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ABSTRACT 

Presented here is a model for determining the characteristic parameters of an internal-
wave field using cross spectra of data obtained from vertically separated and/or horizontally 
separated moored instruments. The model is based on the assumption that the motion con-
sists mainly of linear free internal waves having random phase relationships. The internal-
wave energy is supposed to be distributed among a finite number of modes having contin-
uous directional distribution. The free parameters of the theoretical cross-spectral function 
for such a wave field (i.e., the modal energies, mean propagational directions, and beam 
widths) are obtained by a least-squares fit to the observed cross spectra between all compo-
nents of motion. Error calculations for the determined parameters are given. The number 
of degrees of freedom in this fitting procedure is high; e.g., 91 for a three-mode fit to cur-
rent data from five stations. 

The method is applied to records of tidal waves obtained in both shallow and deep water. 
The cross spectra and the spatial coherence field of current and temperature data obtained 
from an array in the North Sea could well be explained by a tidal-wave field that consists 
of the barotropic mode and the first baroclinic mode. For the current cross spectra derived 
from a mooring in the deep sea near the Great Meteor Seamount, additionally a second 
baroclinic mode was needed for the cross-spectral fit; in this case, however, the approximation 
was not as good as in the shallow-water example, probably due to the influence of the nearby 
seamount. 

Within the limitations of the model, the cross-spectral fit can be easily applied to all 
kinds of internal-wave data, once the cross spectra and the eigenfunctions are determined. 

I. Introduction. In the past decade, the theory of internal waves has been 
developed notably. However, there still is a large gap between the various 
theoretical models that deal with the generation and propagation of internal 
waves in the ocean and the practical possibilities to verify their results from 
observations. For a comparison of theory with oceanic observations the knowl-

1. Accepted for publication and submitted to press 15 February 1973. 

I I 6 



1973] Schott and Willebrand: Spectra 117 

edge of the actual directional-energy spectrum is a basic requirement. The 
determination of internal-wave directional spectra is complicated mainly by 
two facts: First, the horizontally separated instruments will never be sufficient 
in number to permit a straight-forward computation; the difficulties are in-
creased by the modal structure of the internal waves. Second, the time scales 
of the generating processes of internal waves (e.g., wind-field changes) cannot 
be expected to be long against the investigated periods of the wave motion. 

Different methods have been applied to obtain the internal wave-field para-
meters from time series of current and temperature fluctuations measured with 
moored oceanographic sensors. Some of these methods treat the three compo-
nents of motion independently while some combine the horizontal components. 
Most of the methods are confined to special cases that employ only horizontally 
or vertically separated instruments. 

There have been few experiments undertaken with horizontally separated 
instruments that recorded data simultaneously. Zalkan ( 1970) measured tem-
perature fluctuations with a triangular array of 30-m sidelength from FLIP and 
tried to explain the horizontal phase differences with a single-plane wave. 
Schott ( I 971a, 1971 b) ascertained the parameters of thermocline waves of 
tidal and inertial period by using the cross spectra of temperature fluctuations 
observed at four moorings in the North Sea. Wunsch and Hendry (1972) 
measured near-bottom currents with three horizontally separated moorings on 
the continental slope south of Cape Hatteras; they estimated the directional 
spectra of the tidal-current components by using the conventional method and 
a recently developed high-resolution method (Capon 1969). Thus, the various 
methods permit only the location of the main energy maximum in the wave-
number plane because of the limited number of stations; they do not provide 
much information on modal structure and directional distribution. 

Many records derived from vertically distributed instruments at single sta-
tions in both shallow and deep water have been obtained. From such data, the 
amplitudes and phases of internal-wave modes can be calculated by fitting 
eigenfunctions to the individual current components or to the vertical eleva-
tion, calculated from temperature or salinity fluctuations. For example, Krauss 
(1963) determined internal-seiche modes from current measurements in the 
Baltic; Magaard and McKee (in press) analyzed internal tides from current 
records obtained for two months at Site D in the North Atlantic. 

Munk and Phillips (1968) were the first to combine the properties of hori-
zontal-wave propagation and the vertical-mode structure. Garrett and Munk 
( 1972) explained the gross features of all the observed moored frequency 
spectra and towed wave-number spectra by means of an isotropic multimode 
internal-wave model. However, the two models are not designed primarily for 
determining the details of the directional spectrum of single events. 

