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Some Exact Solutions to the Equations Describing 

an Ideal-jluid Thermocline' 

Pierre Welander 
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ABSTRACT 

The equations that describe a steady ideal-fluid motion have a first integral that expresses 
a functional relationship between the potential vorticity P, the density e, and the Bernoulli 
function B: P = F(e,B). By using this relationship, solutions to the ideal-fluid-thermocline 
problem have been sought. An exact solution is obtained when P = a e + bB + c. When it is 
fitted to observed surface data, it gives a realistic meridional-density field: an inflection point 
in the density profile, a sharp thermocline at finite depth at the equator, and a reversal of the 
meridional-density gradient at a subtropical latitude. A more general case that can also be 
solved exactly is P = F(a e + bB + c), with F arbitrary. Without a direct estimate of the dif-
fusive scale depth in the oceans, the idea of an ideal-fluid thermocline must be taken seriously 
and this model ought to be explored further. 

I. The Basic Equations. Consider the steady motion of an ideal and incom-
pressible fluid in a uniformly rotating system. The governing equations are: 

"y·v = o, 

de 
dt = o, (3) 

where p, (!, v are pressure, density, and velocity, Q is the angular velocity of 
the system, and <I> is the potential of gravity (including the basic centrifugal 

force of the rotating system); d/dt stands for the advective operator (:;. "il). The 

above equations give material conservation of the potential vorticity P = ( 2 .Q 
r. Accepted for publication and submitted to press I 3 October 1970. 
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+curl v)·Ve, as a special case of the theorem by Ertel (1942); furthermore, 

the Bernoulli function, B = p + e<P + 1/2 Iv 12, is conserved. If the streamlines 
are represented by the intersection of the surfaces, 1P = constant, X = constant, 
we can write P = P(1P,X), B = B(1P,X), and e = e(1P,X)· Elimination of 'f/J,X 
then gives a functional relationship between P, B, and e, say 

P = F(e,B). (4) 

This represents a general first integral of the equations. 

2. Specialization in the Oceanic Case. In the open ocean, the Rossby num-
ber, /// LQ, is small; L represents a horizontal scale and// a characteristic hori-
zontal speed. Eq. (1) can then be replaced with the geostrophic-hydrostatic-
balance equation: 

e(2Q xv) = -Vp-eV<P. (la) 

The corresponding expressions for the potential vorticity and Bernoulli func-
+ 

tion are P = 2 Q ·Ve, B = p + e<P. Further, the ocean is confined to a thin and 
nearly spherical layer. This permits us to drop certain Coriolis accelerations and 
geometric terms in the equations. The radius, r, can be replaced with a standard 
value, R, when it is undifferentiated; and the gravity force can be made con-
stant over the depth. Since the relative-density variations in the ocean are only 
a few per mille, a (partial) Boussinesq approximation can be employed, replacing 
the density with a standard value when it multiplies the acceleration terms. 
These approximations are standard in most oceanic models. If we introduce 
longitude }c, latitude cp, and vertical distance z (counted positive upward) as 
coordinates, (1a), (2), (3) assume a component form: 

n . ap 
- 2 ~& sm <p (! V = - R a 1 , 

COS ({J A 
(s) 

n . ap 
2~& sm <p (!U = - Racp' (6) 

ap 
o = - - -ge 

az ' (7) 

1 [au a ] aw 
R cos cp a;.+ acp (v cos cp) + az = o, (8) 

ae ae ae u---- +v -- +w - =O. 
R cos cp a;. Racp az (9) 
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These are the governing equations for an ideal-fluid thermocline. Further, P = 
2Q sin cpoe/oz, B = p + egz, and the fir st integral (4) becomes 

sin <p :; = F(e, p + egz), (1 o) 

where the constant factor, 2Q, has been absorbed in the function. Eqs. (7), (10) 
form a pair of fir st-order differential equations for p and e; these equations can 
be conveniently used to produce solutions. If the function F(e,B) is given and 
if the distributions p0 ().,<p), e0 (A,<p) are specified at a surface z = constant, then 
the equations can be integrated in the z direction to obtain the three-dimensional 
pressure and density fields (excluding certain singular cases). The horizontal 
velocity is then obtained from the geostrophic eqs. (5), (6), the vertical velocity 
from the density-conservation equation (9). 

3. The Case P = a e + bB + c. In this case we have 

sin <p !; = ae+b(p+egz) +c. ( I I) 

By taking a z derivative and by using the hydrostatic equation, we obtain 

02 o 
sin <p oz~ = (a + bgz) 

0
;; 

with two integrations, 
az + 1/2 bgz2 

o e sin cp 
oz= C,()., <p) e 

and 

z (C+zo)2 

I 
-I)~ 

e = e0 (A,<p) + C().,cp) e <p dC, 
0 

where the following notations are used: 

I a2 

C - C 2 bg - ,e , 
a 

Zo = -
bg' 

D- - -_ ( 2 )''2 
bg . 

