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ABSTRACT 

Five barotropic modes of oscillation are computed for a hemispherical basin centered on 
the equator of a rotating earth. The method of Longuet-Higgins and Pond (1970), which 
takes full account of hori zontal divergence and the sphericity of the earth, is used. Two of 
the modes are planetary modes and three are gravity modes. Periods of oscillation for the 
fiv e modes range fr om one day to over four days. The surface waves exhibit different char-
acteristics; two have the largest amplitudes on the boundaries, one has almost no oscillation 
on the boundaries, and the other two have nearly equal amplitude everywhere. These solu-
tions agree in period and wave form with those of M ofj eld and Rattray (1971) for a similar 
{/-plane basin. 

Introduction. Barotropic modes of water oscillations in an enclosed basin on 
a rotating earth are computed. The method of Longuet-Higgins and Pond 
(1970) is used to compute fiv e solutions for a 4-km-deep hemispherical basin 
centered on the equator. A solution consists of a surface wave and a period of 
oscillati on. 

Longuet-Higgins (1966) and Longuet-Higgins and Pond (1970) studied the 
behavior of free oscill ati ons on a hemisphere bounded by meridians of longitude. 
In the fir st paper, complete soluti ons for the spectrum of planetary seiches were 
calculated, neglecting horizontal divergence. In the second paper, frequencies 
were calculated for planetary and gravity waves, taking full account of hori-
zontal divergence, over a large range of depth. 

Longuet-Hi ggins and Pond examined asymptotic forms, for both large and 
small depth. For large depth, the frequencies asymptotically approach those or 
the nondivergent case. Frequencies fo r intermediate depths can be selected, 
using their curves of nondimensional frequency versus a nondimensional depth 
parameter. 

1. H awaii Institu te of Geophysics Contribution No. 533. 
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Although Longuet-Higgins and Pond did not compute sea-surface topog-
raphies for the various solutions, the formulations to do so are available in 
their paper. Here, several solutions are computed, using their formulas, using 
numerical techniques similar to theirs, and using techniques developed by 
Christensen ( 1972) specifically for the purpose of computing sea-surface topog-
raphies and solutions at particular depths. 

Mofjeld and Rattray ( 197 1) have calculated the planetary and gravity waves 
for ocean-sized p-plane basins placed symmetrically about the equator. Their 
planetary modes resemble those of Rattray and Charnell (1966). The gravity 
modes are dynamically similar to either Kelvin waves or Poincare waves. Their 
p-plane solutions can be compared with the solutions in this paper, where full 
account is taken of the sphericity of the earth. 

Method of Calculation. The following equations, extracted from Longuet-
Higgins and Pond (1970), are initially credited to Proudman (1916). They are 
presented here without derivation. 

For ocean basins of arbitrary shape on a rotating globe, sea surface,(, can be 
expanded in the form 

co 

( = - L µrPr<pr, (1) 
r= I 

where 
<pr = er;: P':: (cos 0) cos m <p 

for 
n = 0, I, 2, ... , 

m = o, I , 2, . . . , n, 
and 

µr = n(n+ 1)h. 

Here, m and n refer to the spherical harmonics, <pr, of (2), and with each suf-
fix, r, a pair of suffixes, (r;:), are associated; h is the water depth; 0 and <pare 
colatitude and east longitude, respectively. The coefficients, Pr, as well as the 
nondimensional frequency, ,l, are determined by the equations of motion and 
the boundary conditions [Longuet-Higgins and Pond 1970: eq (4.4)]. To con-
vert from }. to wave period, T, in hours, divide twelve by ?.: T = I 2/J.. 

In ( 2 ), the P':: are associated Legendre polynomials: 

( I z2)1/2m dn+m 
pm(Z) = - --(z2_ i)n. 

n 2nn! dZn+m 
(3) 

The er;: are normalizing constants, which are chosen so that 

2._ ff h [(8<pr)2 +(-.I 8 0r)z] d.A = I 
az 80 Sm 0 8<p 
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Figure I (left). Planetary oscillation (r,2,p) with period= 4.43 days for a hemisphere with h = 4km. 

Figure 2 {right). Planetary oscillation (r, r ,p) with period= 2.01 days for a hemisphere with h = 4km. 
Above: Re((;). Below Im(C) . 

over the basin, where a is the radius of the earth. This implies that 

(4) 
where l [ 1 2 n + 1 ( n - m) ! ] 1 / 2 

tXn m = n n ( n + I)( n + m) ! ( m > 0) 

' [I n+1/2]''2 

n (n + 1) (m = 0 ), 

(5) 

excluding the case where n = m = o. 
In practice, the infinite series of coefficients, Pr, is truncated, and multipliers 

of the elements of Pr are arranged in a matrix. The series is limited to terms 
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Figure 3 (left). Gravity oscillation (r,r,g) with period= r.87 days for a hemisphere with It = 4 km. 