Our aim here is to present a data-handling procedure that will determine 
the energy distribution on each mode from horizontally and vertically distrib-
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uted instruments. The data that seem to be most suitable for this purpose are 
the cross spectra between all observed components of motion. We calculate 
theoretical cross spectra as functions of free parameters that are adjusted to fit 
the observed quantities in a least-squares sense and that determine the direc-
tional spectrum. Furthermore, these parameters may help to explain the spatial 
coherence field in the ocean. The underlying assumption is that the motion 
can be described mainly by a statistical field of free internal waves that is sta-
tionary in time and is horizontally homogeneous. Thus, the different internal-
wave modes have no fixed phase relationships. This assumption is supported by 
many oceanic observations, all of which indicate a coherence loss over relatively 
small vertical separations (Perkins 1970, Siedler 1971, Webster 1972) and 
horizontal distances (Krauss 1969, Siedler [in press], Wunsch and Dahlen 
1970, Wunsch and Hendry 1972). 

2. Cross Spectra and Directional Spectrum. We start with the linearized 
hydrodynamic equations with arbitrary density stratification; we neglect com-
pressibility, viscosity, and diffusion and use the Boussinesq approximation and 
the "traditional approximation" for the Coriolis force (Eckart 1960 ). Further-
more, we assume a constant depth and a vanishing mean current. The time 
series available for directional spectral analysis are the horizontal current fluc-
tuations, u, v ( east and north, respectively), and the vertical displacement, (.2 

These quantities may be represented by their Fourier sums: 

u(x,z,t) = ~.) (ju(k,w) 11P(k,w,z) 

v(x,z,t) - ( f, -.~ j~(k,w) 1 v,(k,w,z}•<""-w<l, (2.<) 

C (x,z,t) = ~3 C (k,w) 1P(k,w,z) 

with x the horizontal coordinate vector and z the vertical coordinate. The 
eigenfunctions 1P (k, w, z) are determined from 

d21j) zN2(z)-wz 
- +k ---- 111=0 
dz2 wz-Jz r ' 

(2.2) 

with appropriate boundary conditions. For convenience we use the notation 

( 
I d 

({J, k,w,z) = ([J2 (k,w,z) = k dz 1P(k,w,z) 

({J3(k,w,z) = 1P(k,w,z). ) (2.3) 

2. In practice, C has to be calculated from temperature or salinity measurements. 
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The Fourier amplitudes of current components and vertical displacement are 
related by 

u(k,w) = - (wsin<l>+if cos <J>) [ (k,w), 

v (k, w) = (if sin <J> -w cos <l>) [ (k,w), l 
where <l> is the direction of the wave-number vector, k, counted clockwise 
from the north, and f is the inerti al fr equency. The covariance matrix is 
given by 

Hmn(r,z,z',i-) = < ~m(x,z,t)-~n(x+r,z',t+i-)> , (2.5) 

where < . .. > denotes the ensemble average. With (2.1) to (2.3), Hmn may 
be written in terms of the Fourier components: 

H mn (r,z,z',T) = 2 < C(k,w)C*(k,w) > Tmn(<J>,w)· ) 
k , w 

. Rmn (k w z z') e-i (kr-W't) , , , , 
(2.6) 

where the asterisk denotes the complex conjugate. Here the matrices Tmn and 
Rmn are given by 

ymn= 

(

w: sin ' <l> +f 1 cos2 <l> 

= ( w'-f 2 ) sin <l> cos <l> - iwf 

- w sin <l> + if cos <l> 

( w'-f 2) sin <l> cos <l> + iwf 

w' cos1 <l> + f sin1 <l> 

- w cos <l> - if sin <l> 

- w sin <l> - if cos <J>) 
-w cos~+ if sin <l> (2.7) 

and 
Rmn = <pm(k,w,z)<pn(k,w,z'). 

N ote that (2.6) is based on the random-phase assumption, i .e., 

<[( k,w)C(k',w') > = o if k+k' ¥' o or w+w' ¥' o. 

Changing to a continuous representation, we write : 

< ((k,w) C* (k,w) > _:_ E (k,w)dkdw. 

