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Fr ee Oscillati ons tn a Beta-plane Ocean• 

H . 0. Mofj eJdl and Maurice Rattray, Jr. 

D,partment of Oc,anography 
University ~f Washington 
Seattle, Washington 98ro5 

A B STRAC T 

This paper is concerned wi th the free oscillations in a rectangular equatori al beta-plane 
model of large oceans with a free surface placed symmetricall y on the equator . With the 
depth constant and the stratification hori zontally unifor m, the moti on may be separated in to 
vertical modes, each having free oscillations. T he pri mary emphasis is on the surface oscill a-
tions, which are of two distinct types: the gravity oscillations wi th periods of r.6 days or less 
and the Rossby oscillations with periods of several days or greater . T hese periods turn out 
to be strong functions of the ocean's shape and nondimensional size. T he gravity oscill ations 
are either dynamically similar to Kelvin waves or Poincare waves; the latter is the only kind 
of oscillation restricted to latitudes below the critical latitude. The Rossby oscill ations con-
sist primarily of Rossby waves that propagate under modulating envelopes that produce some 
equatorial trapping. 

lntrodudion. We are concerned here wi th the free oscill ations in a rectan-
gular beta-plane ocean with a free surface. T he equator is parallel to the zonal 
coasts and bisects the ocean into symmetrical northern and southern halves. 
The ocean possesses several features that have an important effect on the time-
dependent dynamics of the real oceans; it has boundari es in longitude as well 
as latitude, the Coriolis parameter varies significantly over the ocean, and the 
motion is subject simultaneously to gravity and a varyi ng Cori oli s parameter. 
We take the total depth to be constant and the density to be a functi on only 
of the vertical coordinate; th is all ows the motion to be uncoupled into verti cal 
modes. T he primary emphasis here is on free oscill ati ons in the surface mode. 

In this ocean there are two types of oscill ations that are analogous to the 
oscill ations of the fir st and second classes in an unbounded spherical ocean. T he 
high-frequency or gravity oscillations show considerable simil arit y to the oscil-
lations in rectangular oceans with a constant Corioli s parameter. T he latter 
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have been studied by many authors, among them Rao ( I 966 ), who has given 
the most exhaustive treatment both theoretically and experimentally in the 
laboratory. 

Rattray and Charnell ( 1966) found approximate forms of the low-frequency 
or Rossby oscillations, which consist of pairs of separable solutions to the dy-
namic equations. We will see that these quasigeostrophic oscillations do resemble 
the Rossby oscillations in the surface mode. 

Using the same beta-plane ocean, Moore ( 1968) considered the internal 
oscillations; but, since a basic assumption of his analysis is that the motion near 
the high-latitude coasts is well separated from the equatorial region, it cannot 
be used to obtain the surface oscillations. Like Moore, we also will write the 
free oscillations as sums of the separable solutions to the dynamic equations. 
Instead of dividing the ocean into separate regions, between which Moore 
matched the amplitudes and phases of the motion, we will transform the boun-
dary conditions at the eastern and western coasts into a matrix equation that 
determines the frequencies and amplitudes of the separable solutions. In doing 
so we are following the procedure that was introduced by Taylor (1922) in 
his treatment of free oscillations in rectangular oceans with a constant Coriolis 
parameter. 

Longuet-Higgins ( 1968) has discussed the connection between the free 
oscillations on the unbounded spherical ocean and those on the corresponding 
equatorial beta plane. Longuet-Higgins and Pond ( 1970) also compared 
Moore's results with internal oscillations in a spherical ocean bounded by two 
meridians 180° apart. 

Analysis. The ocean considered is illustrated in Fig. 1; it lies on an equatorial 
beta plane between y = ± yo, with the equator at y = o. It is convenient to 
place the origin of the rectangular coordinate system midway between the 
meridional coasts, which then lie at x = ± xo. We take the total depth, h, to be 
constant and require that the side boundaries be vertical. The unperturbed 
density, (!o, depends only on the vertical coordinate, z, which is positive upward. 
The acceleration of gravity, g, is constant, and the Coriolis parameter is given 
by f = {Jy. We let the velocity components (u,v,w) correspond to (x,y,z), respec-
tively, and let P be the pressure and e the density. 

Assuming that x and y are positive eastward and northward, respectively, 
and that t represents time, the linearized equations of motion are written 

I 
Vt+f3yu = - - Py, 

eo 
and, making the hydrostatic approximation, 
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Figure I. Rectangular ocean placed symmetricall y on the euqator of an equatorial beta plane. The 
origin of the rectangular coordinate system is at the center of the ocean, with x positi ve 
eastward and y positi ve northward. 