Figure 4 (right). Gravity oscillation (o, r,g) with period= r.28 days for a hemisphere with It= 4 km. 
Above: Re(C). Below Im(l,"). 

with m and n equal to, or less than, ten. This gives results that are accurate to 
the fourth significant figure. These multipliers are determined by the equa-
tions governing the motion and the boundary conditions. This becomes a stand-
ard eigenvalue problem, with Pr as the eigenvector and ). (which enters the 
equations, by assuming periodic motion) as the eigenvalue. Once the coeffi-
cients, Pr, are determined for a given frequency, the sea-surface topography 
can be generated by use of ( 1) through (5). 

Modes of Oscillation. Five solutions were computed: 

(1,2,p) = first symmetric planetary mode; 
(1,1,p) = first antisymmetric planetary mode; 
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Figure 5. Gravity oscillation (2,2,g) with period= 0 .99 days for a hemisphere with lz = 4 km. 
Above: Re(C). Below Im(C). 

(0,1,g) = first antisymmetric gravity (anti-Kelvin) mode; 
(1,1,g) = first symmetric gravity (Kelvin) mode; 
(2,2,g) = second symmetric (Kelvin) mode. 

The two numerical indices refer to indices of spherical harmonics [the first to 
m and the second ton in eq. (2)] that dominate the solution as depth becomes 
very large, as noted in Longuet-Higgins and Pond (1970: figs. 1, 2). Symbol 
p or g indicates a planetary or gravity wave, respectively. The symmetry refers 
to the configuration of 1:, about the equator, and first and second refer to the 
ordering according to frequency. 

The following values were used for the approximate mean values for the 
earth and its oceans: h=4km; a=6.37x 108cm; w=7.292x 10-ssec-1 ; 



1973] Christensen: On Free Modes of Oscillation 173 

Table I. Wave frequency and period for the modes of oscillation. 

Mode ,1. T(hrs) T (days) 
(1,2,p} 0.11278 106.40 4.43 (4.20) 
(1,1,p} .2492 48.15 2.01 (2.60) 
(1,1,g) .2669 44.96 1.87 (1.60) 
(0,1,g) .3901 30.76 1.28 (1.33) 
(2,2,g) .5059 23.72 0.99 ( .83) 

g = 981 cm sec4 ; here co is the rate of the earth's rotation and g is the accel-
eration of gravity. 

Computed frequencies, A, and wave periods, T, of the five solutions are listed 
in Table I. Periods are given in both hours and days. The periods of oscillation 
for the same solutions, computed by Mofjeld and Rattray ( 197 1) for a /J-plane 
basin of the same depth and with comparable surface dimensions, are given in 
parentheses. In both cases, the periods range from one day for the ( 2,2,g) mode 
to over four days for the ( 1 ,2,p) mode. The period for a particular mode differs 
from Mofjeld and Rattray's values by less than 5% up to 30%. The periods 
of the /J-plane basin are lower for the symmetric modes and higher for the 
antisymmetric modes. 

In Figs. 1 through 5, surface topographies are contoured on sinusoidal projec-
tions of a hemisphere. Two plots are necessary to adequately describe the sur-
face wave. It is convenient to represent the surface wave as the real and imag-
inary parts of a complex quantity, Re(C) and lm(C). Then Re(C) and lm(C) 
are the wave at two phases, different in time by a quarter of a period. The sea-
surface topography can be constructed for any phase, v, using the relationship 

C(v) = cos v Re(C) +sin v lm(C) . 

Planetary solutions (Figs. r and 2) are seen to be a series of highs and lows 
in C, forming at the eastern boundary and moving westward across the basin. 
On the other hand, for the gravity modes (Figs. 3 through 5), the highs and 
lows move eastward along the equator, either symmetric about it or as anti-
symmetric pairs on either side of it . They move poleward along the eastern 
boundary and return to the equator along the western boundary, thus com-
pleting the circuit. 

In the case of the ( 0,1 ,g) mode, the amplitude of the wave is greatly increased 
near the poles. To a lesser extent, this is also true of the ( 1, 1 ,p) mode, the anti-
symmetric planetary mode. The oscillati ons are most intense along the bound-
aries and are a maximum at the poles. This is not true for the symmetric modes. 
There are no appreciable fluctuations in C at the boundaries for ( 1, I, p ). Modes 
(1,1,g) and (2,2,g) have equally large oscillations at the poles, on the bound-
aries, and in the central basin. In general, these waves behave much lik e the 
waves for the /J-plane basin of Mofjeld and Rattray. 
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Conclusions. Five solutions were computed according to Longuet-Higgins 
and Pond (1970). The two planetary modes, one of each symmetry, have dif-
ferent characteristics. The (1,1,p) mode has its largest amplitude along the 
boundaries whereas the (1,2,p) mode exhibits essentially no motion on the 
boundaries. Amplitude of the (0,1,g) mode is greatest near the poles. The two 
symmetric gravity modes, (1,1,g) and (2,2,g), are nearly equal in amplitude 
everywhere. There is good agreement between these solutions and those of 
M ofjeld and Rattray ( 1971) for an ocean-sized ,8-plane basin symmetric about 
the equator. 
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