(2.8) 

The relationsh ip of the spectrum, E(k,w), to the energy density of the internal-
wave field will be pointed out later ; see (2.26). The cross-spectral matrix, 
"mn (r z z' w) which is the Fourier transform of Hmn with respect to time, ./1 ,,, , 

is then given by 

Amn(r,z,z',w) = ~E(k,w)TmnRmne- ikrdk. ( 2 . l O) 
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Example for 
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Figure 1. 
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The eigenfunction concept implies an energy distribution, which is concen-
trated on circles in the wave-number plane with radius k1(w), (j = o, 1, 2, ... ). 

We assume that the main contribution is due to only a few modes: 

(2.II) 

S1(<l>) is the directional distribution on the 1th circle and is normalized by 

( 2. l 2) 

Hence, 
N 

E(k)dk = 2, E'1. 
j=o 

(2. I 3) 

From now on, the dependence of all quantities on w is no longer indicated. 
In Fig. I, a possible energy distribution is sketched. From ( 2. 10) and ( 2. 1 1 ), 

we obtain 

(2.14) 

where 
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We now approximate the directional distribution, S1(<1>), by a two-parameter 
function. A convenient choice that permits the analytical evaluation of the 
integral in ( 2.14) is 

(2. I 5) 

Here <1>1 stands for the mean propagational direction and Pi is related to the 
beam width, /31, by cos2 PJ /31/4 = 1/2 (see Fig. 2); <11 is determined by (2.12). 
Isotropic energy distribution is represented by p 1 o, a discrete plane wave by 

co. A similar function has been used by Barnett (1969) for surface-wave 
directional spectra. 

Furthermore, the case of a more complicated energy distribution may be 
approximated by using a sum of beams of the type (2.15), with different 
energies and different mean propagational directions: 

(2. 16) 

It seems that the actual energy distribution in the sea may be fairly well 
described by either ( 2. 1 5) or ( 2. 1 6 ). For simplicity of notation, in the following 
considerations we use (2.15) instead of the more general (2.16). 

The integral in ( 2. 14 ), 

f1mn = ~:s,(<J>) ymn(<J>)e-tk1rcos(«t)-C()d<J>, (2. I 7) 

with S1(<J>) from (2.15), can be evaluated in terms of Bessel functions: 
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Table I. Coefficients nmn from formula ( 2. I 8). * 
V 

D" = .: (w' +f') /o) - .: (w' - f') c(2) V 2 V 2 V 

D22 = .: (w' + f') c(o) + .: (w1 - / 1) c<•) 
V 2 'V 2 V 

D12 = iwfi/ 0 ) +.: (w' -/1)/2> V V 2 V 

D~' = (w'+f')-(w1 -f2)y1 cos2</>f 

D~2 = (w' + / 1) + (w' -f') y, cos 2 <1>1 

D~3 = z 

D~2 = z i wf + (w' -f') y1 sin z <I> f 

D 3 = z y 1 ( - w sin <l> f - if cos <I> f) 

D~3 = z y, (-w cos <1>1 + if sin <1>1) 

• The values for v = o are given explicitly, since only these coefficients are used in some special 
cases, e.g., formulas (2.zz)-(z.24). 

The coefficients D";'n are listed in Table I. The splitting up of ( 2. 14) into 
the real part and imaginary part leads to the co-spectrum, Cmn, and the quad-
rature-spectrum, Qmn: 

N 
Amn = cmn_;gmn = L E,R,mn(z,z') f1mn(r,cx,<P1,P1)-

J=o 
( 2. I 9) 

The parameters E1, <P1,P1 can now be determined by fitting (2.19) to the 
observed co-spectra and the quadrature-spectra Q~~- Suppose that the 
cross spectra from a number of M moored instruments are available for the 
analysis; i.e., the maximum possible number of cross spectra is S = 9 · M 
(M + 1)/2. 

For a least-squares fit, it is necessary that 

s 
F(Eo • • • EN, <Po• • • <PN,Po • · • PN) = L 1 ).8 {[ c;;t 8 (rs, CXs, Zs, zs') -

s= , } (220) 
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be a minimum. The prime at L indicates that some terms of the sum may be 
omitted if the corresponding data are missing. The weight factors, ,l

8
, will be 

discussed later. By use of (2.19), the expected field of the squared coherence 
can be calculated if the parameters are known: 

I Amn (r z z') I ' 
Kmn (r z z') - ' ' 

'' - Amm(o,z,z)Ann(o,z',z'r (2.21) 