(3) 

where the subscripts denote partial differentiation. 
Taking the water to be incompressible, the equation of continuity 1s 

Uz + Vy + W z = 0 ; (4) 

definin g a density perturbation, (!,, by 

(5) 

the linearized equation expressing incompressibility is then 
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( ) deo e, t+W dz = 0 . (6) 

The boundary conditions at the bottom, z = o, and at the coasts are that 
the normal velocities are zero: 

U =0 at X = ± X 0 , (7) 
V=0 at Y = ±Jo, (8) 

and W =0 at z = 0. (9) 

At the free surface, z = h, we require that the atmospheric pressure, P0 , 

be constant, which, on taking the total time derivative, is equivalent to 

dP dt = o at z = h. ( l 0) 

The motion may be separated into vertical modes, using an analysis similar 
to that given by Fjeldstad (1933) for internal waves. This analysis (Mofjeld 
1970) yields 

where the vertical-structure function, 1P, satisfies the equation 

subject to the boundary conditions 

and 

H is the eigenvalue. 

1P = o at z = o 

d1j) l 
- - - 1P = o at z = h; 
dz H 

( l l) 

(12) 

For the zero vertical surface mode, H is very close to the actual depth, h, 
and 1P is nearly linear in z. The amplitudes U and f7 are then essentially the 
horizontal velocities, and Z is the surface elevation. 

For a given mode, eqs. (1), (2), and (4) become 

and at the coasts we have 

Ui - {3yf7 = -gZx, 

f7t + {3yU = - gZy, 

Zt + H(Ux+ f7y) = o, 

( l 5) 

( l 6) 

( l 7) 



and 
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U = O at x = ± x 0 

f/ = o at y = ±Yo. 

( I 8) 

( I 9) 

To nondimensionalize these equations, we use scale factors commonly 
employed for the equatorial beta plane ; with c = (gH)•f2 written for the phase 
velocity of a long gravity wave, we take 

x' = (/3/c)• f2 x, y' = (/3/c)• l2y, t' = ({3c)'i 2 t (20) 
and 

U'= !!_ 
Uo' 

f/' = !'_ Z' = 
Uo' H Uo· 

The nondimensional equations then have the same form for each vertical mode: 

U' If/' Z' t,-y = - x'' (22) 

f/' 'U' Z' t,+y = - Y'' (23) 

z;, + u~,+ //;, = o, (24) 

U' = o at I f 

X = ± X 0 , (25) 

and //' = 0 at y' = ±y~. (26) 

The difference between vertical modes li es in the nondimensional size of the 
ocean and in the time scale. 

SEPARABLE SOLUTIONS. By separation of variables, we obtain soluti ons to 
(22) through (24) that sati sfy (26); they consist of Kelvin waves, 

f ~j:: ] = f : ie± y'¼ei(a't' ± a'x), 

l Zi±) l ± I 

and gravity-Rossby waves, 

U (±l 
n 

{/ (±) 
n 

Z l±) 
n 

i a'y' Yn + [ (1 /2a') ± Rn] d:;,n 

= ei {a't' + [ ( 1/2a' ) ± Rn)x'} _ i{ [( 1 /2 a') ± Rn]2 - a' a'; Yn I J , v- , dYn 
- [ (1 /2a') ± Rn y 1 n- a dy' 

where the W eber function, Y11 (y') , satisfies 

d2 Yn ( ,2 ) v-
dy'2 + !Xn - Y 1 n = 0 ' 
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with 

and where [ 
I ] 1/2 

Rn = a'' + 4 a'' - CXn • 

For a given n, there is a range of frequency, a', over which Rn is imaginary; 
conversely, for a given a', Rn is imaginary for all n greater than some no. In 
either case we take 

(32) 

the corresponding gravity-Rossby waves are bound to one of the two meridional 
coasts, x' = ± x:. 

MATRIX EQUATION. To satisfy the remaining boundary conditions (25), 
we write each free oscillation as a sum of Kelvin and gravity-Rossby waves 

/
ul la u< +> +h u<->l o::, n n n n 

V = E a f/<+> + h f/H n n n n · 
Z n=o a z<+> + h z<-l n n n n 

At x' = ± x: we then have 

aoe ± ta' x', Yo+ hoe 'f-ia' x', bo 
n, 

+ E [ an e ± [ (1/2a') + Rn]x', Yn + hne ± i[ (1/2a1)-Rnlx', bn] 
n=1 

co 

(33) 

+ E [ ane± [(t/2a')-Snlx'•(J.n + i µn) + hne± [ (i/2a'l+Snl x'•(An- i,ltn)] = o, 
n = 11 0+ 1 

where 

{ ~:} = eh'2/i, { ~:} = a'y' Yn + [(1 /2a') ± Rn] d;n, 

, I dYn 
An= a yYn+ - , -d,, 

2a y 

} (35) 

