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ABSTRACT 

The problem of mass transport induced by waves is re-examined. Under the usual bound-
ary-layer assumptions, the whole field is divided into three regions: surface-boundary 
layers, bottom-boundary layers, and the inviscid interior. Then, by considering Reynolds 
stress in the boundary layers, an expression of the mass-transport velocity in the viscous 
fluid is derived. 

Two extreme surface conditions have been considered. The first case is clean water 
without any surface stress. The result is similar to that of Longuet-Higgins (1953) except 
near the free surface. It is found, to the second-order approximation, that the surface velocity 
tends asymptotically to the Stokes' classical expansion as the relative depth, kd, increases; 
yet Longuet-Higgins' solution becomes unbounded. 

The second case considered is when the surface is covered with a film that is incom-
pressible to the tangential stress. Again the result is bounded for large kd and is similar to 
the first case except when kd< < r. However, when kd)) 1, the influence of the film is an ad-
ditional term to the surface velocity of the magnitude of one-fourth of the Stokes' clas-
sical expansion. 

A comparison has been made with experimental observations con<:Iucted by Russell and 
Osorio (1957). The experimental results give strong support to the theoretical prediction. 

I. Introduction. Mass transport in wave motion has long been recognized. 
Stokes ( I 84 7) first found that a nonzero mean velocity existed even in an 
inviscid irrotational wave field; he calculated, theoretically, the magnitude to 
the second order: 

O = aa2 k cosh 2k(z -d) 
1 2 sinh2 kd ' 

where a = the frequency, a = the amplitude of the wave, k = the wave 
number, d = the depth of the water, z = the vertical position, and U1 = the 
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Stokes' drift. Since then, various experiments (Caligny l 878, U.S. Beach 
Erosion Board I 94 I, Bagnold I 94 7) confirmed the existence of the nonzero 
mean velocity, but the velocity profiles were not of exactly the same form 
as that predicted by Stokes' inviscid irrotational model, unless kd)) I. For kd 
comparable to one, a strong forward velocity just outside the bottom-boundary 
layer was consistently observed. The discrepancy obviously lies in the existence 
of finite viscosity, no matter how small, in all real fluid where the influence of 
viscosity prevents the fluid slipping on the solid boundary. This viscous effect 
dominates inside the boundary layers and, by diffusion, might influence the 
whole fluid, especially in shallow water. Simple as the physics is, a full analysis 
requires a nonlinear equation with a moving-wave boundary on the surface-a 
problem too difficult to be solved. 

Various authors have sought solutions to this problem by approximation. 
Among the trials, the most successful has been reported by Longuet-Higgins 
(1953). In that solution, the whole flow field was divided into three regions: 
the interior, the surface, and the bottom-boundary layers. The boundary 
conditions were no-slip at the bottom, zero-stress on the surface, and zero-net-
mass-transport in the whole field. Longuet-Higgins used a perturbation analy-
sis for each region and matched the solutions at the boundaries. Through 
complicated algebra and various approximations, he found that the final result 
of mass-transport velocity in a progressive wave field, with surface displacement 
{; given as 

{;=a cos (k·x-at), 
was 

aa2 k { · 
U = 4 sinh' kd 2 cosh [2kd(1 -µ)] + 3 + kd (3µ2 _ 4µ + 1) 

where µ = z/d. 

. (sinh 2kd 3) } smh 2 kd + 3 2 kd + 2 (µ2 - 1) , l (3) 

From this formula, Longuet-Higgins succeeded in explaining the phenom-
enon of forward mass-transport velocity outside the bottom-boundary layer for 
shallow-water waves. In general the whole profile of mass-transport velocity 
agreed reasonably well with the experimental results of Russell and Osorio 
(1957) for shallow water with 0.7 :S.kd::;_ 1.5. On careful scrutiny, however, 
Longuet-Higgins' solution shows that the velocity on the free surface is a 
function of the depth and increases linearly with the depth when kd)) 1. By 
settingµ = o in (3), we have 

(4) 
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The unboundedness of surface velocity with increasing depth contradicts 
not only physical intuition but also observed data. 

