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On the Elliptic Generating Region of' a Tsunami' 

Pauline van den Driesschez and R. D. Braddock 
Mathematics Department 
University of Queensland 
St. L ucia, Queensland 4067, Australia 

ABSTRACT 

The surface elevation is calculated for the three-dimensional motion of waves in a fluid 
of constant depth subject to a given bottom velocity. An example, modeling tsunami genera-
tion, with antisymmetric bottom velocity, is considered in detail. The amplitude of the wave 
front is found to decay much more rapidly than the main wave. The distribution of amplitude 
with wave number and with angular position is computed for some cases. 

Introduction. A tsunami consists of a group of long water waves that are 
generated by earthquakes or other seismic events. These waves can propagate 
rapidly over large ocean distances and inundate coastal areas, causing great 
damage and loss of life. They occur most frequently in the earthquake-prone 
Pacific Fire Ring. The T sunami Warning System now monitors seismic 
activity in the Pacific and warns such areas as Japan and Hawaii of possible 
tsunamis. 

Observations indicate that a tsunami is usually initiated by large-scale seismic 
activity under the sea fl. oor. The major part of the dislocation, accomplished 
quickly, is often followed by slow changes extending over a few minutes. 
M ovements of the earth's surface due to a tsunamigenic earthquake are gener-
ally confined to an approximately elliptic region; see Wilson (1962) for a 
review of data and H wang and Divoky (1970) for a more recent example. The 
major axis of the ellipse coincides approximately with the fault line, with the 
upthrust and downthrow occurring on opposite sides of the line. In some cases 
there is evidence that the ell iptic disturbance region is subdivided by the axes 
into quadrants, with alternate upthrust and downthrow; see, for example, 
Suzuki (1970), who investigated the tsunami accompanying the 1968 Tokachi-
oki earthquake. 

A theoretical model to explain tsunami generation can be set up as a bound-
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ary-value problem, with a forcing term at the sea bed. Generally it is assumed 
that the model consists of a layer of homogeneous fluid of constant depth, with 
linearized conditions at the free surface and the sea bed. This gives a Cauchy-
Poisson problem for the surface elevation; it can be formally solved by multiple 
Fourier transforms, as described by Stoker (1957), or by Green's functions, as 
used by Kajiura (1963). The formal solution for the amplitude from an arbi-
trary source is then expressed in terms of integrals; see, for example, Gazarian 
(1955), Kajiura (1963), Keller (1961), and Van Dorn (1965). But even for 
mathematically simple sea-bed motions, the integrals are complicated, and 
asymptotic estimates are usually employed. Thus the interpretation of results 
in practical situations is difficult . Most authors have assumed that the sea-bed 
disturbance is axially symmetric; this leads to some simplification, but it also 
restricts the results in the light of observations outlined above. An alternative 
approach is a numerical solution of the basic equations as used, for example, by 
Hwang and Divoky (1970) in their investigation of the 1964 Alaskan earth-
quake. As they have pointed out, a fundamental difficulty lies in obtaining 
reliable data on the time-and-space history of the sea-bed disturbance that 
initi ates the tsunami. 

In this paper an attempt is made to set up a simple but realistic three-
dimensional model for tsunami generation. The time-and-space variation in 
the sea-bed disturbance fits the observed features described above; in particular, 
asymmetry is included in the model. The linearized boundary-value problem 
is formally solved by using multiple Fourier transforms; the asymptotic behav-
ior of the resulting triple integrals is discussed in detail. This paper is an exten-
sion of the work of Braddock and van den Driessche ( 1971 ), in which asym-
metry was found to be important in predicting the asymptotic-wave behavior. 

The General Problem. The Cartesian coordinates, xyz, are taken with the 
fluid occupying an unlimited region in the x and y directions; the free surface 
of the fluid is at z = h and the plane bottom is at z = o. The fluid is assumed 
to be incompressible, inviscid, irrotational, and to be at rest for time t < o. The 
velocity potential, <p (t, x,y, z), is then required to satisfy 

'v'<p = o,te(-oo, oo), x,ye(-oo, oo), ze(o,h), 

<ptt + g<pz = o on z = h, 

<pz = F(t,x,y) on z = o, 

where F(t,x,y) is the bottom disturbance that sets up the wave motion, g is 
the gravitational acceleration, and the subscripts denote partial derivatives. The 
surface displacement, C(t,x,y), is given, in terms of the velocity potential, by 
C(t,x,y) = - <pt(t,x,y,h)/g. 