If we take the complex conjugate of (34b), the terms that multiply the 
amplitudes for a given n are identical to those in (34a); for these equations to 
be consistent, the amplitudes must satisfy the conditions 

a;= Ban, h; = Ehn, O ::5, n ::5, no, 

h;=Ban, a; = Bhn, no< n, 
} (36) 

where the asterisk denotes the complex conjugate and B is a complex constant. 
The conditions for no< n require that B have unit modulus 

B = e2 t<p. 
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By adjusting the initial time, eia' t' et (a' t'-<p), we obtain the following con-
ditions on the amplitudes: 

an, bn arereal, 0 :5 n :5 no, 

no < n, 

where en and d11 are real. 
To find the frequencies of the free oscillati ons and the amplitudes of the 

separable solutions, we expand the boundary condition (34a) in a series of 
Weber functions, <Pm ( y') , that satisfy 

(39) 

with 
d<Pm 
-- = o at y' = ± y:. dy' 

By the orthogonality of the basic set { <Pm}, the amplit udes must satisfy 
the following set of simultaneous linear equations: 

n , 
+ E [a eH(1/2a')+ Rnlx',y +b ei[(1/2a')-Rn]x',~ ] n n,m n Un, m 

n=I 

co 

+ E [(en+ idn)eWf•a' )-Snl x'•(.A.n, m + iµn, m) 
n=no + I 

where yo,m, Oo,m, etc., are given in the APPENDIX, p. 303. 
After taking the real and imaginary parts of (41), we obtain a set of equa-

tions that may be put into matrix form, 

-+ -+ 
UA = o, 

-+ 
where U is a matrix whose elements are given in the APPENDIX and A is the 
amplitude vector. In practice it is convenient to separate (42) into two matrix 
equations, one corresponding to oscillations for which Z is symmetrical about 
the equator and the other for which Z is antisymmetrical. 

A sequence of computer programs was used to calculate the frequencies of 
oscillation and the distributions of the dynamic variables (U,f/,Z). The eigen-
values of the Weber functions were computed from a matrix equation derived 
by expanding the Weber function in a Fourier series and by substituting the 
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Figure 2a. Frequencies of oscillation: Gravity oscillations for the beta-plane ocean, with 2xo- yo and 
oscillations for constant f (from Rao 1966). 

series into the ordinary differential equation. The Weber functions were then 
found by integrating the differential equation, using Milne's method (Scar-
borough I 966 ). 

For given values of x: and y:, the frequency was then scanned until a zero 
was found in the determinant of U, which is the requirement that the ampli-
tudes be nonzero. When the amplitudes had been computed, the series (36) 
were then summed to give the dynamic variables. The calculations were done 
mainly on IBM 7094 and CDC 6400 computers at the University of 
Washington, with contouring and other subsidiary work done on an IBM I 130. 

How well the series in U converged to the boundary conditions at x' = ± x; 
is one measure of the accuracy of these calculations. For surface oscillations 
with the matrix truncated at n = 1 o, the value of U along these coasts was a 
few tenths of a per cent of the maximum velocity in the interior, except for 
the corners (±xo,±Jo), where it was less than 5°/o. On using a large matrix, 
with the order increased to include n = I 5, it was found that the frequencies 
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Figure 2b. Frequencies of oscillation: Rossby oscillations for the beta-plane ocean, with zx0 = y0 

and rigid-lid (gravity effects suppressed) and approximate quasigeostrophic oscillations; 
fJ = 2.3 {ro) - 13 cm-• sec-', H = 4000 m. 

were essentially unchanged; and, while the boundary conditions were better 
satisfied, the motion in the interior was not significantly affected. 

Frequencies of Oscillation. GRAVITY OscILLATIONS. We begin the descrip-
tion of the free oscillations by considering their frequencies. One set of oscilla-
tions becomes the free oscillations in the nonrotating ocean as the rotation rate 
is reduced to zero; they are therefore analogous to class I oscillations in an 
unbounded ocean on a spherical earth. The other set, which we will discuss 
later, is analogous to class 2 oscillations. 

Without rotation, the frequencies of oscillations in a rectangular ocean are 
given by 

[( m )2 ( n )2] 1/2 
am,n = nc 2 xo + 2Jo ; m,n =o,1, . ... (43) 

To show how the gravity oscillations depend on the rotation rate, we have 
chosen a rectangular ocean with 2Xo = J o and have computed the frequencies 
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as functions of J:. Since J: = ((3/c)Jo, an increase in J:, with c and Jo held con-
stant, is equivalent to an increase in the rotation rate. We wish also to compare 
these frequencies with those in rectangular oceans that have a constant Coriolis 
parameter f, computed by Rao ( l 966 ). However, the scaling for the beta plane 
is inappropriate for constant f, and we therefore scale the frequencies on the 
fundamental frequency, ao, 1, without rotation. As an effective Coriolis para-
meter on the beta plane, we take J = /3J0 /2. 