These values can then be compared with the measured coherence field, K~~-

Two SPECIAL CASES 

(i) CuRRENT DATA FROM A SINGLE MooRING. Frequently, records are 
obtained from single stations equipped with several current meters at different 
depths. For this case (r = o), (2.19) reduces to 

N 

Amn(o,z,z') = i L E1Rrn(z,z')Dr:n(<1>1,P1)-
j=o 

(2.22) 

With (2.22), the energies, E1, and the beam-width parameters, p1, can be 
determined; the propagational directions, <l>1, in this case, only result with a 
I 80° ambiguity, as is seen from the D7::n for m = I ,2 in Table I. This am-
biguity can be resolved if the vertical displacement has been measured at least 
at one depth. However, from the nr:n it can be seen that the determination of 
propagational directions based on current measurements with only vertical sep-
arations will be almost impossible for near-inertial frequencies because of the 
factor (w•-f) with all the </>1 terms. (This will become obvious in one of our 
examples discussed later). In case one mode contains all of the energy, it fol-
lows from (2.21) and (2.22) that the vertical coherence is Kmn(o,z,z') = 1. 

(ii) HORIZONTAL CROSS SPECTRA. We first consider the case of temper-
ature (i.e., elevation) cross spectra. If we assume for a moment a discrete 
directional energy distribution of each mode, then ( 2.19) reads: 

N 
.,133(r,rx) = L E,e-tk1rcos(<t>rrf-). (2.23) 

J=o 

This form has been used by one of us in fitting horizontal temperature cross 
spectra from the North Sea (referred to below) with a single-plane wave. An-
other interesting relationship holds for the horizontal cross spectra of the in-
dividual current components if isotropic energy distribution is assumed: 
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This special case is the same as that in Garrett and M unk's model except that 
they do not consider the modal structure. They neglect the second term of 
(2.24), which seems justified only if the sensor separation is sufficiently small 
or if near-inertial frequencies are treated. 

KINETIC AN D POTENTIAL ENERGY. From the parameters determined by 
the cross-spectral fit, the energy profile and the r.m.s. amplitudes can be cal-
culated. The average total energy per volume in the internal-wave field at 
depth z is 

(2.25) 

With (2.1), (2.4), and (2.9), the spectral-energy density is given by 

r [wi+ f2 (d'f/l) z ] U(k,w,z) = 2 e(z)E(k,w) -r dz + (w2+Nz)'l/12 . (2.26) 

The energy per frequency interval results with the use of (2.1 r): 

U(w,z) = i e(z)it
0
Ei [w:;Jz (ddzir +_(wz + Nz)"Pizj, (2.27) 

where "Pi = V1(ki,w,z). The first part of this sum, which corresponds to the 
horizontal kinetic energy, can readily be compared with measured profiles. If 
the eigenfunctions are normalized according to 

(2.28) 

(with H water depth), the contribution of a mode to the horizontal kinetic 
energy of the water column is directly proportional to Ei. 

The mean-square values of the current components and the vertical eleva-
tion are given by · 

{ : :: : } = iio ~! ( ddzi r [ ( wz + Jz) 'F ( w2-Jz) . 

Pi(Pi - r) ] 
. ( ) ( ) cos 2<Pi · Llw , Pi+I Pi+2 
N 

< ( 2 > = L 2E1V1t2Llw, 
j = o 

(2.29) 

with Llw being the frequency increment. From (2.29) it is seen that <uz > = 
<v2 > in the isotropic case (P1 = o); for Pi ~ r, this relationship also holds 
fairly well. 
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Weight Factors. For the application of the cross-spectral fit, weight factors 
had to be introduced in (2.20) for two different reasons: First, not all of the 
elements of the cross-spectral matrix have the same dimension, since the time 
series on which the cross spectra are based may consist of velocities and lengths. 
Second, observed cross spectra of equal dimension may differ considerably in 
magnitude. In the first case, the difficulty may be resolved by rescaling the 
vertical elevation, C, to obtain a quantity that has the dimension of a velocity 
and the order of magnitude of the horizontal current. This scaling factor, for 

example, might be chosen as w{(N 2 -w2)/(w2 -/•)} 1l 2 , where N is an average 
value of the Brunt-Vaisala frequency. 