(12) 

The functions e0 (A,<p) and C(A,<p) are arbitrary. The constant b must be taken 
negative to _make the s?luti_on decay at great depths. If the con~t;nt a is positive, 
the profile 1s exponential-like for negative z; it is assumed that the ocean occu-
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Figure I. The distribution of thermosteri c anomaly in the South Pacific along 160°W according to 
Reid (1965). The thermosteri c anomaly can be translated to an equivalent a

1 
(see R eid 

1965: 41). 

pies the region z :c; o. If a is negative, making Zo positive, an inflection point 
appears in the density profile. This case is now considered. The density profile 
is represented by two scales: the depth of the inflection point and the width of 
the thermocline. The fir st depth, zo, is constant, and the second depth, D 
(sin cp)1f2

, varies with latitude. This two-scale representation allows a realistic 
soluti on. In particular, we obtain a sharp thermocline at finite depth at the 
equator. It can be shown further that the meridional density gradient has a 
reversal of sign at some midlatitude, at depths below the infl ection point, when 
the surface density increases monotonically poleward. 

For example, the soluti on ( 12) is calculated with e0(l,cp) fitt ed to the surface 
density given by Reid (1965) for a meridional section of the South Pacific and 
with C(l, cp) chosen such that the deep density takes on a constant value. Reid's 
fi eld is shown in Fig. r, the theoretical fi eld in Fig. 2 . 

The pressure fi eld corresponding to the density solution (12) is 

0 0 

However, the function p
0
(l, cp) is not independent of the two functions 

go(J,cp) and B(J,cp). Inserting (12), (14) into (r r) and setting z = o, we have 
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800 

Figure 2. The theoretical density distribution obtained from solution (12). The function (!o(A,<p) is 
fitted to Reid's surface values; the function C().,<p) is determined by the condition that 
the deep densities approach a given constant value. 

I a2 

Therefore, by prescribing the density at the surface and at great depths, both 
the pressure and the velocity field are uniquely determined. 

The special case where P depends only on e has been discussed (Welander 
1959). Eq. ( 11) reduces to sin <p &e/&z = ae + c; the interpretation of this case 
as a first integral has been given by Phillips ( 1963). The solution is exponential, 

az 

(12a) 

where e0 (.A,<p) is an arbitrary surface density and en is a constant representing 
the deep density. In this case there is a single scale depth for the thermocline 
that varies in proportion to sin <p. 

4. The Case P = F(a (! + bB + c). In this case the governing equation 1s 

. &e F[ sm <p oz = a(! + b (p + (! gz) + c J, 

with Fan arbitr~ry function. _By int~oducing a new coordinate, z* = z + a/bg, 
and a correspondmg Bernoulli function, B*, we can write 
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sin <p :ze* = F(hB*+ c) = G(B*). 

T his equation can be integrated exactl y, as was pointed out to me by Professor 
L ouis Howard. W ith aB*/az = gz*(ae/az*), the equati on can be integrated 
once to obtain 

B• 

2 J n <p [zt2(J.,<p) -z* 2] = I (B*), where I (B*) = ~:)" (17) 

B*, 

Bt, a sta ndard valu e of the Bernoulli functi on, applies at a surface z* = 

zt(J., <p). By prescribing the pressure, p0 (J., <p), and the density, e0 (J., <p), at a 
level z* = c, we obtain 

2 Sin <p 
zt(J.,<p) = [c'+ -- ! (po+ eogc)]' 12-

g 

If we invert ( 1 7 ), the Bernoulli functi on is obtained : 

B* = J-1 [L (z*2- z*2)] . 
sin <p ' 

But B can also be written in the form -z* 2 [a(P/z*) /az*J. Using this expres-
sion, we can integrate (18) to obtain the pressure: 

z• 

p = p0 (J., <p) z* -z* l :,1-1 [ ~ (zt 2 - C2)] d(. 
C .) c, Sin <p 

(20) 

Finall y, the density is obtained from the hydrostati c equati on : 

o = _ Po(J., <p) + _ 1_ 1-1 [~ (zt 2-z*')] + 
"' gc gz* sin <p 

z• 

+ r -2_ 1- , [L (z* 2 - c)] dC 
g .) (2 Sin <p I 

(2 I) 

with zt given by (1 8). W e can verify that this expression reduces to e0 (J., <p) 
for z* = c. This is the most general soluti on found so far for the ideal-flu id-
thermocline equati ons. 

