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Covariance Equations far a Linear Sea' 

R. L. Snyder 

Physical Oceanographic Laboratory 
Nova University 
Dania, Florida 33004 

ABSTRACT 

The equations governing the second-order covariances between surface gravity-wave fi eld 
variables are derived for a linear sea. These equations are solved formally for two cases: 
the case of stationary homogeneous statistics and the case of quasistationary quasihomo-
geneous statistics. The first case defines the directional spectra and directional cross spectra 
for the field variables and establishes the relationship between these spectra; the second case 
defines the corresponding local spectra for these variables and leads to Hasselmann's (1960) 
equation for the development of a linear sea. 

I. Introduction. A complete description of the state of the sea is contained 
in the fi eld variable C(x,t), the surface elevation at horizontal position x and 
time t. This variable and others are dynamically related by the equations of 
moti on. 

A complete statistical descripti on of the state of the sea is contained in the 
covanances 

C1:,n = <C (x,,t,)C(x 2,t2) . .. C(xn,tn) > , n = 2, 3, .. . , co , 

where the symbols < > denote an ensemble average. These covariances and 
others formed by taking ensemble averages of mixed products of field variables 
are dynamically related by a set of covariance equations derivable from the 
equations of motion. Because the equations of motion are nonlinear, no finite 
subset of the resulting covariance equations is closed, a situation similar to that 
which obtains in the theory of turbulence. This difficulty is removed if the 
equations of motion are lineari zed (Eckart 1953a, 1953b). Because surface 
gravity waves are only weakly nonlinear, it is therefore relevant to examine the 
covariance equations under the assumption of a linear sea. 

Two cases are considered: ( r) the case of stationary homogeneous statistics, 
and (2) the case of quasistationary quasihomogeneous statistics. In both cases 
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only the dynamics of the second-order covari ances are examined. Parti al justi -
fi cation for this restriction li es in the observed quasi-Gaussian character of sur-
face gravity-wave statisti cs. (The stati sti cs of a strictl y G aussian sea would be 
totall y parameteri zed by the second-order covariances.) 

II. D evelopment of the Covariance Equations. L et C(x,t) be the surface ele-
vation at the horizontal positi on x at time t, and let P (x,z,t) and cp(x,z,t) be the 
corresponding pressure and velocity potential at the point (x, z). (The z axis is 
taken to be positi ve upward, with the mean water surface at z = o). Let Q(x,t) 
be the atmospheri c pressure fi eld at the mean surface (analyti call y continued 
where necessary). Then fo r small- amplitude deep-water gravity waves the 
equati ons of motion are 

wi th 

and 

fj 2 
'72cp+ - <p = 0 fJz2 , 

P a 
- - - <p = O e at ' 

a oz <p = o, fo r z = - ro , 

fo r z = o. 

From the fi elds C, cp, P, and Q, the second-order covari ances, 

Cc2 = <C(x,t)C(x + $,t + i) > , 

Cccp= < C(x,t) cp (x + $, z2,t+ i) > , 

CQ , = < Q(x,t)Q(x + E,t + -r) > , 

are defined. If we ri ght-multiply and left-multiply the equations of motion by 
C, cp, P, and Q, and apply an ensemble average, the foll owing equations are 
obtained: 

(1) 
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( (v,- v1 )' + 8
8
~:) [g~i- 0

, 
(2) 

Gq;P 
Gq;Q 

' [c"] a r'•] e G;p - fh: Gq;, = o, 
(3) 

Gp, GPrp 

GQP GQ<p 

T''] (a a) [c'l e Gprp - Of - OT Grp l - o, 
(4) 

Gp, Gq;P 

GPQ Gq;Q 

_i_ [Cc, i-o, z, - - ~, oz, Grp, (s) 
GPrp 
GQq, 

-~---r·'J-o,z, - - ~, oz, Gq;, 
(6) 

Gq;P 
Gq;Q 

!_ [c,. l + _i_ [g,. 
1 
_ o, •• _ o, 

OT Gq;t, oz, rp' 
(7) GPt, Gprp 

GQt, GQrp 

( a a) [c,, l a [c,c l Of-OT Gt,rp +oz, Grpz = O,z,=o, 
(8) 

Gr:,p GrpP 

Gt,Q GrpQ 

a [c,. l [c'l T'Q l -OT Crpz -g Grpt, -e Gq;Q,z, - o, 
(9) Gprp Gpr:, GPQ 

GQ<p ·GQt, GQZ 
and 

(I _!_f'l [c'lf•"] z, - o ( 10) Of OT Gq;2 g Gr:,rp (! GQ<p > • 

Gq;P Gr:,p GQP 
Gq;Q Gt,Q GQZ 
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Because the covariances are real, 

( I I) 

An additional symmetry condition 1s implied by the definition of the co-
variances 

Ct;, (x,t,-E,-r) 
Ccrp (x,t,- ~, - r) 

Cc, (x-E,t-r,E,r) 
C<pt; ( X - E, t - T, E, T) 

(12) 

The above equations constitute the covariance equations for a linear sea. 