Fourier transform analysis gives 
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t x - i f"' J"' f"' ei(wt+kx+ly)w'](w,k,I) 
C(, ,y) - - 8~ h ( h)( ) dwdkdl, n - co -0, -co cos m iuz- az 

where 

'] (w, k,l) = s:"' J:"' J:"'ri <wt+kx+zv> F(t,x,y) dt dxdy, 

a2 = gm tanh (mh), and m = (k2+ 12)112
• Further evaluation of this formal solu-

tion depends on the nature of F(t,x,y). 

Bottom Pelocity Modeling Tsunami Generation. Most authors have con-
sidered only disturbances that are symmetrically distributed over the sea floor. 
Here the asymmetric case is considered in detail. The basic system of equa-
tions is linear. It is well known that any function can be represented as the 
sum of a symmetric and an asymmetric function. Thus a general disturbance 
can be represented by a superposition of these two special cases. Let the bottom 
disturbance F (t,x,y) = T (t)X(x) Y(y), where 

T(t)=Ltrr:x.t, t 2:o, T(t) = o, t < o; 

X(x) = Mx e-Plxl, 

Y(y) = Ny r Ylvl. 

Constants L,M,N,cx,{3,y are real and pos1t1ve and can be varied to give a 
variety of bottom velociti es that are both time-and-space dependent. The dis-
turbance grows rapidly for ts ( o, I /ex) and then decays slowly. Appreciable 
disturbance is confined to a region that is approximately elliptical, the first and 
third quadrants having a positive velocity, the second and fourth quadrants a 
negative velocity. This models the earthquake observations cited in the Intro-
duction. The x-axis, which is the major axis of the ellipse for y > {3, is identified 
with the fault line. 

The free-surface elevation given by ( 1) then becomes 

C(t,x,y) = i~~N J:"' J:
00

ei<kx+zv> 1P(k,l) u:"' (wz ~t::~::iw)2] dkdl, 

where 
l 1 6 {Jy kl 

1P(k,) = cosh(mh)(/32 +k2)2(y2 +l2)2' 

a function that depends on the transforms of X(x) and Y(y). In the particular 
case of a rapid bottom disturbance, the time dependence of F can be modeled 
as a delta function and the w integral has singularities that are simple poles at 
w = ± a. Thew integral in the present model has a double pole at irx in addi-
tion to the simple poles at ± a; it can be evaluated by using a contour in the 
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complex plane and by computing the residues. The surface displacement that 
results is 

C(t,x,y)=o, t-5,o, 

C(t,x,y) = CT(t,x,y)+Cp(t,x,y), t > 0; 

here 

- LMNf"' f"' i(kx+ly) (k I) -rxt[ az-exz - ext ]dkd'1 CT(t,x,y) - - -- e 1P , e ( z 2)2 ( 2 2) 1, 
4n2 -ex, -ex, ex +a ex_+a 

LMNf"' f"' [ eiat e-,at ] Cp(t,x,y) = - -
8
- - ei(kx+ly)1J)(k,I) ( . )2 + ( . )2 dkdl. 
nz ex+za ex-ta -co -o:, 

The particular form taken for T(t) has given rise to the transient motion, CT, 
which contains only exponentially damped terms. The poles at ±a, which 
give the dispersion relationship, give rise to the propagating motion, CP-

The Transient Motion. CT can be estimated by Lighthill's ( 1960) asymp-
totic method. Contributions to the asymptotic value come from the infinite 
number of purely imaginary zeros of ex2 + a2 and from the double poles at 
k = ±i/3 and/= ±iy. However, as this motion is exponentially decaying in 
time, it soon becomes insignificant compared with CP, and so it will not be 
fully discussed. 

The Propagating Motion. 

