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Oceanic Flow over Varying Bottom Topography1 

R. A. Clarke and N. P. FofonofP 

Institute of Oceanograplty 
University of Britislt Co/umhia 
Vancouver 8, B. C., Canada 

ABSTRACT 

A study has been made of steady barotropic flows on the /J plane over a bottom topography 
that varies in a direction inclined to the circles of latitude. The solutions obtained, starting 
with both the Eulerian and the Lagrangian systems of equations, are shown to be identical 
in the case of flow over a single-depth discontinuity. 

Within a restricted range of depth variation, the amplitudes of the stationary planetary 
wave solutions obtained continue to change downstream from the initial depth variation, even 
in a region of constant depth. Larger depth variations lead to cellular flow patterns aligned 
parallel to the lines of constant depth. The effects on the solutions of Ekman bottom friction 
and of wind stress have been investigated numerically, using the Lagrangian equations. 

Introduction. Observations of ocean currents have shown that their paths 
are affected by bottom topography; the most notable examples are (i) the 
meandering of the Gulf Stream after it leaves the continental shelf (Fuglister 
and Worthington 1951) and (ii) the stream's turning to the south as it passes 
by the southeastern Newfoundland Ridge (Mann 1967). Early theoretical 
studies of ocean currents have usually assumed a level bottom topography. 
Warren (1963), using numerical techniques, showed that the Gulf Stream's 
meanders could be accounted for by the observed topography. Porter and 
Rattray (1964) obtained analytical solutions for the problem of steady,baro-
tropic zonal flow over a bottom that was assumed to vary zonally. These 
solutions took the form of large-amplitude planetary waves for flow over one 
or more depth discontinuities, corresponding to oceanic flow over continental 
slopes, ridges, and valleys. Their solutions agreed qualitatively with the de-
flection of the Antarctic Circumpolar Current where it passes over several 
ridges. 

In this paper, the problem of an initially zonal and barotropic flow entering 
a region where depth is changing in some direction other than north-south 
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is treated on the {3 plane. For the simplest case-that of flow over a single 
depth discontinuity aligned in any direction, solutions are obtained by using 
both the Lagrangian and the Eulerian equations. In general, these two systems 
yield the pathlines and the streamlines, respectively, and it is difficult to move 
from one representation of the flow to the other. For steady flow, the two 
representations are identical, as is shown for the case of the single step. 

Knowing that identical solutions result from both sets of equations in the 
simplest case, it is then possible to use either set to look at a more complex 
bottom topography or to include the effects of friction or wind stress. By 
using the Eulerian equations, solutions may be obtained for uniform flow over 
a wide range of depth variations, provided the depth can be expressed as a 
function of a single co-ordinate in some direction other than north-south. 
Solutions are calculated for flows over one and two depth discontinuities, rep-
resenting, in the ocean, uniform barotropic flow over ridges, valleys, and 
continental slopes. 

On the other hand, the Lagrangian set of equations leads to a set of ordinary 
differential equations, even when constant curl wind stress and Ekman bottom 
friction are included in the model. Such a set of ordinary differential equations 
plus an initial set of conditions is well suited for study on an analogue computer. 
For this reason the problem of uniform barotropic flow over a single step with 
wind stress and bottom friction has been investigated by using the Lagrangian 
set of equations and an analogue computer. 

This model only crudely approximates the real ocean. In particular, real 
ocean flows are baroclinic, nonuniform, and time-dependent. Since the model 
is none of these, quantitative agreement between its solutions and what is 
actually observed in the real ocean cannot be expected. Porter and Rattray 
(1964) have argued that a barotropic model will show a larger response to a 
given bathymetry than to the baroclinic flow. 