III. Solution of the Covariance Equations for Stationary Homogeneous Statis-
tics. The assumption of stationary homogeneous statistics impli es that the 
second-order covariances are independent of x and t. The solution of the 
resulting covariance equations is analogous to the solution of the linearized 
field equations governing the propagation of an initial disturbance of limit ed 
extent, the well-known Cauchy-Poisson problem. Because of the stationary 
homogeneous statistics, the fi eld variables themselves are not Fourier-inte-
grable; no such restriction, however, is implied for the covariances. Accord-
ingly, these may be expanded as Fourier integrals in f. Applying the covariance 
eqs. (1), (2), (5), and (6) gives the representations 

where the D's are functions of (k, r) . 
It follows that, for Q = o, 
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and 

with the soluti on 

D D i w(k)(F,- e-tw(k>•-G,- etw(kl•) {;rp = - rp{; = ', 2 ', 2 ) 

and 
w(k)2 

D = - - (F,- e-iw(k)T + G ,- eiw (kl•) rp2 2k2 .,2 ., 2 ) 

where 
w(k) = (gk)1!2 

and Fr;2 and Gr;2 are arbitrary functions of k, determined by the initial condi-
ti ons. 

The reality and symmetry conditions (11) and (12) imply that 

and 

Thus 

and 

co 

Fc;2(-k) = Gc;2(k) 

Fc; 2(k)* = Fc;2(k). 

Cr;2 = f d2kFc;2cos(k· ~-w(k)r), 
-co 

Simil ar expressions may be derived for the covariances Cp2, Cc;P, 'Cpc;, CrpP, 
and CPrp• Characteristically, if X and 'l/J are any of the fields C, <p, P or any of 
their derivatives, the covariance CX'P may be expressed in the form 

co 

C = Re{ f d2 kF ei(k -e-w(k) T)} 
X'P X'P ' 

- co 

with 
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Fm= Rm Ft, , , 

where Rm is some transfer function. 

45 

The functions Fm constitute the directional cross spectra for the field 
variables. It is seen that these spectra are linearly related to one another and 
to the directional spectrum for the surface elevation Ft;•· The ratios between 
these spectra and F1:,, are functions of the vertical coordinates z, and z 2 and the 
propagation vector k. These ratios (transfer functions) are tabulated for the 
fields C, rp, and P in Table I. Extension of the tabulated results to derivative 
fields is accomplished by multiplication by - iw (time derivative) or ik (hori-
zontal gradient). The formalism may be extended to include the wave-coherent 
part of atmospheric fields above the water surface. 

Table I. Rxv, for the fields C, rp, and P. 

xiv, t, 

C 

<p (g)''· - i k ekz. 

p 

~ek(z,+z,) 
k 

(
g3)1/2 ie k ek(z,+z,) 

p 

(
gJ)I/2 -ie k ek(z,+z,) 

(eg)2 ek (z, + z,) 

IV. Solution of the Covariance Equations for Quasistationary Quasihomogene-
ous Statistics. With quasistationary quasihomogeneous statistics, the second-
order covariances are no longer independent of x and t. However, the scales of 
the variation with respect to x and t are large compared with those of the 
variation with respect to e and -r. This difference in scale allows some later 
approximations. Q is taken as the sum of a turbulent and a wave-induced part 

a, 

Q = q(x,t)+ f d2 gd-rJ..(x,t,e,-r)C(x+e,t+-r)+ ... 
_., 

Higher-order terms in the functional-power series expansion for the wave-
induced part are neglected. Because of the space-time invariance of the system 
(the mean atmospheric fields being assumed independent of x and t), 

). = J.(!,-r). 

J, is next expanded as a Fourier integral, 

). ( e) -r) = ( e g)3 f d' kd w A ( k, w) et<k • E+ w T) ' 
2n _

00 

and A(k,w) is assumed small: 
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IA (k,w)I « 1. 

Because ). is real, 
A(-k,-w) = A(k,w)*. 

The covariances are assumed expandable as Fourier integrals in x, t, !, and i-. 
(The reader who is disturbed by this assumption may consider the following as 
schematic of a more rigorous demonstration). Application of (1), (2), (5), and 
(6) gives the corresponding representations 

co 

= f d1 KdQd1 kdw 
- co 

where the D's are functions of (K,Q,k,w). 
The D's satisfy the relationships 

and 

from which 

and 

e' (K · >t+f}t+k · E+wT) 

' 
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It follows that 

D _k lk-KI Dq, 
l;• - e' (w -w,)(w -w2) (w -w3) (w -w4)' 

where, using the approximations 

and 

and 

(1 +A) 1 l 1 ='= I +iA' 
2 

(1 +A*)' ' '='= I -iA\ 
2 

w,~w(k)(1 -i~} 

W2 ='= -w(k)(1-i~1), 

W3='=.Q+w(lk-Kl)(1 + iAt(k-:,w-.Q), 

W4='=.Q-w(lk-KI)( 1 + iAt(k-:,w-.Q_ 

47 

It is clear from ( 1 3) that, for given k, Dt;, is large only in the neighborhood 
of ± w(k). (In accordance with the assumption of quasistationary quasihomo-
geneous statistics, .Q may be neglected relative to w, and K relative to k.) 
Furthermore, the symmetry condition (12) implies that 

Dt; , (K, .Q,-k,- w) = Dt;, (K,.Q, k, w). 

