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On Divergent Shelf Waves' 

V. T . Buchwald 

Schaal of Mathematics 
University of New South Wales 
Kensington, N.S.W., Australia 

ABSTRACT 

A dispersion relationship for divergent continental shelf waves on a shelf of exponential 
profil e has been obtained. The dispersion curves calculated fr om this relationship are in 
good agreement with experimental results reported by Caldwell et al. (1972). In addition, 
a perturbation method has been used to obtain the first-order divergent correction to the 
dispersion curves of nondivergent shelf waves on a shelf of arbitrary profile. Numerical cal-
culations by the perturbation method for the exponential profile show good agreement with 
other theoretical and experimental results. 

1. Introduction. Observations on the nonhydrostatic response of sea level 
to atmospheric pressure systems by Hamon (1962, 1963, 1966) in Australia 
and by Mooers and Smith (1968) in Oregon have been attributed to topo-
graphical Rossby waves, otherwise known as continental-shelf waves. It has 
been suggested (Adams and Buchwald 1969) that these waves are generated 
by a periodic longshore component of the geostrophic wind. As will be seen 
below, the divergence parameter 

s = 1 L'/ghr (1.1) 

plays an important role in theoretical models of shelf waves, where h, is the 
ocean depth, L is a typical shelf width, and f is the Coriolis parameter. The 
assumption c = o impli es zero horizontal divergence in the theory and, con-
sequently, neglect of the vertical displacement in the equation of continuity. 
Theories based on taking c = o have been considered by Robinson ( 1964) 
and Mysak (1967, 1968) in the case where wavelengths are long compared 
with the width of the continental margin and by Buchwald and Adams ( 1968) 
for all wavelengths. 

For oceanographic applications, theori es that assume c = o are probably 
adequate. For instance, the parameters for the East Australian continental 
shelf give c"" 10-3. However, in the laboratory experiments conducted by 
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Caldwell et al. (1972), e = 0(1), and theories based on e = o do not agree 
with the experimental results. Given in the same paper is a more general theory 
that takes the divergence into account; the dispersion curves were found by 
numerical integration of an ordinary differential equation. The purpose of the 
present work has been to derive analytic expressions for the dispersion rela-
tions, in suitable cases, thus avoiding the necessity of numerical integration. 

In order to write down the basic equation of shelf waves, we assume hori-
zontal x*,y* coordinates; a shoreline at x* = o; a continental shelf in the 
strip o(x*::; L, where the depth is h*(x*); and, for x• 2: L, an ocean of uni-
form depth, h1 = h*(L). In terms of nondimensional coordinates, x = x*/L, 
y = y*/L, and of a nondimensional depth, h = h*/h1, the equation for the 
surface displacement, C, is (Caldwell et al.) for o(x::; 1, 

(he')'+ (µkh' -k2h-b)C = o; (1.2) 

here it is assumed that C represents a coastal wave that has implicit harmonic 
variation in bothy and the time t of the form exp [i(ky+wt)]; the primes 
are derivatives with respect to x, and 

µ = f/w; (1.3a, b) 

We assume that h(o) =fo o, when the condition of zero normal velocity at the 
shoreline reduces to 

C'+µkC = o, X = o. 

For the ocean, it is seen from (1.2) that if h = 1, the solution that vanishes as 
x co is of the form 

(~exp[-.?.x], 
where 

By invoking continuity of C and C' at x = 1, the condition 

C'+.?.C=o, x=1, 

(1.5) 

(1.6) 

is obtained. It can be shown that continuity of normal velocity at x = 1 im-
plies that C' is continuous. 