We see from Fig. 2a that the frequencies on the beta plane have a different 
dependence on the rotation rate than do those in a constant f ocean with the 
same shape. The frequency of the oscillation (0,1) increases with a greater 
rotation rate on the beta plane while it decreases for constant f The reason 
for the discrepancy is that the equator is essential to the dynamics of the beta 
plane ocean. To have an equator on a constant f ocean, f must be zero; a 
comparison with f =p o is therefore not valid if we also require that the ocean 
have the same shape and size. In Fig. 2a, the next two oscillations for which 
the meridional velocity Fis zero at the equator have frequencies that are close 
to those in the square oceans with constant f, which are formed by placing a 
boundary at the equator. Evidently, then, the equator acts like a boundary for 
this type of gravity oscillation. This cannot be true for oscillations like ( 0,1 ), 
whose meridional velocities are nonzero at the equator. 

When the nondimensional size of the beta-plane ocean is sufficiently large, 
the frequencies obtained by using the matrix eq. (42) should agree with the 
asymptotic expression derived by Moore ( 1968): 

[
(1/2a') + a'] , 

a'(2x:+J:)-arcsin (2)112 +C(a)=m:n:; m = l, 2, ... (44) 

where 

C(a') = lim { .E arcsin [(l/~~
1

// a'j -(~+a') (k)•l 2 

k-'>-a:, l=• 2CJ 

k . [ l / ( 2 a') - a'] ( l ) } 
-z~,arcs1n 2(/+1/2)•/2 + 2a' -a' (k+ 1/2)112' 

l (45) 

which is valid within the frequency range where R1 is imaginary. Taking 
x~ = J: = 4.950, we see from Table I that the frequencies obtained by the 
two approaches are in good agreement. 

To model the surface oscillations in the Atlantic and Pacific oceans, we 
assume that (3 = 2.30(10J-13 sec' cm-1, H = 4000 m,0 and Jo= 6.25(10)3 km, 
which gives a nondimensional extent in latitude of J: .,; 2. 1 2. In Table Ila the 
periods in days are given for 0.25Jo:S:Xo:S: I.0Jo- Since the Atlantic Ocean is 
narrow, it corresponds to a small value of the aspect ratio, xo/Jo, while the 
Pacific Ocean corresponds to a larger value. We see from Table II that the 
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periods are equal to, or less than, 1.6 days, and their range includes the peri ods 
of the diurnal and semidiurnal tides. 

RossBY OscILLA TIO NS. Let us turn now to the Rossby oscill ations which 
since their frequencies go to zero as the rotation rate is reduced to :ero, ar~ 
analogous to class 2 oscill ations. If the ocean con-
sisted of homogeneous water and were covered by 
a rigid lid, the motion would be governed by con-
servation of potential vorticity. The fr ee oscill a-
ti ons in such an ocean would consist of Rossby 
waves, with frequencies given by 

_ {3 [( m )' ( n )']-, /~ l am,n-- - + - , 
2n 2 Xo 2Jo 

m,n = 1, 2, .. . 

W ith a free surface and strati ficati on, Rattray 
and Charnell ( 1 966) assumed that the Ross by 
oscill ations could be approximated by pairs of 
gravity-Rossby waves (28), and they obtained the 
foll owing expression for the frequencies of these 
quasigeostrophic oscillat ions: 

T able I. Comparison of 
nondimensional fre-
quencies ( a') of oscil -
lati on obtained from 
the matrix equation 
(45) and the asymp-
totic expression ( 4 7) 
of M oore (1968). 
x: = 1: = 4.950. 

M atrix 
equati on 

0.48 
0.70 
0.93 
1.15 
1.37 
1.57 

A symptotic 
expression 

0.47 
0.69 
0.91 
1.13 
1.34 
1.55 

- - + m,n - - ixn - - . 
( {3 )' (a )' {3 (mn)' 

2 am, n c c - 2 Xo ' 
m,n = 1, 2, .. . . (47) 

T o show how the frequencies of the Rossby oscillations depend on the rota-
tion rate, we again chose a rectangular ocean, with 2x: = y:, and computed 
the frequencies as functions of y: , using the matrix eq. (42). In Fig. 2b these 
frequencies are plotted in dimensional form versus {3, with c and yo held con-
stant. T he divergence of the frequencies obtained from (42) and (47) from the 
rigi d-l id frequencies (46) is due to the combined effect of gravity and beta, 
which produces equatorial trapping. The agreement between the frequencies 
from (42) and the quasigeostrophic fr equencies (47) indicates that the Rossby 
oscill ati ons are made up principall y of single pairs of gravity-Rossby waves, as 
Rattray and Charnell had assumed. 