Recently, Chang (1969) also analyzed the same problem by using Lagrangian 
equations of motion ab initio and by considering the full viscous effect of the 
fluid in a random wave field. Unfortunately, Chang solved the problem under 
the assumption of deep-water conditions; therefore the influence of the bottom-
boundary layer and the evolution of the profik of the mass-transport velocity 
from shallow to deep water are entirely missing. For deep water, even with 
viscosity, Chang found that the mass-transport velocity was essentially the 
same as Stokes' inviscid irrotational solution. This conclusion was confirmed 
by extensive laboratory observations reported_ in the same paper. However, an 
apparent mathematical slip led to the conclusion that the mean velocity gradient 
near the free surface was, as reported by Longuet-Higgins ( 19 5 3, 1960 ), 
exactly twice the value of Stokes' expression. Notwithstanding the analytical 
results, all the experimental findings of Russell and Osorio and those of Chang 
have clearly indicated that neither Stokes' nor Longuet-Higgins' results were 
entirely satisfactory. Longuet-Higgins' analysis was closer to reality in the 
shallow-water case, but Stokes' inviscid irrotational model definitely represented 
the asymptotic value as kd-+ co . A link is necessary to fill the gap between the 
ranges of validity of kd for Stokes' and Longuet-Higgins' solutions. A solution 
is needed that will be valid uniformly for all values of kd, and the present analy-
sis is directed toward this goal. 

This analysis follows the same approaches as those of Longuet-Higgins' 
(1953, 1958) and Phillips' (1966) for the interior region and the bottom-
boundary layer, but it employs a different method for the surface-boundary 
layer. The final result uniformly covers the whole range of cases from kd « 1 

to kd-+ co. In the case of kd < < 1 , the result indicates the important feature 
of finite forward velocity near the bottom; then, as kd increases, the profile 
changes continuously and eventually approaches Stokes' solution as kd-+ co for 
a stress-free clean surface. 

A special case of contaminated surface is also considered. The important 
influence of surface contamination is amply illustrated in § 5, particularly for 
the shallow-water case. 

2. Equations of Motion for the Interior. Consider a two-dimensional flow, 
with x horizontal in the direction of wave propagation and z downward. 
Assume that the motion in the Eulerian sense is periodic in time and that the 
perturbation method is applicable in the whole motion. This motion is easily 
realized by a wave train with the surface displacement, 

(=a cos (k·x-at). 

In this two-dimensional model, a stream function can be defined and expanded 
in a power series with respect to a small perturbation parameter, e, which is 
of the order of the steepness of the wave, ak. Thus we have 
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and 
(u, w) = e(ux, w,) +e2(u2, w,) + ... , 

[28, I 

(5) 

(6) 

where u, w are the horizontal and vertical components of the velocity and 

i=1,2, .... (7) 

The equation of continuity is automatically satisfied. 
All of the above analysis has been in the Eulerian sense, but the mass-trans-

port velocity is a Lagrangian property; that is, the mean velocity following 
the particles. Hence, we have to transform the Eulerian solution into the 
Lagrangian form. Let U denote the Lagrangian velocity; then 

U = e U, + e2 U, + ... (8) 

A formal relationship between u and U (see, for example, Phillips 1966), 
correct to the second order of e, is given by 

U(xo, t) = u(xo, t) + ((u(x0 , t') dt') · v u(xo, t), (9) 

where Xo is the position of the particle at t = o. On substituting (6 ), (8), in 
(9), we have 

Ur= Ur, 

U, = u, + (~:uidt'). v u1; l (10) 

and taking the mean of (10) and denoting the mean value by a bar, we have 

al= 0, 

a , = u, + (tuidt') • '\I U1. l (II) 

Longuet-Higgins (1953) showed that 

where I (12) 
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is the stream function of the mass-transport velocity. In order to evaluate 'l' 
to the second order, we must obtain a second-order Eulerian solution. 

Now, the two-dimensional vorticity equation for a viscous incompressible 
fluid is 

Substituting (5) and (6) into (14), we have the first-order equation as 

(:t +1n;,2)v21/', = o. 