A special case, which is simple to integrate, occurs when P depends on only 
e,P = F(e)- The governing equation is in e alone, sin <p ae/az = F(e); this can 
be integrated to obtain 
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e = 1- 1 
{ ~ + l[eo (A.,q:i)J}, 
Sin <p 

(! 

\ dx 
l(e) = j F(x)' 

e, 

[29,2 

(21 a) 

where e
0

(A.,<p) is the density at z o. Verification_is ?btained_from the ~olu-
tion fJz=o = 1-1 

{ l (eo)} = eo. In this case the density IS prescnbed by a s111gle 
profile form. The profile is translated vertically, depending on A,<p, and it has 
a variation in scale depth that is proportional to sin <p. 

5. Significance of the Ideal-fluid Solutions. The previous solutions contain 
arbitrary functions, but they are not general enough to satisfy boundary con-
diti ons of the form e = e0 (J,q:i), w = w0 ().,<p) at a top surface (z = o), and 
vn =oat a bottom surface (z = -H(A,<p)). In the most general solution the 
function F(e,B) must be arbitrary, but no way has been found to integrate 
this case exactly. 

Note that, in all circumstances, the functions e0 (A,<p), w0 (A,<p) must meet 
certain essential requirements to satisfy an ideal-fluid solution for a closed 
oceanic basin. First, ff w

0
d.A = o, ff eo w0 d.A = o, taken over the entire top 

boundary, are required to satisfy the overall conditions of incompressibility and 
mass balance. However, this is not enough. Since the density is conserved, there 
must be detailed balancing of water at the top; water of a given density that 
moves downward must be replaced with upward-moving water of the same 
density. This may result in solutions that appear to be unrealistic. For example, 
if eo is a function of only latitude, then all water that sinks at a given latitude 
must return to the surface at that latitude. Obviously an ideal-fluid regime can, 
at most, exist in parts of a real ocean. Near the top there must be a diffusive 
layer to permit transfer of atmospheric heat and momentum. Further, certain 
interior diffusive regions are also necessary. The equator and the western-
boundary currents are likely to be such regions. 

I feel that the ideal-fluid-thermocline model must be considered seriously, 
for it provides a description of the main meridional-density distribution in the 
oceans that is as good as existing diffusive-type models, in which a value of the 
vertical turbulent diffusion coefficient, u, is used. u generally has been obtained 
by identifying the diffusive depth, (5 = u/W, with an observed scale depth for 
the main thermocline; here Wis a characteristic vertical velocity. There have 
been no good direct measurements of u in the thermocline region. However, 
some oceanographers feel that the values must be much lower than those that 
have been previously assumed. Some estimates by C. S. Cox and R. W. Stewart 
from temperature-fluctuation measurements (private communication) place u in 
the range 0.01_ to 0.1 cm2sec' .. Ifwe use the value W = 10-Scm sec' (that is, 
on the small side), (5 then falls 111 the range 1 0-1 oo m. Of course there is the 
possibility that the real thermocline will be divided into an upper thin diffusive 
layer and a deeper broader ideal-fluid layer. It is possible to test this idea both 
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theoretically and experimentally. In the theoretical approach we may learn 
much from numerical experiments carried out for small x values; such experi-
ments will eventually be carried out. In the experimental approach, direct 
measurements and determination of x in the main thermocline is obviously the 
most important field work. However, we may also learn something from precise 
measurements of temperature and salinity. If the water sinks, ideally the T-S 
diagram should be conserved; strictly, potential temperature rather than at 
should be used. Such a T -S conservation has already been demonstrated by 
Iselin ( 1936) for the western Atlantic and by Sverdrup et al. ( 1942) for other 
oceans. But a linear T-S relationship is conserved also in the mixing process. 
To test the ideal-fluid hypothesis it is necessary to study the conservation of 
nonlinearities in this relationship, and that calls for new and more precise 
measurements of temperature and salinity. 

APPENDIX 

A new form of the pressure equation for a diffusive thermocline. 

The equation for the pressure used in the diffusive model described by 
Needler (1967) and Veronis (1969) can be rewritten in a form that displays 
the existence of a first integral in the limit x = o. For a constant x and with 
the notation q = 2Qe R2 sin cp cos cp, the equation is 

( 
. rPp op 

X ro4p 0Zp - (o3p)z] = 0 Sin ffJ a:z,., p -z "th' 
q oz4 oz2 oz3 o (,1,, cp,z) 

op) 
oz 

When x = o the Jacobian in the right-hand side vanishes and there is a func-
tional relationship between sincpo2p/ozZ,p-zop/oz, and op/oz. This can 
be directly identified with the first integral (10). 
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