CP(t,x,y) = - LMN(P++P-)/(8n2), 

where 

p = f"' f"' 1P(k~I) ei<1'at+kx+lv>dkdl. 
,:; -ex, -ex, (ex =i= 1a)2 

By means of the change in variables, x = r cos 0, y = r sin 0, r = (xz + y2) 1l2
, 

k = m cos 'Y/, I= m sin 'Y/, x = mh, µ = (x tanh x) 1l 2
, and 7i = 1/h, the above 

can be expressed in the form 

-,J"' xe1'iµ(uhl''' t f•:n: _ _ 
P,, = h O (ex=i=iµ(gh)'f•) · 0 1J)(xhcosri,xlisinri)etrhxcos(0-ri>dridx. 

The integrals can now be estimated by applying the method of stationary phase 
twice; see, for example, Stoker (1957), Chaudhuri (1968), Nikitin et al. 
( I 970 ), where the method has been used for other three-dimensional water-
wave problems. 

To evaluate the 'Y/ integral, let .A(ri) = rh X cos (0 - ri), and observe that the 
stationary points of .A(ri) occur at 17 = 0, 0+n for 0s[o,n], and at 'Y/ = 0, 
0 - n for 0 s (n, 2 n). The method of stationary phase gives 
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Jex, 1/2 e'Hµ (gh)"'t 

p'f' e:,i (2n7i3/r)' 12 
X• (:=i= iµ(glz)11•)> ['1/J(xh cos 0, xli sin O)ei(rhx-n/4) + 

+'l/J(- xlicos 0, - xii sin 0)ei<- rix+nl4)Jdx + o(rh)- ,. 

This approximation is valid for each value of Xo such that rli Xo )) 1, except at 
the zeros of 'l/J, which are at 17 = o, n/2, n, 3 n/2, i.e., on the axes of the ellip se. 

On the line x = o, 

P'f' (x = o) =Jee Jee '1/J(k'.l) zeH.Ht+ly)dkdl. 
-00 -00 (o: 'f I 0-) 

The integrand is an odd function of k, so P'f'(x = o) is exactly zero. Thus, due 
to the assumed antisymmetric nature of the bottom-velocity profile, there is 
zero surface displacement for all time on x = o. Similarly, by interchanging the 
order of integration, there is zero surface displacement on y = o. 

To evaluate P _ at points that are not on the axes, consider the phase terms 
in (3) and define 

Q(x) = - µ(gli) 1f2 t +rlix-n /4, and R(x) = -µ(gli) 1f•t-rhx+n/4. 

The stationary points of Q (x) occur when µ' (x) (gh)1f2 = r/t; that is, when 

(gh tanh x)1l2 (1 + X (cosh X sinh xt')/(2 x1l2
) = r/t. (4) 

The function µ' (x) is a positive and strictly monotonic decreasing function on 
(o, oo) and has a maximum value of I at X = o; see Gazarian (1955: fig. 1). 
Thus, for r >t(gh)1f2 there is no stationary value of Q(x)- For r<t(gh)'l2, 
there is a single positive root, X = Xn of (4). There is no stationary value of 
R(x) on (o, oo). Thus, 

[ 
2nh(x,h/r) 1l2 '1/J (X,hcos0,x,lisin 0)] ex {i( ( )( li)' l• t 

P_e::i (o:-iµ(x,) (gh)' l• )2_(- µ"(x,)(gli)'l2t)' '· p -µ X, g + 

+ rh x,)} + o (rlit 3l2, 

where r <t(gh)1I2, r )) h, and x,r )) h. Note that the denominator of P_ is 
zero for only purely imaginary x; thus this makes no contribution to the 
above asymptotic value. Similarly, 

[
2nh(xJi/r) 1f2 '1/J(-xJicos0,- x,n sin0)] {"( ( ( n)•l•t 

P+e::i (o:+iµ(x,)(gh)11•/(-µ"(x,)(gh)'l• t)• I• exp Iµ x, ) g -

- rn x,)} + 0 (rnt 3'2, 

where r <t(gh) 1l2 , r )) h, and x,r )) h. The exponential terms in p_ and P+ 
above represent sinusoids at wave number m, = X, 7i and amplitudes that are 
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Figure I. Wave amplitude as a function of Xi> 0 = 70°,-,; = 1.0, {Jh = 0.3, yh = 3.0. 
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given by the quantities in square brackets. By virtue of the stationary-phase 
condition (4), the stationary value corresponds to a definite value of r/t. The 
actual wave field, at a fixed time, t, thus consists of sets of water waves whose 
wave number, mr> decreases with increasing distance from the origin. The 
asymptotic values show that, for large time, the disturbance of the main wave 
train decays as o (t- 1), or as o (r- 1) by (4). 