Hence, 

Taking the time average of (14), we substitute (5) and (6) into the averaged 
equation. We then have 

(u, i_ + w, i_) V 21jl -v v2ip2 = o. OX OZ I 

Combining ( I 6) and ( 1 7 ), we obtain 

We can now write the field equation for the stream function of the mass-
transport velocity to the second order in terms of 11'1 by substituting ( 1 8) in ( 13); 

This equation determines only the motion in the interior, subject to the 
boundary conditions to be specified later. 

The actual solution can be obtained by using the classical matching prin-
ciples of standard boundary-layer problem; that is, the limiting value of the 
boundary-layer solution equals the boundary value of the interior solution. 
The boundary-layer solutions are derived in the following section. 

3. Boundary Layers. Assume, to the first order, that the motion is given 
by a wave train with surface displacement 

C = a cos (k · x - at) 

and that the associated stream function is 

(20) 
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aa sinh k(z - d) (k ) 
1P = - - . h kd cos · x - at . k sm 

( 21) 

Under this condition, the boundary-layer flow near the bottom has been 
obtained by Longuet-Higgins ( 195 3) and Phillips ( I 966 ). The same results 
were derived by both authors; that is, u2(YJ), the Eulerian velocity inside the 
boundary layer, correct to the second order, is given as: 

a2 ka fl fJ ) u2 (ri) = . [3 - 2 (,Bri + 2)e- TJ cos ,Bri- 2(,Bri- 1)e- TJ (22) 
4 smh2 kd 

sin ,Bri + r 2 fJTJ], 

where ri = z -d and ,B = (a/2v)'l2 , which is inversely proportional to the 
thickness of the boundary layer /J. 

Just outside the boundary layer, ,Bri- co; then 

-- 3a2 ka 
u2(ri) = . h2 kd. (23) 4sm 

This nonzero second-order Eulerian velocity, combined with the Lagrangian 
drift resulting from the first-order irrotational motion, gives the total mass-
transport velocity just outside the boundary layer: 

This furnishes a boundary condition at the bottom for the interior flow. 
The free surface was treated by Longuet-Higgins as a moving boundary, 

consequently complications arose and various approximations had to be made 
in order to reduce the equation to a manageable form. However, the free 
surface can be changed into a stationary-wave boundary by a proper coordinate 
transformation defined as 

1: a cosh k (z + d) . k 
'" = x - sinh kd sm x' 

a sinh k (z +d) 
ri = z - sinh kd cos kx, 

} (25) 

where x, z are Eulerian positions in a coordinate system moving at speed c, 
and z is measured upward. It can be shown that the transformation is orthogonal 
and to the first order; ri = o gives the free surface. 

The Jacobian of transformation, to the first order, is 

'J _o(!,ri) _ 2akcoshk(ri+d) 
- o(x,z)- 1 + sinhkd cosk;. 
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Assume that the motion consists of a first-order irrotational wave motion 
and a viscous perturbation. In this curvilinear coordinate, the irrotational part 
becomes simply - ''YJ· Let the viscous perturbation be given by VJ'· We have 

VJ = - ''YJ + VJ'. (27) 

Furthermore, with the coordinates defined in (25), the vorticity equation, to 
the first order, becomes 

where w = -J(VJ~t;+VJ'-r,ri)':::'. - 'IJ'~ri to the first order. Now, since the surface 
stress is zero, 

Ts= v[(JVJri)ri-(N1;)1;] = o, at 'Y/ = o. 
This requires that 

w = -VJ~ri = - 2aka cos k$, at 'Y/ = o. (30) 

Then the solution of (28), subject to the boundary condition of (30) and the 
condition that w remains finite as - (J'Y] -+ oo, is 

w = - 2akaePTJ cos (k$ -fJ'YJ)-

But, in the boundary layer, W':::'_OU' /o'YJ, hence 

u' = a;a ePTJ [ - cos (k$ - fJ'YJ) + sin (k$ - fJ'YJ)] + /($). (32) 