Although the model does not reproduce oceanic flow quantitatively, the 
analytical solutions obtained show a mechanism for the generation of large-
amplitude planetary waves that change their amplitude even over a level bot-
tom. This simple model provides some understanding of the mechanism that 
causes currents, such as the Gulf Stream, to develop meanders of increasing 
amplitude after flowing over bathymetric features such as the continental 

slope. 

l'orticity Equation. For the case of steady barotropic flow in an homogeneous 
ocean with an applied wind stress at the surface and with frictional stress at 
the bottom, the equations of motion and continuity can be integrated over the 
depth of the ocean to give 

au OU OrJ 'tx 
u - +v - -fv = -g- -R(u-v)+-h- , ox oy ox +ri 
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av av a,,, T11 
u?i"""" +v?i"""" +Ju= -g?i"""" -R(u+v)+-h-, 
vx vy vy +1} 

(2) 

au av U a V a - +- = ---(h+rJ)---(h+rJ)· 
ax ay h+,,,ax h+,,,ay 

(3) 

Here the various symbols are defined as: 

u, v eastward and northward components of velocity, 
g acceleration of gravity, 
/ Coriolis parameter,/= a.+ fJ y, 
1J surface elevation, 
h undisturbed water depth, 
R frictional coefficient, R = (Af/2h2)•f2, 

A coefficient of eddy viscosity, 
Tz, -r11 eastward and northward components of wind stress. 

In the usual manner, we obtain the vorticity equation through cross-differen-
tiation 0£(1) and (2) followed by substitution from (3): 

where E, [E = (av/ax)-(au/ay)] is the vertical component of relative vor-
ticity. 

Eulerian Solution. In this section we treat the problem of an oceanic flow 
having a uniform and zonal initial velocity, U, over a level bottom of depth 
H entering into a region where the depth h varies along a coordinate X in-
clined at an angle O to the x axis. Wind stress and friction are neglected; the 
effect of both will be reported later following an investigation using the 
Lagrangian solutions. Since the surface elevation is of the order of a meter, 
it will be neglected relative to the total depth, h, which is of the order of several 
kilometers. The problem is treated on the fJ plane; therefore, solutions in 
which y (the distance from the latitude around which the {J approximation 
is taken) becomes of the order of the earth's radius should no longer correspond 
to actual ocean flows. Under the above approximations, (4) becomes 

(ui_ +vi_) (e +/) = 0 
ox ay h ' (5) 
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subject to the upstream condition that u = U, v -= o in the initial level bottom 
region. Since (5) is invariant under co-ordinate rotation, it is convenient to 
transform to a system in which the axes are parallel and perpendicular to the 
depth variations. This new co-ordinate system is given by the transformation 

(X) = (c~s 0 r smO 
- sin 0) (x), 

cos O y 
(6) 

where O is given by the condition h = h(X) . 
Since the transport field is nondivergent, a transport streamfunction, 'l', is 

defined by the relationships 

o'P = -u'h or ' (7) 

where u' and v' are the velocity components along the X and r directions, 
respectively. In terms of the transport stream function, (5) becomes 

(v·(j;v'l') +/ )-
1 h ''P - o. (8) 

This can be integrated immediately to give 

(9) 

where K('P) is an arbitrary integration function that is to be determined from 
the upstream condition. For a uniform zonal Aow of constant velocity, U, 
and constant depth, H, the transport stream function is 

'P= -UH(rcosO-XsinO). (10) 

Substituting (10) into the integrated vorticity equation (9), we determine 
K('P) = (a./H)-(P'P/UH), where the p approximation gives/= a.+ p(r cos 
0-Xsin 0). Recalling that h = h(X), (9) is now rewritten as 

The origin of the co-ordinates is chosen such that h ( X) = H for · X o . 
Boundary conditions along X = o, given by the requirement that the trans-
ports be continuous, are therefore 
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:;1 =UH sin O; 
X=o 

i)tpl 
iJ r = - UH cos O. 

X=o 

Equation (11) can be separated and simplified through the transformations 

IJf(X,r)=F(s)+rG(s); s(X)=k~J(t)dt; q={J/U. (13) 

The form of the first of these transformations is suggested by the form of the 
upstream transport stream function to which it must be matched. The second, 
transforming X to s, eliminates the first derivatives of h and IJI, thereby sim-
plifying the equations. Applying these transformations, ( 1 1) becomes 

UH2 

G" (s) + G(s) = - - h- cos O, 

!X.UH( H) UH
2 

• F"(s)+F(s) = - {J - I- h +-h-Xsm O, 

subject to the conditions 

where 

F(o) = o, F'(o) = UH sin(}, 
qr, 

G(o) = -UH cos O, G'(o) = o, 

. h(X) 
r, = hm - H, 

X-+o+ 

( I 5) 

l ( I 6) 

allowing depth to be discontinuous at X = o. These have as solutions 

G(s) = - UH cos O [ cos s + H~: sin}(t) t) dt], 

F(s) = !X.~H [ 1 - cos s - H~: sin}(t) t) dt] + 

+ sm - + _:....:.__---'------'- dt UH . (}[sins H~8 X(t) sin (s -t) j 
r,q 

O 
h(t) · 

l (•8) 