Now 

_ {• ± 2CX (X) (gJi)l/2} 
(cx=r=iµ(x 1)(gh)1l2t 2 =(cx2 +µ 2 (x1)ilit 1 exp 1arctan µ () h . cxz-µz X, g 

Thus P _ and P + have the same amplitude, A, but differ in phase. 

( 
Xr )'/2 f3y h2 x~ cos 0 sin 0 

A (X µ' (x,) µ" (x,) cosh X, ((/3h) 2 + x~ COS
2 0)2 ((yh)2 + x~ sin2 0)2(-i-2 + µ2 (x,))' 

where i2 = cx2 h/g. A plot of this amplitude as a function of X, for fixed angle, 
0 = 70°, is shown in Fig. I. Values of the parameters used, namely ,: = 1, 

f3h = 0.3, yh = 3.0, were obtained from actual earthquake data by estimating 
both the time required for the disturbance to reach its maximum and the posi-
tion of the maximum disturbance. Small variations in the values of these 
parameters do not greatly affect the shape of the curve. The asymptotic 
approximation is not valid near X, = o. 

Fig. 2 shows a plot of the amplitude as a function of the angle for fixed 
X, = 1, with,:= 1, {3h = 0.03, yh = 0.3. The shape of the curve varies as the 
eccentricity of the approximately elliptic area is varied. The cos 0 sin 0 term 
changes the sign of the amplitude, hence the phase of the wave, at 0 = n/2; 
this is indicated by the broken line. At 0 = o, n/2, n, and 3 n/2, the amplitude 
is identically zero and the above approximations are not valid. In fact, the 
amplitude curve starts from zero at 0 = o, increases rapidly to a maximum, 
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Figure 2. Wave amplitude as a function of angle, X, = 1.0, T = 1.0, fJ h = 0 .03, yh = 0.3. 

and then closely approximates the curve shown in Fig. 2 . N ear 0 = n/2, the 
amplitude ri ses to a maximum and then drops to zero. 

The above approximati ons to (3) are not valid when µ" (x) is zero; this 
occurs at X = o, where the amplitude function, V'(o), is also zero. The above 
asymptotic results are thus not correct near the wave front, which is at the 
long-wave length limit. This is also the case in the corresponding two-dimen-
sional problem in the Oxz plane; Braddock and van den Driessche (1971) have 
shown that, for large t with V'(o) = o, the wave front decays faster than the 
main wave. This is in contrast to the case V'(o) * o, when the wave front decays 
more slowly than the main wave. 

In the three-dimensional problem, when the amplitude, V', is independent 
of angle, the 'Y/ integral can be evaluated in terms of a Bessel function. This 
is equivalent to assuming an axially symmetric bottom velocity, formulating 
the problem in polar coordinates, and taking a Fourier-Bessel transform. 
Gazarian (1955) and Kajiura (1963) have discussed the modifications that 
are necessary at the wave front for a symmetrical disturbance. Gazarian found 
that the amplitude of the first arriving sea wave is in general not the maximum 
and has shown that this remains true when V'(o) cl o although the disturbance 
is not necessarily symmetrical. 