By using the continuity equation and the boundary conditions that w' = o at 
'YJ = o and that w' is finite just outside the boundary layer, we have 

(33) 

But the requirement that w' be finite implies that/'($)= o; hence, inside 
the boundary layer the total velocity is 

u = c + aka ef3TJ [sin (k$ - fJ'YJ) - cos (k$ - fJ'YJ)] +A, 
fJ 

ak2a R 
w = P2 [cos k$ -el'T/ cos (k$-{J'Y])]. } (34) 

Having obtained the velocity, we can calculate the induced motion by ~al-
ancing the Reynolds stress with the shear stress of the secon_d-order Eulerian 
mean flow in the boundary, which is governed by the equat10n 
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fPu a_ 
v - = - uw. 

O'YJ2 O'YJ 

Then, by integration, au au I _ -1 
'JIO'YJ-'JIO'YJ Tj=O=UW-UW TJ=O· 

But the total stress at the surface is zero, so we have 

au 
V - =UW 

O'YJ 

= {c + at ef3TJ [sin (k~ - f3'YJ) -cos (k~-f3'YJ)] +A} · 

{ak2 a } · p [ cos k - ef3TJ cos ( k - f3'YJ)] , 

where the average is over a wavelength. Hence 

[28, l 

(35) 

(36) 

(37) 

(38) 

As - f3rJ-+ oo , the right-hand side approaches zero exponentially. Thus 

(39) 

Therefore, to this order of approximation, the viscous perturbation velocity 
contributes nothing to the second-order Eulerian mean velocity gradient out-
side the surface-boundary layer. This gives another boundary condition to the 
interior flow. Including the condition of zero net mass transport, we are now 
ready to solve eq. (19) for the interior field. 

4. Interior Solution. Assume that the first-order solution is 

aasinh k(z-d) 
'f/J,=-;; sinhkd cos(kx-at). 

Then, from (19), we have 

v 4 'P = v 4 a2 a sinh_2k(z-d) 
4 smh2 kd 

Assume a solution of the form 

a2 a . 
'P= . h2 kd[smh 2k(z-d)+P(z)]. 4 sm 
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Then P(z) must satisfy 

with the boundary conditions 

d4P(z) 
~=o, 

fJP(z) I = 3k 
f}z ' Z= d 

azP(z) I = o 
fJz2 , 

z=o 

P(z) lz= d = o, 

P(z) lz=o = sinh 2kd. 

The solution can be easily found and the final result is 

aa2 k { 3 sinh 2kd 9 3} U= . h2 kd 2cosh[2kd(1-µ)]-- [1-µ2]--- + - µ2 _ _ 
4 sm 2 kd 2 2 ' 

where µ = z /d. 

43 

(43) 

(44) 

(45) 

This mass-transport velocity profile is different from that of Longuet-Hig-
gins (3). On term-by-term comparison, it is easily seen that the only dif-
ference is the extra term 

a~k . 
. h2 kd kd(3µ2 -4µ + 1) smh 2kd, 4 sm (49) 

which appeared in Longuet-Higgins' result but not in the present solution. 
This term represents the flow caused by an extra stress induced by the bound-
ary-layer flow on the surface. But in the present analysis it is shown that the 
stress induced by viscous perturbation is of second order at most and that it 
dies off exponentially on approaching the value zero just outside the boundary 
layer. 

5. Solution with Surface Film. It is well known in experimental work on 
surface waves that the surface condition is extremely critical. Any contamina-
tion on the surface changes the surface-boundary condition and hence the 
interior flow pattern. The characteristics of surface contamination vary widely. 
In one extreme case, the surface is covered with a densely packed layer of film 
that is incompressible to tangential stress set up by the waves; a film of highly 
viscous oil is a practical approximation to this case. Phillips ( 1966) has discussed 
briefly some important consequences of the surface contamination. By using 
the same coordinate transformation as that in § 3, Phillips showed that the 
velocity perturbation in the boundary layer is 

u' = -aa coth kdef3TJ cos (k~ -/3'YJ)- (50) 
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Figure r. Comparison of the surface velocities in analytical and experimental results: dashed line, 
Longuet-Higgins; solid line, present analysis; plus sign, experiments with /lat channel bed; 
X, experiments with sloped channel bed ( 1 : 2.0). 