Using this general form of the solution, we can calculate the stream function, 
at least numerically, for a variety of depth profiles. In this study however . , , 
only two simple cases are worked out analytically. The first is that of flow 
over a single depth discontinuity from H to r, Hat X = o . Here the transport 
stream function, as determined from ( I 3), ( I 7 ), and ( 1 8 ), is 
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By holding lJI fixed, ( 19) gives r as a function of X, thus describing the 
position of the given streamline. So that r will remain bounded for finite 
values of X and lJI, the coefficient of r in (19) must remain nonzero for all 
X. Such solutions, occurring for o <r1 < 2, will be called stable solutions; 
they exhibit a wave-like periodicity. For r1 > 2, r is unbounded for some 
finite X, and the solutions consist of a series of cells similar to those described 
by Porter and Rattray (1964). Since the {3 approximation is valid for only a 
limited y, only the stable solutions can be considered to have physical signif-
icance. The single-step model corresponds crudely to flow over a continental 
slope; a simple extension with a second step from r1H to r2H at X = a cor-
responds to flow over a ridge or a valley of width a. For X <a, the solution 
is again given by (19), but for X>a, 

lJI = - -- -- + 1 - - -(1 -r1)cos (rxqa) -----''----'------...C. -
a.UH [I -r2 {( r1) } cos r2q(X -a) 

{3 r 2 r 2 r1 

-(1-f,)sin(r1qa)sinr2q(X-a)] + 

UHsin0[qX { (r1)2 
( ) }sinr2q(X- a) + --- - + 1- - - 1-r1 cosr,qa --~-- + 

q r2 r2 r1 

+ {qa ( 1 _ ~:) + ( 1 - ~) sin r1qa} cos r 2 qr~X - a)] -

(20) 

-UH cos or - + I- - -(1 - r,)cosr,qa ---=-c.-~ + [
I {( r,) }cosr2q(X-a) 

r2 r2 r, 

. sin r2q(X - a)] + ( 1 - r,) sm r, qa __ -=-c. _ _ • 

r, 

There are now two stability criteria: (i) cos(r.qX)-1'1/(1-r,)forX:5,a, 
and (ii) 

(21) 
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In the analysis leading to these results, the surface elevation, r/, has been 
small with respect to the total depth. In the case of flow over the single step, 
using Bernouilli's equation, we find the surface elevation given by 

U2[ {1-(1-r1)cosr1qX}
2 {a. }2

• rJ=2g I- r1 +(1-r,)q2 7i+rcos0 smriqX+ 

2q(1 -ri) sin 0 . {a. } l + ri smriqX {i+rcos0 {1-(1-r1)cosr1qX}. 
} (22) 

Although this shows that 'Y/ grows as (r cos 0)2, the assumption that 'Y/ is small 
is consistent with the /J approximation, since this also involves neglect of terms 
in y 2• Because both of these approximations break down for large y, we ex-
pect real ocean flow to diverge from these solutions in both the larger am-
plitude and the nonstable cases. 

Lagrangian Solution. The Lagrangian solution is found analytically for 
only the simple case of an initially uniform current flowing over a single-
depth discontinuity. It is possible, through matching of solutions, to treat any 
number of steps, but such a generalization only increases the complexity of 
the problem. If the surface elevation is again small compared with the total 
depth, (4) becomes, in a region of constant depth, r1H, 

u - +v- (~+/)= -R~+--. ( 
a a) curl -r 
ox ay, r 1H 

(23) 

Since the flow is both steady and nondivergent, the pathlines of the fluid 
columns are given by the streamlines; therefore the position of a fluid column 
is described by the streamfunction VJ and a parameter, t ', along 'JI. The trans-
formation from (x,y) to (vi,t) is given by the relationships 

where 

Since 

then J = I. 

J = o(x,y) 
a (vi,1r 

-(a"P) = (ox) = uh, 
ayx o t 'P 
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In (111, t), the vorticity equation is given by 

fJ curl -r ot (~+J) = -R~+ r1H. 