(K·thDt;,, .Q :w Dt;,, and higher-order terms may be neglected relative to 
D1; ,.) 

It follows that 
co 

cc, f d2 k F, 2 cos ( k . e -w ( k > • > , 
-co 

where 
co co 

Ft;,= 2 f d'K f d.Q f dwD1;2 ei(K· x+Qt) 
-co -co N 

and N is a suitably large neighborhood of -w(k). F1; 2(x,t,k) is the local direc-
tional spectrum for quasistationary quasihomogeneous statistics and is analogous 
to Ft;, (k) for stationary homogeneous statistics. Local directional spectra and 
local directional cross spectra for the remaining field variables are defined in 
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similar fashion. The ratios between these spectra and F1;2 are the same as for 
stationary homogeneous statistics (see Table I). 

Integrating ( 1 3) with respect to OJ over N gives 

f dOJD • = k2Dq2(K,Q,k,-OJ(k)) f dOJ 1 

N I; 4()2 0J(k)2 N (OJ-OJ2)(0J-OJ4) 

The integral on the right may be evaluated approximately by extending the 
path of integration beyond the neighborhood of - OJ(k), closing this path in 
either half-plane, and applying the calculus of residues. This procedure yields 
the result 

l 2nt 1 dOJ (OJ -OJ2) (OJ - OJ4) 'f (Q + (OJ(k) - OJ (I k -Kl)) -iOJ(k)A,)' 

where the sign of the right-hand side is opposite to that of A,. Because 

OJ (k) - OJ (I k - Kl) ~ K· V(k), 

where V(k) = '11,0J(k) is the group velocity associated with the component k, 
the integration gives 

1 dOJ(iQ +i K· V(k) +OJ (k)At(k,-OJ(k)))D1;2 = ± 2 e~~:k)2 

Dq2(K,Q, k,-OJ(k)), 

where the sign of the right-hand side is the same as that of At. Multiplying by 
2ei<K · x +Qt) and integrating with respect to K and Q gives 

( l 5) 

where 
nk2 

a(x,t,k) = ± e•OJ(k)2Fq2(x,t,k,-OJ(k)), 

{J(k) = - OJ (k)At(k,-OJ(k)), 
and 

co co 

Fq ,(x,t,k,OJ) = f d2 K f dQDq2e'<K · x +Qt) _ 
-co -co 

Eq. ( 1 5) is Hasselmann 's ( 1960) equation for the development of a linear 
sea, as derived from a consideration of the equati ons governing the covari ances 
between fi eld variables. This derivation contains Phillips' (1957) theory (the 
a term) explicitly and Mi les' (1957) theory (the fJ term) in parametric form. 
(The dynamics of the atmospheric motion and the resulting form for A are not 
discussed.) 
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The present deri vati on suggests a feature that is unexpected, paradoxical, 
and incorrect; the sign of the contribution of the turbulent pressure fluctua-
tions to the rate of change of the spectrum is positive if the system is damped, 
negative if it is self- excited. The negative sign for the self- excited case is not 
apparent in integral derivations of the equati on presented by either Phillips 
(1966) or Hasselmann (1962), and the resulting equation is physically un-
acceptable as a synoptic tool to treat the initial generation of waves starting 
from a state of rest. (The equation predicts a negative Ft, 2 . ) An alli ed difficulty 
is that the sign of IX in the neutral case (Ai= o) is ambiguous. If we imagine 
the neutral case to be the limit of the damped case, then this sign is positive; if 
we imagine the neutral case to be the limit of the self-excited case, then this 
sign is negative. The crucial point appears to be the manner in which the integra-
ti on in the neighborhood of -w(k) passes by the poles at w 2 and w4• Accord-
ingly, the resolution of the difficulty would seem to involve specifying that the 
path Nin the definition (14) for Fr:, 2 departs from the real axis in such a way 
that it passes under the pole at w2 and over the pole at w4, regardless of Ai. 
This specification results in a positive IX and Ft,2 for all three cases and removes 
the ambiguity fo r the neutral case. 

The assumption that 

,l.(x,t,~,r) = ).(e,t) 

has yielded a fJ that is independent of x and t. This result is somewhat less 
general than might be desired. It is intuitively clear that the appropriate gener-
alization for ). slowly varying in x and t is 

fJ = {J(x,t,k) = -w(k)At(x,t,k,-w(k)), 

where 

). = __llL ccf cI'kdw A (x t k w) i <k • ;+wT). 
(2 )3 ' ) ' n _., 

However, the means of demonstrating this result, using the present formalism, 
is not clear to me. [The analogy to eq. ( 1 3) is, in this case, an integral equation]. 

V. Conclusions. The second-order covari ance equati ons for a linear sea have 
been derived and solved formally for the case of stationary homogeneous and 
quasistationary quasihomogeneous statistics. These solutions lead to a definition 
of the (local) directional spectra and (local) directional cross spectra for the 
field variables and to Hasselmann's (1960) equati on for the development of a 
linear sea. 
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