Another possibility is the normalization by the corresponding autospectra, 
I.e., 

1 _ [l"'msms( ) • cnsns( I ')J-1 As - uobs o,zs,Zs obs o,zs ,zs . 

This type of scaling makes all terms of the sum (2.20) dimensionless and of 
the same order of magnitude. Hence, it is prevented that the approximation 
fits well to only a few large cross spectra and rather badly to a great number 
of smaller ones. Therefore, scaling with (2.30) seems reasonable, and we use 
this procedure in our application to ocean measurements. 

Consideration of Errors. Having determined the minimum of (2.20), we 
are left with a minimum value Fmin, which usually is not zero; in a sense its 
value may be regarded as a measure of the quality of the approximation. The 
ratio of F min to the (weighted) sum of the squared observed cross spectra, F

0
, 

may provide some idea of the extent to which the data are explained by the 
model. The deviation from zero minimum may be due to different sources of 
error, which we now briefly discuss. 

FrXED PHASES. The different modes may have fixed phase relationships. 
This may happen near bottom slopes where barotropic wave energy is trans-
formed into baroclinic modes (Rattray et al. 1969). Also, the phases obviously 
will tend to become more and more fixed if the length of the record is shor-
tened. Application of (2.20) to synthetic data made up of a few modes with 
fixed phases has revealed that at least the propagational directions were found 
almost correctly whereas the fitted energies turned out to be rather bad. There-
fore, to get reasonable results from the cross-spectral fit, the random-phase 
condition must not be too heavily violated. 

NoNSTATIONARITY. To fulfil our stationarity assumption, it may be neces-
sary sometimes to cut longer records into pieces, otherwise propagation char-
acteristics of different processes might get mixed up. The length of a piece 
has to be a compromise between this requirement and the random-phase con-
dition. 

NON LINEARITY. Nonlinear interactions transfer energy among different 
components of the internal-wave field. This means that the energy will remain 
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on circles in the wave-number plane according to (2. I I) while the parameters 
E1,<P1,p1 may change with time and may thus add to the nonstationary char-
acter of the energy spectrum. 

NoNHOMOGENEITY. This may be due to the topography or to the horizontal 
distribution of the generating forces. In this case, horizontal separations of the 
sensors have to be kept sufficiently small with the accompanying disadvantages 
concerning the spectral resolution. 

TURBULENCE. The turbulence spectra may be expected to be rather smooth 
in the wave-number plane and would therefore add a sort of white noise to 
the internal-wave field data. The turbulence contribution can be treated to-
gether with other unsystematic errors. 

DoPPLER EFFECT. The influence of a mean current will result in a defor-
mation of the circular-energy distribution in the wave-number plane. This 
will be disregarded here. 

ALIASING. For the conventional spectral estimators, aliasing plays an im-
portant role. Considerable improvement has been achieved by use of the high-
resolution method of Capon ( I 969). In our cross-spectral fit, aliasing corre-
sponds to secondary minima. To be sure that the true minimum is found, the 
minimum-seeking procedure has to be repeated several times, starting from 
different initial values of the parameters. From our experience with the cross-
spectral fit, secondary minima seem not to be a severe problem. This is 
partly due to the assumed modal structure of the internal-wave field and 
partly to the great number of cross spectra available by the combina-
tion of all three components of motion, i.e., the great number of degrees of 
freedom. 

In order to quantify error bars of our determined parameters, E1,<P1,p1, we 
assume now that the errors in the measurements are largely nonsystematic. 
The sum (2.20) may be rewritten as 

2S 

F(µ, . ' .µ3(N+r)) = I'As[x~bs_xs(µI • • .µ3(N+1))]\ 
8 = I 

with f-t, . . . µ 3 (N+ ,) being the 3(N + r) parameters (E1,<P1,p1), j = o ... N 
and with x~bs, Xs denoting the observed and theoretical co-spectra ems ns (r 8, a8, 

Zs,zs') for I s S and the corresponding quadrature-spectra gmsns ( . .. ) for 
S + I s 2 S, respectively. In order to apply the standard error calculation of 
li~e~r least-squares approximation, ( 2.3 r) is expanded in the vicinity of the 
m1n1mum: 

2S [ 3(N+1)0 ]1 
_ 1 obs - - Xs -F - L As Xs - xs(µ, · · • / l 3(N+ ,i)- L a (µz-µi) • 

s=r l=r µ1 
(2.32) 
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Defining the matrix 

a,z = 'Jsaxs axs, . I ( • L, a a ,, = i ... 3 N + i), 
S = I µ, flt 

the r.m.s. deviations Aµs are given by 

[ _,Fminl''2 

Llµz = (a)u -Y-- , (2.33) 

where Lis the number of degrees of freedom (Zurmuhl 1965). This number 
is equal to the number of observed co-spectra and quadrature-spectra minus 
the number of fitting parameters. 