In T able II b, the peri ods (in days) of Rossby oscill ati ons are given for y: = 
2 . 12 ; these oscillations correspond to the surface oscill ati ons in the Atl antic 
and Paci fic oceans. A range of xo/Jo is used to indicate the strong dependence 
of the periods on this aspect ratio; as with the gravity oscill ati ons, the sequence 
of the Rossby oscillati ons is a functi on of both the size and the shape of the 
ocean. The peri ods of the Rossby oscill ations are 2.6 days or greater, and, for 
wider oceans, they include the 4-5-day-peri od range at which the lower 
tropical atmosphere fluctuates. 
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Table II. Periods of the free oscillations, in days, for the surface mode in large 
oceans with y0 = 6.25 (10)3 km, fJ = 2.3(10t13 cm-1 sec', H = 4000 m. 

a. GRAVITY OSCILLATIONS 

Z antisymmetrical about the equator 

(m, n) Xo = 0.25yo Xo = 0.50yo 

(0,1). . . ..... 1.40 1.36 
(1,1). ... . ... 0.51 0.67 
(0.3) . . . . . . . . 0.33 0.42 
(1,3) ... . . . . . 0.30 0.42 

Z symmetrical about the equator 

(1,0)....... . 0.74 
(0,2)...... . . 0.39 
(1,2)........ 0.34 
(2,0) ........ 0.30 

b. ROSSBY OSCILLATIONS 

Z antisymmetrical about the equator 

0.92 
0.55 
0.53 
0.36 

(m, n) Xo = 0.25yo Xo = 0.50yo 

(1,1).. ...... 6.70 3.80 
(2,1)... .. .. . 13.80 6.70 
(3,1)........ 19.30 9.80 
(1,3)........ 8.40 6.20 

Z symmetrical about the equator 

(1,2)...... . . 7.40 
(2,2)...... .. 13.20 
(3,2)....... . 19.50 
(1,4)........ 9.30 

4.90 
7.60 

10.40 
7.40 

Xo = 0.75yo 

1.34 
0.83 
0.44 
0.53 

1.25 
0.68 
0.59 
0.42 

Xo = 0.75yo 

3.00 
4.80 
6.70 
5.80 

4.40 
5.70 
7.40 
7.20 

x = 1.001• 
1.33 
0.94 
0.48 
0.64 

1.60 
0.83 
0.62 
0.55 

Xo = I .0oy. 
2.60 
3.80 
5.20 
5.60 

4.20 
5.00 
6.10 
7.00 

Coupling between Oscillations. Longuet-Higgins and Pond (1970) found 
that no two oscillations in a rotating hemispherical ocean, with the poles on 
the boundary, could have the same frequency. As the rotation rate changes, 
two oscillations whose frequencies are converging become coupled; the curves 
then do not cross but form the branches of a hyperbola. 

To see whether the oscillations in the rectangular beta-plane oceans have 
such behavior, it is convenient to keep the rotation rate fixed and to vary the 
aspect ratio, xo/Jo, If two oscillations have the same frequencies, we may turn 
around and approach the degeneracy by fixing xo/Jo and by varying the rotation 
rate. In Fig. 3 we see that the frequency curves do not cross in the beta-plane 
oceans. Away from the point of closest approach, the oscillations are uncoupled; 
the oscillation with the lower (upper) curve is similar to that with the upper 
(lower) curve on the other side of the coupled region. In this sense the oscilla-
tions have crossed from one curve to the other; a given oscillation may be 
labeled by the mode numbers (m,n) at a small rotation rate, provided that it is 
not strongly coupled to other oscillations. 
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Figure 3. T wo approaching frequency curves showing that such curves do not intersect; the oscilla-
tion with the lower (upper) curve is similar to that with the upper (lower) curve on the 
opposite side of the coupled region. This phenomenon was first found by Longuet-Higgins 
and Pond (1970) for a hemispherical ocean. 

To see why coupling occurs, it is convenient to consider the Rossby oscilla-
tions, each of which is ordinarily dominated by a single pair of gravity-Rossby 
waves. The other waves act to satisfy more exactly the boundary conditions at 
x' = ± x~, and ordinarily they have a small amplit ude. However, if another pair 
of gravity-Rossby waves is near resonance, i.e., nearly sati sfies these boundary 
conditions themselves, it must have a large amplitude in the interior to make 
its contribution to the oscillation adjacent to the boundary. Since they, in 
general, constitute the major part of another oscill ation, we may say that the 
oscillations have become coupled. 