By employing the continuity equation and the condition w' = o at 'f/ = o, it 
follows that 

w' = a2k; coth kd {[sin (k~ - f3'YJ) + cos (k~ -/3'YJ)JefJrJ _ sink~ - cos k~} - (51) 

Then the total velocity is 
U = C + u', 

, 
W = W. 

The Reynolds stress inside the boundary layer is therefore 

uw = cw' +u'w' 

a•ka 
= - 4 /3 coth kd [e2 /J'YJ - e/J17 (cos f3'YJ + sin f3ri)] . 

(52) 

l (53) 

On balancing the shear stress and the Reynolds stress and integrating, we 
obtain the second-order Eulerian velocity u: 

a•ka 
u = 4 coth2 kd (1 - e2 fJrJ + 2e/Jri sin f3ri) . (54) 

Just outside the boundary layer, 
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Figure 2. Comparison of bottom velocities in ana-
lytical and experimental results: solid line, 
analytical result; plus sign, experimental 
data. 

a2 ka 
u-+ -- coth2 kd, (55) 

4 

which is exactly one-fourth of 
the Stokes classical expansion. 

Using (55) as the surface-
boundary condition in combina-
tion with (24) and zero net-mass 
transport, we are again ready for 
the solution of the interior field. 
The procedure is exactly the same 
as that in § 4, except that the 
boundary conditions on P(z) are 
now 

aPI oz = k cosh2 kd, 
z= o 

(56) 

aPI oz = 3k, 
Z=d 

(57) 

P lz=o = sinh 2kd, (58) 

(59) 

The final result is 

a2 ka { U(µ) = 4 sinh2 kd 2 cosh [2kd(1 -µ)] + (9 µ2 - 6 µ) + 

} (60) 

+ (3µ2 - 4 µ + 1) cosh2 kd + k:(µ2 -µ) sinh 2kd}. 

6. Comparison with Experimental Data. So far the most comprehensive set 
of experimental data concerning mass transport in wave motion is that of Rus-
sell and Osorio (1957). In those experiments, they covered a wide variety of 
cases of different wave heights and water depth, even with a sloped bottom. But 
experimental results have shown that the effect of bottom slope ( at 20: 1) is 
not substantial. A detailed comparison of the present results and those of Lon-
guet-Higgins with the experimental data are illustrative. In the following 
discussion, all the experimental data referred to are those of Russell and Osorio. 

First let us examine the surface velocity. By settingµ = o in (48) and (60), 
we get 
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Figure 3. Comparison of the interior flow, kd = 0.5: solid line, new analysis; dashed line, Longuet-
Higgins; plus sign, experimental data. 

a•ka ( 3 sinh 2kd 3) 
Uz=o = 4sinh'kd 2cosh 2kd- 2kd -2' 

as kd)) 1 } 
for the clean surface and 

a•ka 
Uz=o = . h'ki2cosh2kd+cosh'kd) 

4 sm 

-+ i a• ka 
4 ' 

as kd )) I } (62) 

for the contamined surface. 
In order to see the comparison more clearly, eqs. (4), (61), and (62) are 

plotted in Fig. 1 against Russell's observed data. Some interesting points should 
be mentioned. First, both the present results and those of Longuet-Higgins 
predict a backward surface flow in clean shallow water arising as a consequence 
of zero net-mass transport and a definite forward velocity near the bottom. But 
the existence of this backward surface flow was not observed consistently by 
Russell. A possible explanation is that the influence of the surface film becomes 
increasingly important in shallow-water waves, as indicated by eq. (60). 
Therefore, any surface contamination might cause a drastic change in the sur-
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Figure 4. Comparison of the interior tlow, kd = 0.92: solid line, new analysis; dashed line, Longuet-
Higgins; - ... - experimental wave height 8 in. ; - .. - wave height 20 in. 