If the distribution of the observed cross spectra were known to be Gaussian, 
the minimum values, µ1, would be !-distributed, with L degrees of freedom; 
and, from (2.33), confidence limits for the parameters could be calculated. 
Generally, the observed cross spectra cannot be expected to have a normal 
distribution. However, if the number of degrees of freedom is sufficiently 
large, say, I oo, the µ1 will approach a normal distribution for any distribution 
of the data. 

Typically, the number of degrees of freedom will be this order of magnitude. 
As an example, assume that the cross spectra from five current meters (60 
co-spectra and 40 quadrature-spectra) are used. With a three-mode fit with 
three fitting parameters each, the number of degrees of freedom is 91. 

3 . .Application to Internal Tides. (i) CURRENT AND TEMPERATURE DATA 
FROM AN ARRAY IN THE NoRTH SEA. In the northwestern North Sea, about 
1 oo n.m. off the eastern English Coast (Fig. 3a), currents and temperature 
fluctuations were recorded for 13 days in September 1968 at four moorings 
(Fig. 3b). The water depth was 82 m. The density profile was almost two-
layered, with a sharp thermocline centered at a depth of about 32 m (Fig. 3c). 
These data have been discussed elsewhere (Schott 197 1 a). They should pro-
vide a good means of checking our cross-spectral fit, since the tidal parameters 
may be deduced from different sets of independent cross spectra from different 
instruments. We use the horizontal cross spectra of the temperature fluctua-
tions at the four stations; separately we use the cross spectra of the currents 
measured at the central mooring (the best-equipped mooring) and another 
nearby mooring. 

HORIZONTAL CROSS SPECTRA OF TEMPERATURE FLUCTUATIONS. A major 
difficulty in using the temperature spectra is the sharpness of the thermocline. 
In the ideal case of a completely two-layered medium, harmonic thermocline 
waves would be recorded by near-thermocline sensors as rectangular pulses. 
In our case, where there is a small transition zone between the two layers, 
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Figure 3. (a) Location of the mooring array in the northwestern North Sea. 
(b) Di stances between moorings. 
(c) Profiles of N 2 (dashed line) and the current eigenfunctions, rp0 and rp1 (solid lines). 

Instrument depths fo r currents(-) and temperatures ( • ) are marked on the right 
ordinate. 

the sensors within the thermocline may get, during part of the wave periods, 
into the homogeneous upper or lower layer; this then results in a cut-off of 
high amplitudes. Also, this effect will be quite different for sensors that have 
only a few decimeters of vertical separation. For such a density profile, only 
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Table I I. Fit~ing parameters (modal energy, Ei, propagation direction, <P,) 
and beam width, /3i), mean-square horizontal currents and vertical eleva-
tions of two modes calculated from the North Sea rec~rds. 

Fitting 
parameters 

Barotropic mode 

k
0 

= 6.JO-lkm-• 
E0 = 4.09 ± 0.24 
</>0 = 214°± 2° 
Po < 50 

First baroclinic mode 

k, = 0.18 km-' 
E, =0.45±0.15 
<l> .. = 222° ± 80° 
/3 .. - 180°± 180° 
<t>· = 3°± 15° 

• From temperature cross spectra. 

,-Current ellipse~ 
major minor 
axis axis 

(cm/sec) 

12.2 1.7 
(contra solem) 

upper layer : 
3.1 2.7 

lower layer: 
1.7 1.5 

•• Uncertain; see text. 

Vertical 
elevation 

31 cm 
(surface) 

133 cm 
(thermocline) 

the barotropic mode and the first baroclinic mode of tidal waves are important. 
The above-mentioned difficulties prevent an accurate determination of the 
energies of both modes from temperature fluctuations, but nevertheless, the 
propagation direction of the first mode should be almost correct. In fact, our 
two-mode model gave a northward propagating first mode (<Pi 3°) according 
to Schott's ( I 97 1a) single plane-wave approximation. Introduction of an 
additional second mode revealed that it was unimportant. 