Given k, eq. (1.2) is a Sturm-Liouville equation for the eigenvalues v = µk. 
However, the eigenvalue appears in both the boundary conditions (1.4) and 
(1.5). Morever, the form of (1.5) makes this a nonstandard Sturm-Liouville 
problem, but if e = o and if we assume that then ;. = I k I > o, it is possible to 
extend the Sturm-Liouville theory to this case, on lines suggested by Friedman 
(1956), as follows: 

Since I, = o, assume that h(x) (1.2) can be rewritten as 
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where 
( I. 7) 

<l- I {d( d) 1} 
~o = - h' (x) dx h dx - hk · 

Let z(x) be any twice-differentiable function in [0,1] and consider the space 
of two component vectors, Z = (z(x), z(o)). Define the scalar product of 
two vectors, Z1, Z,, as 

and consider the subspace of vectors such that 

z' ( 1) + I k I z ( 1) = o. 

Let the operator, 2, be defined by 

BZ=(Boz ) 
-z' (o) ' 

(1.10) 

so that 
(B-v)Z=o, (1.11) 

together with the condition (1.9), is now a standard Sturm-Liouville eigen-
value problem, equivalent to (1.2) through (1.6) when e = o. It is easy to 
show that B is self-adjoint, and, by considering the scalar product 

<Z, (B-v)Z> = o, (1.12) 

it is shown in the APPENDIX that, if h' (x) 2': o, all xe[o, 1]; then S5 is positive 
definite. It follows that, given k, there is an infinite set of positive eigenvalues, 
Yn(k), for which (1.11) is satisfied, thus providing the dispersion curves for the 
possible modes of nondivergent shelf waves. A specific example of the solution 
to this problem has been given by Buchwald and Adams (1968) for the case 
h(x) ~ exp (2 bx). 

If e -,ft o, then the eigenvalue problem is too complicated to admit any 
general conclusions. The specific case of a rectangular shelf has been analyzed 
by Munk et al. (1970), who plotted the dispersion curves for both shelf waves 
and Kelvin waves at the low-frequency (w <J) end of the spectrum and for 
trapped Kelvin and Poincare waves at the high-frequency end (w > f) . 

In this paper we discuss two different methods of approach. In § 2 we have 
derived an explicit dispersion relationship for a shelf having exponential slope 
that is valid for all values of e and µ. Numerical results are obtained for low 
frequencies that are in excell ent agreement with both the experimental and 
computed results of Caldwell et al. over the whole range of wavelengths. In 
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§ 3, for an arbitrary shelf, a method used by Smith (1972) is extended to the 
case of the whole range of wavelengths and is used to obtain the first-order 
corrections to the dispersion curves for small values of e. Here again, numerical 
computations for an exponential shelf give good agreement with both the 
exact and experimental results. 

2. Exponential Depth //ariation. Assume that the depth in the shelf region 
is given by 

so that 
h = exp [2h(x- 1)] 

ho = h ( o) = exp ( - 2 h) . 
The changes of variable 

x = - (log ;)/h 

transform ( 1.2) into a Bessel equation, 

where 
(j2 = (2µkh-k2-h2)jh2, 

ei = tJ/hoh2. 

The general solution of (2.4) may be written in the form 

r; = A+B(e;,ia)+.,1-B(e;,-ia), 

where the functions B can be expressed in the series form 

B(; ia) = ;ta [1 + (~/2)2 + (;/2)4 + ] 
' 1!(za+1) 2!(ia+1)(ia+2) · · · · 

Note also that B can be expressed in terms of Bessel functions by 

B(t ) - (2/i)CX . 
~,ex: - I'(cx:+ 1) Ja(z;). 

After transformation, the boundary conditions ( 1.4) and ( 1.6) reduce to 

he-l>r;~+(h-A)r;=o; ;=e-1>, 

hr;~+(h-µk)r; = o; ; = 1, 
smce 

(2. I) 

(2.2) 

(2.3) 

(2.4) 

(2.5a) 

(2.5b) 

(2.6) 

(2.7) 

(2.8) 
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Table I. Comparison of calculated results for the first mode of the 'wide shelf' 
' ho = _0.06, b = I :4067, e = 1.03. Values of w = w/f, calculated from ( 2. 11 ), 

are given for various values of k. The figures in the w 0 column are the cor-
responding values for the nondivergent theory, e = o. The figures under 
w,, w, • have been calculated by means of the perturbation and modified 
perturbation methods, respectively. 