233 

(25) 

Again, the solution is matched to a uniform initial flow over a constant 
depth, H. The upstream flow is then linear in 111; this suggests that we should 
look for solutions of the form 

x = ao(t)+a1(t)111, (26) 

Since J = I', then 
J = ho(t) + h1 (t)111. (27) 

01 h~ - h1 a~ = I , (28) 

a1h;-h1a; = o. (29) 

Equation (29) has as solution 01 = 1th1. If we set n = tan () and define new 
functions h and <p by 

h1 1 h = -- = h1 (1 + n2)' 2 

cos() ' 

. ho+ 1l0o 
<p = ho cos () + ao sm () = -( ---) 1 , I +1t2 12 

(30) 

then ao, 01, ho, and h1 can be expanded in terms of h, <p, and () so that (26) 
and ( 2 7) become 

x = (-~:.~)cos O+(<p+h111) sin O, 

y = -(-(~)sin()+ (<p + h111) cos 0. 

In the same rotated frame as that used in the Eulerian solution, 

(32) 

(33) 

(34) 

The functions h and <p are found by substituting (32) and (33) into the 
vorticity equation (25) and by matching this to the initial flow at X = o. 
If J is given by the {J approximation as f = cX + {J y and if curl T is constant and 
equal to {JJ?H, then (25) can be separated and integrated once to give 

h"+Rh'+p2 h+{J cos()= o, (35) 
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{J sin O {JI' 
<p"'+Rrp"+pirp'- -b-i - +rib= o, (36) 

where pi is an integration constant to be determined from the matching con-
ditions. 

Equations (35) and (36) govern the flow in a region of constant depth, 
r1H. Boundary conditions are chosen to match this solution with a steady 
uniform current having velocity components U and 17 in the x and y direc-
tions over a constant depth, H . The depth change occurs along X = o, and 
the origin of (v,, t) is chosen such that t = o along X = o and tp = oat X = o, 
r = o . So that transports, streamlines, and potential vorticity will be con-
tinuous, the boundary conditions must take the form 

b(o) = - ri rp(o) o u cos O - r sin O, = > 

b'(o) = o, 

b" (o) = {J(i -ri) cos 0, 

I ( ) u Sin O + r COS 0 <p O =------
r1 > 

(1 -r1)a: . 
<p11 ( 0) = - -'------'--- ( U cos O - J7 sm O) • 

r1 

Substitution of these conditions into (35) determines pi as 

{J(2-r1)cosO(U O r?· O) pi= ---- - cos -r sm . 
r1 

Equation (35) can now be solved to obtain 

(37) 

r1 l Rt( R . )] b = -( )(U O r . O) 1+(1-r1)e-- cosvt+- smvt , (39) 2-r1 cos - sm 2 2v 

where 

Following substitution from (39), the solution to (36) is 

{J [ C' (sin O 17 ) . \e RT R ) 
<p = pi J,. bi('r) - rib('r) dT- sm vt J,.e2 sin VT+ 2 v cos vT 

(sin O 17 ) C' RT ( R . ) 
bi (T) - rib(T) dT - cos vt J,.e 2 cos vT - 2 v sm v T 

(sin O r ) ] 
b2 (T) - r1h(T) dT ' 
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where t1, t~, and t 3 must be determined from the boundary conditions; how-
ever, these integrals cannot be evaluated explicitly in the general case. For 
the particular case corresponding to the Eulerian solutions, we set R = 17 = o, 
and then (39) reduces to 

r1 
h = - ( ) U () [ I + ( I - r1) cos pt], 2-r1 cos 

with 

When (41) is substituted into (40) and oc is set equal too, a solution, computed 
by using Fourier expansions, gives 

= U(2-r1)sin()[S(t)(i+cospt)+ cosptsinpt -1 
<p r 1 1-r1 p(1+(1-r,)cospt) 

(42) 

- ( ) ( \ ])•/•tan-I {cr1/2 - r1)1/ 2 tan pt} COS pt]) p1-r1 r12-r1 2 

where oc is set equal to o and 

(43) 

By manipulating (42) and (43) with the relationships 

{ pt} pt co ([r1 ( 2 - r1)] 1i 2 - I )n sin npt tan-' [r1/( 2 - r1)] 112 tan - = - + L :::...._-'-----=-- --, 
2 2 I -r1 n n=• 