CURRENT CROSS SPECTRA. The current records from four current meters 
have been used for the fit: three were on the central mooring at depths of 
I 8.5 m, 36.0 m, and 70.0 m and one was on the eastern mooring, 2.5 km 
away, at a depth of I 8.3 m. This provides us with 40 cross-spectra pairs. 

An essential relationship for the current cross-spectral fit is ( 2.4), which 
means that the main axes of the current ellipse of the modes must have the 
ratio f /w. However, the barotropic tide in the North Sea is not such a free 
wave. Its actual ellip se can be determined by regarding this ratio as a new para-
meter whose value is to be found in the cross-spectral fit. 

The fitting parameters of the barotropic mode and the fir st baroclinic mode 
-i.e., the relative energies, E1, the mean propagational directions, <P1, and 
the beam widths, (31-are presented in Table II. The barotropic parameters 
result with remarkably small errors; the axis ratio and the orientation of the 
major axis are in agreement with the numerical calculations of Hansen (1952) 
for the M 2 tide in the North Sea. The determination of the baroclinic propaga-
tional direction and beam width from these current data must be uncertain 
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Table II I. Squared coherence for sensor pairs and current components, u, v, 
from North Sea stations EAST (E) and CENTRAL (C). Left-hand columns: 
data coherence. Right-hand columns: model coherence. 

Current components 
,--u-u ---, ,--u-'V---, ,--'V-u---, ,--'U-'V~ 

Sensor pairs Data Model Data Model Data Model Data Model 

E 18.5-E 18.5 . . . 0.69 0.61 0.69 0.61 
-C 18.3 .. . 1.00 0.98 0.66 0.63 0.76 0.59 0.94 0.99 
-C 36.0 . .. 0.60 0.50 0.79 0.77 0.85 0.86 0.77 0.71 
-C 70.0 ... 0.64 0.50 0.84 0.77 0.85 0.86 0.78 0.71 

C 18.3-C 18.3 .. . 0.73 0.61 0.73 0.61 
-C 36.0 ... 0.61 0.49 0.72 0.78 0.86 0.85 0.76 0.71 
-C 70.0 ... 0.64 0.49 0.77 0.78 0.86 0.85 0.77 0.71 

C 36.0-C 36.0 ... 0.85 0.83 0.85 0.83 
- C 70.0 ... 0.89 1.00 0.84 0.83 0.88 0.83 0.97 1.00 

C 70.0-C 70.0 . . . 0.87 0.83 0.87 0.83 

because of the following effects. On the one hand, the axis ratio of the free 
wave is f/w = 0.87, which means that the current ellipse does not differ much 
from a circle. As mentioned in§ 2, the theoretical current cross spectra for the 
vertical separation (at station CENTRAL) are then rather insensitive to these two 
parameters. On the other hand, there is only one small horizontal separation 
(between CENTRAL and EAsT) that provides phase information; and the baro-
clinic energy is only about one tenth of the barotropic energy. Therefore, the 
'1>1 value, determined from the horizontal temperature cross spectra, can be 
regarded as the more reliable and is inserted in Table I I. The ratio Fm10/F0 

of the fit was 10%. 
The possibility of combining temperature and current data, which would 

allow the determination of unambiguous propagational directions from the 
CENTRAL mooring alone, was investigated but could not be used because of 
the above-mentioned cut-off effects in the temperature records. A comparison 
of the observed and model coherences for the four current meters is presented 
in Table I I I. The interesting feature is that the coherence across the thermo-
dine is reduced considerably although the first-mode energy is so small com-
pared with the barotropic one. 

(ii) CURRENT CRoss SPECTRA FROM A SINGLE MooRING. This mooring 
was near the Great Meteor Seamount in the North Atlantic (Figs. 4a, 4b), 
at a water depth of 4650 m, and was equipped with four current meters at 
depths of I 42 m, I 202 m, 20 5 2 m, and 3002 m. The results of the cross-
spectral fit with three modes for all auto spectra and cross spectra of the four 
instruments (i.e., more than 50 degrees of freedom), using the eigenfunctions 
in Fig. 4c, are presented in Table IV . The E1 are the relative energies of the 
modes, with the first baroclinic mode dominant. (The eigenfunctions are nor-
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F igure 4. (a) Location of the Great M eteor Seamount in the Atl antic. 
(b) Topography of t he Seamount and the location of the mooring. 
(c) Profiles of N 2 (dashed l ine) and the current eigenfunctions, <p0 , <pt, <p, (solid lin e). 