k 'W Wo w, w,• 
0.25 0.0622 0.1013 0.0479 0.0568 
0.75 .1811 .2663 .1591 .1689 
J.25 .2833 .3770 .2610 .2697 
1.75 .3582 .4406 .3400 .3466 
2.25 .4017 .4700 .3899 .3943 
2.75 .4196 .4769 .4142 .4170 
3.25 .4211 .4702 .4204 .4221 
3.75 .4134 .4559 .4156 .4166 
4.25 .4008 .4378 .4044 .4051 
4.75 .3860 .4181 .3901 .3905 
5.75 .3544 .3786 .3585 .3586 
6.75 .3241 .3426 .3276 .3277 
7.75 .2969 .3110 .2997 .2997 
8.75 .2728 .2837 .2750 .2750 
9.75 .2517 .2603 .2535 .2535 

Substitution of (2.6) in (2.9), (2.10), elimination of A+,A-, and the use of a 
well-known addition formula for Bessel functions results in the frequency 
equation 

H(µ,k) = F(a)G(-a)-F(-a)G(a), (2.11) 

= o, 
where 

F(a) = (iab+b-J..)B(ee-b,ia)+1/2ebe-b(1 +ia)B(ee-b,1 +ia), (2. 12) 

G(a) = (i abeb+ b - µk) B(e,ia) + 1/2eb( I + i a)B(e, I + ia). (2.13) 

Solutions of ( 2 . 11) give the dispersion curves for continental-shelf waves, 
Kelvin waves, and trapped Poincare waves. In this paper we confine the dis-
cussion to w </, i.e. µ > 1, for which only shelf waves and Kelvin waves are 
possible. 

The series in ( 2 . 7) converges rapidly for the range of considered, and, 
given k, we compute corresponding values ofµ from ( 2 . 11 ), correct to four 
significant figures. For the sake of comparison, the computations have been 
based on data from Caldwell et al., in which/= 2 n rad./sec. and whose 'wide 
shelf' has a width of L = 16 cm, an 'ocean depth' of h, = 1 o.o cm, and a 
shore depth of o.6 cm, so that ho = 0.06, b = 1.4067, and e = 1.03. In 
Table I, the second column gives the computed values, for a range of k, of 
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Figure 1. Dispersion curves of the Kelvin waves and the first three modes of shelf waves, calculated 
from (2.. 11) for the 'wide shelf,' h0 = 0.06, b = 1.4067, and e = 1.03. The dots arc ex-
perimental results taken from Caldwell et al. (1972.). 

wlf, correct to four significant figures. The third column gives, for reference, 
corresponding values of w/f, computed for e = o. The other two columns 
refer to § 3. Fig. 1 illustrates the Kelvin wave and the first three modes of 
shelf waves. The heavy dots represent the results of model experiments by 
Caldwell et al.; the agreement is satisfactory except for short wavelengths, 
where the effects of surface and bottom curvature in the laboratory model 
become important. 2 Table I I gives similar results for the case L = 8 cm, e = 

0.258, with ho and h remaining at 0.06 and 1.4067, respectively. Fig. 2 gives 
the dispersion curve for the first mode of the 'narrow shelf', with Ho = 0.245, 
L = 8 cm, and h = o. 7034, compared with the experimental results. Except 
in the short wavelength range, solutions of ( 2. 11) are again in satisfactory 
qualitative agreement with the experimental results of Caldwell et al. 

3 . .Arbitrary Depth Variation. In § 2 we found that, in the case of expo-
nential depth variation, it is possible to find a closed solution to the differential 
equation. However, this is not possible in the general case, so that in this sec-
tion we use a perturbation method to obtain corrections to the nondivergent 
theory for small values of e. Smith (1972) has considered a similar theory, but 
he limited his discussion to long waves, of typical wavelength L/e, when non-
divergent waves are not dispersive. As has been seen, however, it is highly 
desirable to have a theory that includes the dispersive region, and in this sec-