Dynamic Yariables. While frequencies give some insight into the free oscill a-
tions, it is necessary also to consider the dynamic variables (U,V,Z) to obtain a 
complete description. In this section we give examples of the free oscillations 
in an ocean with 2x~ = y~ = 2. r 2, corresponding to the surface mode in the 
Pacific Ocean. 
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Figure 4a. Gravity oscillation (o, 1), with the lowest frequency for 2 x'0 = y'0 = 2 . 12; period= 1. 36 

days for fl = 2. 3 ( 10)-13 cm-• sec-•,yo= 6 .2 5 ( 10)3 km. The contours are lines of constant 
surface elevation, and the arrows are horizontal velocities at the tails of the arrows. See 
also opposite page. 

GRAVITY Osc1LLATIONS. The gravity oscillation (0,1) is illustrated in Fig.4, 
where the contours are lines of constant surface elevation and the arrows are 
horizontal velocities at the tails of the arrows. Both surface elevation, Z, and 
zonal velocity, U, are antisymmetric about the equator while the meridional 
velocity, /7, is symmetric. The pattern of surface contours rotates counter-
clockwise north of the equator and clockwise to the south; in both halves of 
the ocean the velocity pattern appears to propagate westward. Near the high-
latitude coasts,y' = ±y:, the velocity tends toward geostrophic balance with the 
surface slopes, as in a Kelvin wave. 

The second gravity oscillation (1, o), given in Fig. 5, has surface elevations 
and zonal velocities that are symmetric about the equator while the meridional 
velocity is antisymmetric. Again the surface contours rotate counterclockwise 
in the northern half and clockwise in the southern half of the ocean. The velo-
city tends toward geostrophic balance with Z over the entire ocean. This oscil-
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Figure 4b. Gravity oscillation (0,1), with the lowest fr e9uency for zx'0 = y'0 = 2. 12; period = 1.36 

days for {3 = 2.3 ( 10)-13 cm - 1 sec-', y0 = 6.2 5 (10)3 km. The contours are lines of constant 
surface eleva tion, and the arrows are horizontal velocities at the tails of the arro ws. See 
also opposi te page. 

lation may be interpreted as an equatori al K elvin wave that propagates along 
the equator toward the eastern coast, where it splits to form two similar waves 
that propagate along the coasts to rejoin at the intersection of the equator and 
the western coast. This is the same description that M oore (1968) gave for 
the fir st few modes of internal gravity oscill ations; in fact, as the nondimen-
sional size of the ocean increases, the ( 1 ,o) and simi lar oscill ati ons become the 
gravity oscillations that have the lowest frequencies. 

Fig. 6 shows an example of the ( 1 ,o) oscill ati on for an ocean of larger non-
dimensional size, 2 x~ = y~ = 4.950. A t a't' = o, the equatorial and high-
latitude Kelvin waves are clearl y discernible; at a't ' = n/2 these waves have 
propagated around to the meridi onal coasts. As the waves move along the 
eastern coast toward a higher latitude, the increasing Cori olis parameter con-
fines the motion more closely to the coasts. Al ong the western coast, the con-
verse is true, since the waves propagate toward the equator. Since the non-
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Figure 5. Gravit y oscillation (1,0) for 2x'0 = y'0 = 2.12; period = 0.92 days for {3 = 2.3(10)-13 
cm- 1 sec-',y 0 = 6.25(10)3 km, H = 4000 m. 

dimensional size of the ocean for the first vertical (internal) mode is roughly 
2x~ ~ y~ ~ 20, the ( 1 ,o) oscillation in this case is much more closely confined 
to the equator and coasts. 

The dynamics governing the gravity oscillation (0,2) for 2x~ = y~ = 2,12 
are different from those governing the first two. In Fig. 7 we see that the 
relationship between the velocity and the surface elevation tends toward anti-
geostrophy, where both the gradient of Z and the Coriolis effect accelerate the 
water in the same direction, This same relationship occurs in Poincare waves 
that propagate in an infinitely long channel with constant f 

Another characteristic of such Poincare waves is that the frequency must 
be greater than the Coriolis parameter f In the (0,2) gravity oscillation, the 
amplitude of the motion decreases with distance from the equator, Beyond the 
crktical latitude, y~ = 1.953, where f becomes greater than the frequency of 
oscillation, the motion is small. The behavior of Kelvin waves is unaffected 
by the relative magnitudes off and the frequency, so that the ( o, 1) and ( I ,o) 
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Figure 6. Gravi ty oscillation (1 ,0) fo r a larger ocean, wi th zx'0 = y '0 = 4.950. 

gravity oscillations, whose dynamics away from the equator resemble those of 
Kelvin waves, are unaffected by the critical latitude. 

For constant/, Corkan and Doodson (1952) found that, as/increases, oscil-
lations like (0,2) become similar in their dynamics to Kelvin waves; Mofj eld 
( 1970) has shown that this occurs also on the beta plane. 