face flow, and the scattering of the experimental data is to be expected. Second, 
Longuet-Higgins' solution tends to infinity at both large and small kd and 
crosses Stokes' expansion at a point near kd = I, which coincides with the 
region (o.7<kd< 1.5), where Russell and Osorio claimed the solution was 
valid. However, in Longuet-Higgins' analysis, no restriction on kd could be 
found. It is not clear why Longuet-Higgins' solution fails beyond such a range. 
As for the flow near the bottom, both the present results and those of Longuet-

oS 

-d4 -0.2 ~a.2k O 0.2 0.4 o.6 o.8 , .o 1.2 

Figure 5. Comparison of the interior tlow, kd = 1.25: solid line, new analysis; dashed line, Longuet-
Higgins; plus sign, experimental data. 
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Figure 6. Comparison of the interior /low, kd = 1.67: solid l ine, new analysis; - ·· - experiments 
wi th upward slope I :20; - ... - experiments with downward slope I :20. 

Higgins are exactly the same. Experimental data confirm the analytical result 
remarkably, as can be seen in Fig. 2 . 

For the interior region, Figs. 3-7 cover the cases of the kd values equal to 
0.5, 0.92, 1.25, 1.67, 2.1, and 7.16, respecti vely. In most cases the discrep-
ancy between the present result and the experimental points is fairly small, 
and the accuracy increases with increasing kd. But Longuet-Higgins' solution 

-0.4 
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1 ,,... / -- -- -· (..~-- -

~ ---7 . 
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Figure 7· Comparison_ of the i~terior fl ow, kd = 2.1 and 7.16: solid lin e, analytical with kd = z.t; 
- · · - experiments wi th kd = 2 . I wave height 4.6 in. ; - · • • - experiments wi th kd = 2 . I 

wave height 1.2 in.; dashed lin e, experiments with kd = 7.16 wave height 1.2. in. 
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becomes almost inapplicable beyond kd = 1.5 because of the extremely large 
surface-flow term in his solution. However, the profiles actually observed by 
Russell and Osorio ( 19 5 7) had much flat curvature, especially when kd was 
small. This seems to suggest the occurrence of turbulence or instability due to 
high shear, and instability was indeed observed by Russell and Osorio. With 
the limited data available, no further comparison can be made. 

7. Discussion. In the whole analysis, though viscous effects on mass trans-
port have been considered, the energy dissipation due to the viscosity (or the 
attenuation) has been neglected. The attenuation coefficient cc for a clean water 
surface can be easily proved to be 

E 2 ( 2 kd /3 I k ) 
cc= - 2E = 2vk 1 + sinh 2kd + 2k sinh 2kd + 2{J tanh kd . 

If the attenuation is converted to a space variable such as x (parallel to the 
direction of wave propagation), as realized in most experimental setups, then 

[ 
1 ( 2kd ) (kcJ)

2 
] 

cc= kx(kcJ) 2 sinh 2kd + (kc'J) 1 + sinh 2kd + -2- tanh kd ; 

here the first term represents the contribution from the bottom-boundary 
layer, the second term is from the interior due to the irrotational strain, and 
the third term is due to the surface-boundary layer. As kd)) 1, 

cc -kx(kcJ)2 ( I + \
15
). 

At best, the change is of the order of (k<5)2, which might give rise to a second-
order oscillatory velocity. But the contribution to the mean velocity is at least 
of the third order, hence it is of the same order as the quantities already 
neglected. Therefore, the attenuation is disregarded. 

The most crucial difference between the present analysis and that of Longuet-
Higgins is the treatment of the surface-boundary layer, which provides different 
boundary conditions for the interior flow. Longuet-Higgins (1960) has con-
ducted an experimental study on the surface-boundary layer and has claimed a 
quantitative proof of the magnitude of the velocity gradient by direct measure-
ment. Yet, in that paper the magnitude of the surface velocity was not men-
tioned, though the measurement of the latter is far easier and more definite 
and hence more convincing. In any case, this crucial difference calls for more 
careful experimental study on the surface layer . 
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