(44) 

sinpt 2 ~([r1(2-r1)]112-1)n· t -~-----=----- = - -- L.. :::...._-'-----=-- sm np , 
I +(1-r1) cos pt I -r1n=• 1-r1 

(45) 

(42) is simplified to read 

. [2 tan-• {[r1/(2 -r1)] 1i2 tan p:} 
_ U( 2 - r1) sm () --~-~---,-------"- ( 1 + ( 1 _ r,) 

<p - r1 pr13i2 ( 2 - r1)312 

( I - r1) sin pt] 
cos pt)- ( ) . pr1 2-r1 
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Therefore the position of the streamline is given by 

X=- - tan 1 -- tan-, 2 (u)•/2 
_ {( r, )''2 pt} 

r, {3 2-r, 2 

Usin 0[2 tan-' {(2~'r,)"2tanp:} 
r = -- /2( /2 (1 +(1 -r,) cos pt)-

pr, r,3 2 - r,)3 

1-r,. (1+(1-r,)cospt)] 
-------,:;-smpt-r,'lji U(2-r,)cosO · 

(47) 

Substitutions from (44), (45), and (47) allow (48) to be put into the Eulerian 
form, 

( . X) rilJI tan O(qr,X- 1 -r,) sm qr, - UH cos O 
qr,r = ------------------

1 - (1 -r,) cos qr,X (49) 

where q• = {3/U. This is also the Eulerian solution given by (19) for the case 
where IX = o. Further, the condition requiring the existence of wave solutions, 
o < r, < 2, is also the condition required so that the series involved in the 
Lagrangian solution converge. 

Since the Lagrangian approach yields a set of ordinary differential equations, 
even for the case where the frictional and wind-stress terms are retained, this 
approach is better suited to subsequent numerical solution than is the Eulerian 
approach. Solutions for a range of values of wind and frictional stresses and of 
depth of the step are obtained from the Lagrangian solution, using a small 
analogue computer. An example of one such solution is shown in Fig. 1. 

Properties of the Solutions. Figs. 2 and 3 show the positions of three parallel 
streamlines [as calculated from the Eulerian solutions (19) and (20)] for a 
uniform zonal current flowing over a deepening step and over a plateau, 
respectively. In both cases, the flow pattern beyond the depth variations is 
that of large meanders whose crests are aligned parallel to the steps and whose 
amplitudes change in the downstream direction. The wavelength of these 
meanders is proportional to (H/h) (U/{3) 112 ; for U = 10 cm/sec, H/h = 2 at a 
latitude of 40°, the wavelength is of the order of 1000 km. Little is known 
about the actual barotropic currents in the open ocean, but U = 1 o cm/sec 
can be taken as an upper limit to their magnitude. The baroclinicity of the 
real ocean should lead to a decrease in the wavelength, because here U would 
be replaced by some velocity averaged over the water column and the depth 
ratio would be modified by the density structure of the column. Both of these 
effects should lead to the decrease in wavelength. 
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Figure 1, Transport lines for viscous flow over a shallowing step at 40° N. U = 20 cm/sec, /7 = 
1ocm/sec, H = 1 km, r 1 = 0.5, R = o.75x 10-6sec-1• 

In both cases, as the parameters are varied to approach the limits of 
stable Bow, the amplitudes of the meanders become very large and the assump-
tions involved in the {J approximation are violated. The large wavelengths 
that are obtained confirm the supposition that the single step is a good model 
of a continental slope. This is so because the lateral extent of the slopes, a few 
tens of kilometers, is much smaller than the lateral scale of the meanders. 
In the case of a very oblique incidence in an ocean current on a continental 
slope, this may not hold true, and a more complicated depth profile may be 
required. 

The most striking feature of these solutions is the fact that, for a given 
streamline, the meanders change their amplitude downstream of the depth 
variations, even though the region is one of constant depth and although 
neither friction nor wind stress is included in the model. T his change in am-
plitude is a consequence of the oblique incidence of the init ial Bow on the 
changes in depth. On the {J plane, fluid Bow must be such as to conserve the 
potential vorticity of the water column, (~ + f)/h. 