RossBY O scILLATIONS. The Rossby oscillati on (1,1) is shown in Fig. 8 for 
a rectangular ocean with 2x~ = y~ = 2. 1 2 . T o present the Rossby oscillations, 
it is convenient to reduce the scale of the velocities to 0.25 of the scale for the 
gravity oscillations. At a't' = o, the velocity distribution forms a single cell 
that is centered on the equator, where the maximum velocities occur. Asso-
ciated with the velocity cell are two cells in the surface elevation that are anti-
symmetric about the equator. The motion is nearly geostrophic at high latitude, 
but it cannot be so around the equator, where the Corioli s parameter is zero. 
As time increases, cells of opposite sign develop near the eastern coast; at a't' 
= n/2 there are two sets of cells having equal strength. 
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Figure 7. Gravity oscillation (0,2) for zx'0 = y'0 = 2.12; period = 0.85 days for fJ = 2.3(10)-13 
cm-1 sec-', yo= 6.25 (10)3 km, H = 4000 m. 

The Ross by oscillation ( r ,2) in Fig. 9 consists of two cells for both the velo-
city and surface elevati on, Z, at a't' = o and four cells at a't' = n /2. While Z 
is symmetric about the equator, it becomes small in the equatorial region. 
Hi gher Rossby oscillations have, in general, larger numbers of cells propagating 
westward through envelopes that modulate the cells in x and y. 

Discussion. By using a bounded beta-plane ocean, we have studied the 
effects of a free surface, of a variable Coriolis parameter, and of boundaries on 
one type of time-dependent motion, the free oscillations. To generalize these 
results to the actual oceans, we must take into account several features of those 
oceans that are not included in the model. For instance, the actual oceans are 
not completely bounded but do, in fact, form a connected system. 

Rhines (1969), who has demonstrated that Rossby waves can be reflected 
by abrupt changes in depth, has speculated that higher Rossby oscillations are 
confined to individual ocean basins by midoceanic ridges. Veronis (1966) has 
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shown that even a small bottom slope at midlatitude has an effect on Rossby 
waves that is as large as the effect of beta itself. Variable bottom topography 
must therefore have an important effect on barotropic motion. 

Western-boundary currents may be expected to interact strongly with 
Rossby waves and may in fact act as sources for Rossby oscillations. Another 
source is the tropical atmosphere, which, over the Pacific Ocean, has strong 
4- 5-day fluctuations. Groves and Grivel (1962) have found spectral peaks 
at 2.7, 4, and 5 days in records taken from tide gauges on islands near the 
equator. 

To determine the dynamic balance that controls time-dependent motion, 
the relationship between the velocity and the surface elevation must be 
found; therefore any observational program with this objective must measure 
the velocity field as well as the surface-elevation field- a difficu lt under-
taking at best. 

Conclusions. I n this paper we have developed a technique to compute the 
free oscillations in a rectangular beta-plane ocean placed symmetricall y on the 
equator. The technique may be readily generalized to oceans whose northern 
and southern boundaries are not at the same distance from the equator. The 
matrix equation remains unchanged while the eigenfunctions Yn and <I>,n must 
be computed over the new y- interval. 

If we think of beta-plane oceans in terms of their nondimensional extent in 
latitude, the matrix equation approach is applicable to oceans of intermediate 
extent. If the extent is small, the technique developed by Lamb (1932) may 
be used for gravity oscillations with small/; the quasigeostrophic approxima-
tion may be used fo r the Rossby oscillations. When yo is sufficiently large, 
Moore's asymptotic technique is valid, provided that the only motion to reach 
the northern and southern boundaries is either bound gravity-Rossby waves 
or Kelvin waves. If, as in the case of internal oscillations (m,n) with a 
high mode number, n, the free gravity-Rossby waves are affected by these 
boundaries, then the matrix equation must be used. 

The beta-plane ocean has class I and class 2 oscillations, which we have 
called gravity and Rossby oscillati ons, respectively. For models of the Atlantic 
and Pacific oceans, the periods of the gravity oscillations are 1.6 days or less 
and span the periods of the semidiurnal and diurnal tides; the periods of the 
Rossby oscillations are several days or greater. The periods are, in general, 
strong functions of the rotation rate, depth, and shape of the ocean. 

As Longuet-Higgins and Pond (1970) found for a rotating hemispherical 
ocean, no two oscillati ons have the same period. W e have seen that, on the 
beta plane, oscillations also become coupled if their periods are nearly equal, 
and they cannot have the same period. Oscillati ons appear to jump from one 
frequency curve to another if coupling occurs. 