Current-meter depths are marked on the right ordinate. 

malized according to ip/(o) = k1-) For the barotropic mode, the orientation of 
the current ellipse coincides with the results of M eineke ( 197 1 ), who fitted 
the barotropic and the fir st two baroclini c tidal modes to the individual current 
Fourier components, and is in fair agreement with the numeri cal computation 
by Pekeris and Accad ( 1969). The current amplitude of 2 cm/sec was a littl e 
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lower than in M eincke's results but was considerably lower than the 5 cm/sec 
value given by Pekeris and Accad. . . 

The errors in the parameters shown in Table IV mcrease with mode num-
ber, which seems plausible. The beam-width values are only poorly. d~fi~ed, 

since the actual dependence of the m1mm1zed 
Table IV. Parameters of function from the beam-width parameter, p, is 
the cross-spectral fit with weak [see (2.22) and Table I]. Introduction 
three modes to the cur- of a third baroclinic mode, which is possible 
rent records from a moor- because of the high number of degrees of free-
ing near the Great Meteor <lorn of the fit, resulted in zero energy for this 
Seamount. mode. The model coherences for this fit were 

Eo .. . .. .. .• . . . 
<I> •. •. ... .• . •.. 
fl •. ........... 
E, ..... .... . . . 
<I>, . . .• . .... .. 
fl, . . ......... . 
E, . ....... . . . . :·} . .. . .. . . . 

Fitting lower in general than the observed ones, prob-
parameters ably due to the position of the mooring in an 
o.36 ± 0.07 area (Fig. 4) where the assumptions, especially 
61° ± 7° the random-phase assumption, are not suffici-
3O0 ± 250 ently fulfill ed. 

1.54 ± 0.41 (iii) TEST wrTH RANDOM DATA. In order 
242° ± 78° 
130

0± 1100 to test the cross-spectral fit, the current spectra 
from the Meteor Bank mooring were replaced 

o.26 ± 0.11 b II d. ·b by pseudorandom num ers, equa y 1stn -
Uncertain uted in ( - I / 2, I /2). As expected, our model 

fitt ed these data by only the isotropically dis-
tributed barotropic energy, the other modes did not contribute. It is obvious 
that the suppression of the baroclinic modes is due to the eigenfunction 
structure. When replacing the horizontal temperature cross spectra in the 
N orth Sea example by using random numbers, again only the "barotropic" 
mode with near-zero wave number contributed to the fit. In both random-
data tests, the ratio Fmin/F0 was about 90%. 

4. Conclusions. The model presented here is based on the assumption that 
the fi eld of motion at the frequency of interest is mainly composed of free in-
ternal waves having random-phase differences. For a test of the cross-spectral 
fit with real oceanographic data, internal tides measured far from generation 
areas seemed suitable. In the case of the N orth Sea data, the distance to the 
probable generation area (the slopes in the southern North Sea) of the north-
ward propagating baroclinic mode is of the order of several first-mode wave-
lengths. A continuous phase change between the barotropic and baroclinic tidal 
waves has been found by piecewise Fourier analysis, i.e., the requirement of 
random-phase differences can be assumed to be met. The observed vertical and 
horizontal coherences are well explained with the two-mode model. The re-
markable fact is that the presence of the baroclinic mode, though only one 
tenth of the barotropic energy, results in a decrease of the squared vertical 
coherence across the thermocli ne down to 0.50. In the deep-sea example, a 



1973] Schott and Willebrand: Spectra 133 

few modes-the barotropic and the fir st two baroclinic modes- are again suf-
ficient to fit the observed cross spectra. The observed coherences, however, 
on the average, are higher than the model coherences. One explanation might 
be that the modes are not to a sufficient degree statistically independent due to 
the influence of the nearby seamount. Hence, these deep-sea data are no ideal 
"test set" for our model, but they were the only ones at hand. Application of 
the cross-spectral fit to Site-D data is in progress. 

The tests with random data support the conclusion that, at least in our ap-
plications, a good cross-spectral fit provides physically meaningful internal 
wave-field parameters. 
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