2 . I am indebted to Dr. M . S. Longuet-H iggins for pointing out that the depth measurements given 
by Caldwell et al. are parallel to the axis of rotation and not normal to the surface, yielding a depth 
profile that is not exact ly exponential. Compari sons, therefore, of this theory with the measured and 
calculated results of Caldwell ct al. should be regarded as qualitati ve only. No quantitative conclusions 
regarding the various sets of results should be drawn. 
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Table I I. Comparison of calculated results for the first mode of the 'wide 
shelf', ho = 0.06, b = 1 .4067, e = 0.258. Values of w = w/f, calculated 
from ( 2. 11 ), are given for various values of k. The figures in the Wo column 
are the corresponding values for the nondivergent theory, e = o. The figures 
under w,, w, * have been calculated by means of the perturbation and modi-
fied perturbation methods, respectively. 

k <UJ 'Wo <UJ, w,• 
0.25 .0855 .1013 .0792 .0829 
0.75 .2372 .2663 .2279 .2312 
1.25 .3487 .3770 .3393 .3422 
1.75 .4175 .4406 .4103 .4124 
2.25 .4515 .4700 .4470 .4484 
2.75 .4617 .4769 .4595 .4603 
3.25 .4573 .4702 .4567 .4572 
3.75 .4474 .4559 .4451 .4454 
4.25 .4281 .4378 .4289 .4291 
4.75 .4096 .4181 .4107 .4108 
5.75 .3722 .3786 .3734 .3734 
6.75 .3377 .3426 .3387 .3387 
7.75 .3073 .3110 .3081 .3081 
8.75 .2809 .2837 .2815 .2815 
9.75 .2380 .2603 .2586 .2586 

tion a perturbation method is developed that gives good results over the whole 
range of wavelengths. 

Assume, in (1.2), that k is positive and fixed and that there is a formal regular 
perturbation expansion; 

for the surface elevation, and 

µ = µo+ eµ, + ... 

for the eigenvalues µ. Equating powers of e in (1.2) and m the boundary 
conditions (1.4) and (1.5), the coefficient of e0 is 

C~+k(0 = o, X = 1, 

Similarly, the coefficient of e is 

(hC;)'+(µokh'-Ph)C, = (1 -µ-,,2 )Co-µ,kh'Co, 

c;+µokC, = -µ,kCo, X = o, 

c;+n, = -(1 -µ-,,2 )Co/2k, X = 1. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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0·2 

0 · I 1--1--------+------+---e EXPERIMEl'ITAL VALUES 

t,. CALCULATED, EXACT THEORY 

0 CALCULATED, PERTURBATION THEORY 

oo L ____ l_ ___ ___j_ ____ _,1_ ___ ----':8:-----~IO 
2 4 k- 6 

Figure z. Dispersion curve for the first mode for the 'narrow shelf,' h0 = 0.245, b = 0.7034, 6 = 
0.2 58. On the curve, the triangles indicate calculations from the 'exact' equation (2. II), 
the circles from the perturbation equation (3.13); the heavy dots are experimental results. 

The problem of obtaining C0 and µ0 from (3.3) to (3.5) is the same as the 
Sturm-Liouville problem set out in ( 1. IO). Hence there is a set of distinct 
positive and increasing eigenvalues, µ~n>(k), for each of which (3.3) has a non-
trivial solution, C~n>. Let us suppose that, for a given k, µo is one of the eigen-
values and Co is the corresponding eigenfunction. Then (3.6) to (3.8) are equa-
tions for the first-order corrections, C1 and µ,, to the eigenfunctions and the 
eigenvalue, respectively. Noting that the left-hand side of (3.6) is identical to 
(3.3), we can obtainµ, immediately by multiplying (3.6) by C0 and integrating 
over the interval [ o, 1]. After some calculations, we obtain: 