For the problem under discussion here, the asymptotic result near the wave 
front is derived by assuming X to be small, such that {J,y )) xn, 1 » x- The 
1/ integral in P-:i: can be approximated by 

8x2 "Tz2/(fJ3y3) J ::n:sin 2'Yjetrhxcoa (0-71)d'YJ 

= -16nx2 7i' /(fJ3y3)sin20J,(rnx), 

using Erdelyi et al. ( I 9 5 3, II, 7. I 2[ 2 ]). 
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The Bessel function is now approximated by the first term in its asymptotic 
series as rh X is taken large, so 

PT R! p ( 2/(nrh))•I• I~ x5/2 eTiµ (gh)11' t (et<rh x-5/411,) + e-i (rh x-5/411,))d X > 

where P = - 8n ti4 sin 2 0/((33 y3 Ot':2). When the stationary-phase point is at X * o, 
the previous argument again leads to decay of the main wave as o(t-1) . Now, 
by forcing the stationary-phase point to be at X = o and by expanding the 
exponent in a series about X = o, we obtain the integral 

p_ "" P(2/nrh))'l2 I~ x51•ei(gh)'1'tx'/6 dx. 

W atson's lemma, used to estimate the integral for large t, gives P _ = o (r5l3) ; 

P + has a similar asymptotic value; note that PT are zero on x = o or on y = o, 
in agreement with a previous result. 

The predicted rapid decay of the wave front depends on the exact nature of 
the bottom velocity, but, for any antisymmetric disturbance, the wave front 
decays much more rapidly than the main wave. This is in contrast to the results 
for a symmetrical disturbance when the wave front decays as o(t-1), although 
Gazarian (1955) has found that, at the instant of arrival of the leading front, 
the amplitude is approximately one half that of the main wave . 

.An alternative model. In Chaudhuri's (1968) discussion of surface waves 
excited by an initi al surface impulse and by an elevation across arbitrary 
regions, one of the examples considered is an elliptic region. The same function 
can be used in the present problem to model a symmetrical bottom disturbance 
that is confined to an exactly elliptic region. Let 

X(x) Y(y) = - l - - - -
Iv ( x2 y2)v-, 

nab a2 b2 

=O 

inside 

outside 

x 2 y2 
- +b,:= l, a2 

xi y2 
- + - = I 
a2 b2 ' 

where I, v are constants with Rev> o. In this case, the amplitude function 
1P(k,!) = K'Jv[(k2a2 +l2b2

)
1l2](k 2a2 +l2b2)-vl2Jcosh mh, where K = - 2v IvI'(v) / 

(MN) (Erdelyi et al. 1954, I, 1.3[8], 1.13[50]). By changing to polar co-
ordinates and by using the method of stationary phase, the main wave is found 
to decay as o(t-1); this result holds for all angles and large distances from the 
disturbance. Chaudhuri has not considered the wave front, but, in his example 
as well as in the present case, the asymptotic approximations are not valid near 
the wave front where X = o. However, by using the seri es expansion for the 
Bessel function 
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1P(xhcos17,xhsin17) =KE (- 1)1'(a'x2 li 1 cos2 77+ b2x1 7i2 sin1 77)n/ 
n =o 

(n ! 2 2 n +v I'(n + v + 1) cosh mh), 
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so 1P =I= o at the wave front. Thus, by Watson's lemma the wave front also 
decays as o(t-1). 

An antisymrnetrical bottom disturbance confined to an exactly elliptic region 
can be modeled in a similar way by taking 

X(x)Y(y) =-- I - - - -
Ivxy ( x> y•)v-, 
na3 b3 a2 b' 

= O 

Then 

inside 

outside 

x• Y' 
- + - =I 
a• b' ' 

'P(k,I) = - Kk!Jv+, [(k' a• + 12 b1
)

1f2J (k' a•+ 12 b2)-vf•- 1/cosh mh, 

(Erdelyi et al. 1954, I, 2.3[ 9], 2. 1 3[5 I]). Proceeding as before, the main wave 
decays as o(t-1

) for x,y =I= o; if either x or y is zero, the main wave is zero. 
At the wave front, 1P = o, hence the asymptotic results must be modified by 
expanding the Bessel function in a power series: 

'P(xh cos 77, xii sin 77) = - Kx 2 7i2 sin 20 L' (a'x'h2 cos2 0 + b2 x2 7i2 sin2 0)n/ 
n=o 

(n! 2 21Hv+3I'(n + v + 3) cosh mh). 

Thus the wave front decays as o(r 5'3), which is in agreement with the previous 
result for the antisymmetric model. 
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