 

Mech., JI(3) : 417-434· 

LoNGUET-HI GGINS, M. S., and G. S. POND 
1970. The fr ee oscillations of fluid on a hemisphere bounded by meridians of longitude. 

Phil. Trans., (A)266: 193- 223. 

MOFJELD, H . 0., and MAURICE RATTRAY, JR. 
1971. Free oscillations in a beta-plane ocean. J . mar. Res., 29(3): 281-305. 

RHINES, P . B. 
1969. Slow oscillations in an ocean of varying depth. Part r. Abrupt topography . J .fluid 

M ech., 37: 161-190. 

SALVADOR!, M. G ., and M . L. BARON 
1961. Numerical methods in Engineering. Prentice-Hall, Inc., Englewood Cliffs, N .J . 

3°2 PP· 

VERONIS, GEORGE 
1966. Rossby waves with bottom topography. J . mar . Res., 24: 338- 349. 