The perturbation gives good results if the term in o in (1.2) is much smaller 
than the maximum of {µ kh', Ph}. Since h is of the order of unity for most 
of the range, there is no problem for large k. Thus, for short wavelengths the 
perturbation succeeds even for moderate values of e. On the other hand, for 
small k, it is seen that, if we ignore Ph in (3.3) and let the condition (3.5) be 
c~ = 0 at X = 1, then µOk tends to a fixed eigenvalue in each mode, o. 
This means, of course, that long nondivergent waves are not dispersive, as was 
found by Robinson (1964) and Mysak (1967) in a specific case. Here it im-
plies that, in (3.3), µ0 kh' is fixed in each mode for small k, so that, for suf-
ficiently small e, the perturbation works. Further, if, as in the numerical ex-
amples considered later, h' )) h, then the perturbation may succeed for moder-
ate values of e, even for e ""1.0, for all values of k, except in the immediate 
neighborhood of k = o. 
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When k is very small, the right-hand side of (3.8) is large, and the method 
breaks down. However, the method can be patched up in the following way. 

In ( 1.6 ), let 

where 
A.0 = [k'+e(1 -µ~•)]1l 2 , 

and replace (3.5) and (3.8) with 

(3. IO) 

(3. I I) 

(3.12a,b) 

respectively. Then µ0 is the eigenvalue for (3. 3), (3.4), (3. I 2a), and, using the 
same procedure as before, the amended expression for µ, is 

(3. I 3) 

instead of (3. IO). 
In order to test the accuracy of the perturbation method, we choose the 

profile in ( 2. I) so that approximate results may be compared with the exact 
ones determined in § 2. Buchwald and Adams (1968) have given the details 
of the solution of (3.3), which reduces to a differential equation with constant 
coefficients. The resulting dispersion relation for µ0 is 

2 kbµ0 = m 2 + k2 + b2
, 

where 
( k + b) tan m + m = o 

and where 

is the corresponding eigenfunction. 

(3.14) 

(3. I 5) 

(3. I 6) 

These values are substituted in (3.9), and an expression for µ, is then 
obtained. Results corresponding to the first mode in Fig. I are presented in 
Table I. Appropriate numerical values of the constants are f = 2 :r,; rad./sec, 
L = I 6 cm, ho = 0.06, b = 1.4067, and e = 1.03. In Table I, the first 
column gives values of k, the second column the corresponding exact values 
of w = w/f = 1 / µ, which have been computed by the method discussed in § 2. 
The third column gives the appropriate value of w 0 = 1/µ0 , the fourth column 
the corresponding w, = 1/µ

1
• The fifth column gives w, * = 1/µ1 *,whereµ,* 

has been computed from (3.13), with (3.14) and (3.16) remaining unaltered 
but with (3. I 5) replaced by 

( A.
0 
+ b) tan m + m = o. 

Noting that in this example h' = 2 bh, good results for moderate values of e 
would be expected. This is borne out in Table I, where it may be seen that 
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the perturbation gives good results, particularly for k > 1. For smaller values 
of k, Wr * is more accurate than wr, as is to be expected. Table I I shows the 
results corresponding to L = 8 cm, so that e = 0.258, the other constants 
being kept unaltered; the agreement between the perturbation solution and the 
exact solution is excell ent, and wr * is slightly closer to w than is Wr. In Fig. 2, 

alternate points on the curve were computed by the methods discussed in § 2 

and § 3. Here again, e = 0.258, and it is not possible on the graph to dis-
tinguish between the results of the two methods . 

.Acknowledgments. The computations were carried out on the University of 
New South Wales IBM 360/50 computer. Thanks are due Miss J. Gibson 
for assistance in testing and running the programs. 

APPENDIX 

If h' (x) ?. o, for all x s [ o, I] and h' * o for some interval in [ o, I], then, 
from (1.8), 

Z2 = <Z,Z> = ~~{z(x)}2h'(x)dx+h(o){z(o)}2>o 

for all real z ( x ). Also, 

< Z, BZ > = - ~~z(x)[{hz'(x)}'-hk2z(x)]dx-h(o)z(o)z'(o), 

= [z'2 + k2z2] hdx + I k I {z (1)}2, 

> O 

for all z(x) $ o in the interval. Thus, the operator is positive definite and the 
. ' eigenvalues 'Jin = f k/wn are all positive. 
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