The critical latitude, where the Corioli s parameter becomes greater than the 
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Figure 8 a. Rossby oscill ations (r,1), with highest frequency for 2x'0 = y'o = 2.12; period= 3.80 days 
for {3 = 2.3 (10)-13 cm - 1 sec-1 and yo= 6.2 5 (10)3 km. The velocity scale for the Ross by 
oscillations has been reduced to 0.2 5 of the scale for the gravity oscillations. See also oppo-
site page. 

frequency, affects only those oscillations for which the Coriolis effect and the 
gravity accelerate the water in the same direction. These dynamics, typical of 
Poincare waves, can exist only if the frequency is greater than the Coriolis 
parameter. 

Rossby oscillations are composed primarily of two gravity-Rossby waves and 
are therefore similar to the quasigeostrophic oscillations of Rattray and Char-
nell ( 1966 ), except near the resonance with another oscillation. The surface 
elevation of Rossby oscillations is in general small in the equatorial region 
compared with the midlatitude. The same is not true of the horizontal velo-
cities. 
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APPENDIX 

In this appendix we give the elements of the matrix U in eq. (42), which 
was used to compute the frequencies and the amplitudes of the separable solu-
tions. Arranging the amplitude vector as follows 

ao 
ho 
a, 

-+ br .A= 

Cn 

dn 

the matrix U may be conveniently displayed, using 2 by 2 submatrices 

[
u,,, 

U= 

u,,2 --i 
U2,2 -- . 
-- --

We then have 

for 

_ [cos ( a' x:) yo, m 
Um,, - • ( , ') 

Sin a x0 yo,m 

2 ,, I 
R = a · + --, - Cln > O 

n 4 a 2 

cos ( a' x:) Oo, m] . 
- sin (a'x:)oo,m' 

(A. 1) 

(A. 2) 

(A . 3) 
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and fo r 
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S2 ' I = IXn = a z - -- > 0 
n 4a'' 

(-Q, µn, m + Q,An,m)] 
(-Q3µn,m-Q4An,m) ' 

where, after absorbing cosh (bnxo) into the amplitudes, 

Q = 2 cos(~ ), Q2 = 2 tanh (Snx:) sin ( x:,), 
I 2~ 2<J 

Q3 = 2 tanh (Snx:) cos(::,), Q4 = 2Sin (::,)-

[ 29,3 

(A. 5) 

} ( A. 6) 

The generalized Fourier coeffi cients, yo, m, bo, m, etc., correspond to the 
expansion of yo, bo, etc., in terms of Weber functions, <Pm, satisfying the dif-
ferential equati on (42) and the zero-slope boundary conditions (43) at y' = 
±y~. These functions were chosen for the reasonably rapid convergence of the 
seri es and fo r the relati vely simple form of the coeffici ents. Both of the func-
ti ons Y n and <Pm were found by fir st using a matri x equation to compute the 
eigenvalues IXn and Tm and then integrating the differential equati ons, using 
Miln e's method. These computations are described in detail by M ofjeld (1970), 
who has also given a deri vati on of the generali zed Fourier coeffici ents. 

For each function 1/J that we wi sh to expand in terms of the set { <Pm, 
m = I , 2, . . . } , we have 

a, 

1/J = L < 1/J/<Pm > <Pm (y), (A. 7) 
m=1 

where 

(A. 8) 

By making use of the differential equati ons satisfi ed by e ± Y'
2
l2 and <P,n, it 

is possible to show that 

(A. 9) 

where the scale factors _A(±) are added to avoid computational difficulti es, and 

Yo, m = bo, m = 0 , m even . (A. 10) 

Using recursion relations sati sfi ed by y'Y n and dY n/dy', it is also possible to 
show that 
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(n +m) odd 
(A. II) 

(n + m) even 
and 

[

2 ( •m - an)Y~ [ dYn (y~) / dy'] <l> m (y~) 

<yP"n l <l> m> = (•m-an)' - 4 
0 

(n +m) odd (A. l 2) 
(n +m) even 

The coefficients y 11, m, c511, m, etc., are then, for no 2:: n 2:: 1, 

'Yn, ml = <J <y'Yn I <l> m > + [(1/2 a-') ± R n] < (dYn/ dy') J <l>m > (A. 1 J) 
c5n,m [0-'2+ (1 /4 0-'2) + an] '12 

and for n > no 

An m = <J <y'Yn I <l> m > + ( 1/2 a-') < (dYn/ dy') <l>m > 
' [ o-'2 + ( l /4 a-" )+ an] i /2 

and 
_ S11 < (dY11/ dy') I <l>m > 

1-in,m - [a-'' + ( l /4 0-'2) + an]' 2' 

(A. 14) 

(A . 15) 

where the factor [a-"+ ( 1/40-'2 ) + an] 1f2 in the denominator has also been added 
to avoid computational difficulti es. 