When the initial Bow moves from the region of depth H to the region of 
depth r 1 H, the Bow must immediately acquire enough relative vorticity so 
that the potential vorticity is held constant. In the case of !he deepening step, 
this relative vorticity must be positive; physically this represents a curvature 
of the streamline toward the north ( northern hemisphere). Then, as the water 
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Figure 2. T ransport lines for zonal flow over a deepening step at 40° N. U = 50 cm/sec, H = l km, 
r1 = 1.2. 

column moves to the north, f increases; hence the relative vorticity decreases. 
Since the velocity is still toward the north at the latitude where the relative 
vorticity falls to zero, the water column continues northward and the stream-
line acquires an increasingly negative curvature; this eventually causes the 
flow to turn southward. In this way the meander pattern is established and 
maintained. 

Since the flow is uniform and infinite, the crests must be aligned parallel to 
the steps. If the step lies in the first quadrant (that is, toward the north and east), 
then the pathlength along a streamline from the point where it crossed the step 

y, 10·• 
(KM.) 

6.0 

-2.0 -.0 
X • 10·, lKHl 

10.0 12.0 14. 0 16.0 18.0 20.0 

F igure 3. Transport lines for zonal flo w over a ridge at 40° N. U = zo cm/sec, H = 4 km, ,, = 
0.7, r 'J. == 1.0. 
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to the first crest is longer than the pathlength from that crest to the latitude 
of the starting point. It is the curvature of the streamline that varies with 
latitude; the direction of the streamline is given by the integral of the curvature 
over the path. Therefore, because the pathlength is shorter in the second half 
of the meander, the streamline will still point in a southerly direction as it 
crosses the latitude where it originally crossed the step. This means that each 
successive trough will be farther to the south. Furthermore, since the mean 
transport must be zonal, each successive crest must be farther to the north. 
In this way the amplitude of the meanders increases downstream. 

By a similar argument, a zonal flow crossing a step in the second quadrant 
will give a meander pattern that decreases in amplitude downstream of the 
steps. Such is the case for negative () in the solutions. If the form of the solu-
tions is examined closely, it is seen that the amplitude of the meanders is con-
stant along lines of constant r. This is most easily seen by calculating the 
K.E. density 

I [ I K.E. = 2eHU ~(1 -(1 -r1) cos qr1X)1-

2q(1 -r1) sin() sin qr1X(1 -(1 -r1) cos qr1X) ( Ycos () + ~) 

2 + r, 
(50) 

+ q2(1-r1)2 sin2 qr1x(rcos()+~r1 

r1 

for the case of a single step. Along lines of constant r, the K.E. density is 
periodic with constant amplitude; therefore, the amplitudes of the meanders 
are also constant along r. 

Fig. I illustrates how these meanders may be modified by wind and frictional 
stresses, which act as sources and sinks of vorticity. The case treated is that of 
a uniform nonzonal flow over a single step. In the initial constant-depth 
region the potential vorticity required for the northward movement of the 
water columns is supplied by the wind stress. The frictional stress can only 
dissipate vorticity in the form of relative vorticity. 

A meander pattern arises through the same mechanism as before; however, 
in this case, friction provides a mechanism for removal of potential vorticity, 
thus allowing the meanders to damp out. The velocity values used in the ex-
ample, U = 20 cm/sec, 17 = 10 cm/sec, are taken to be upper limits of baro-
tropic velocities to be found in the real ocean. The value R = o. 7 5 x I o-6 

sec• corresponds to a vertical eddy viscosity of 200 cm2/sec, a typical value 
for a low-stability region of the ocean. The wavelength of these meanders 
is only slightly changed from its value in the nonviscous case. For smaller values 
of eddy viscosity, the meanders may show a region of initial growth in ampli-
tude to some constant amplitude or to a then-decreasing amplitude. 
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Since the model on which this work is based is but a crude approximation 
of the real ocean, it is dangerous to compare these results with actually observed 
currents. The general shapes of the solutions draw to mind the meander pat-
terns and the deflections of the Gulf Stream as described by Mann (1967), 
Warren (1963), and Fuglister and Worthington (1951), but the wavelengths 
and amplitudes given by our solutions are several times larger than those ob-
served. In the region of the Gulf Stream we are dealing with a stratified 
nonuniform baroclinic and time-dependent Bow for which the Bow must be 
quantitatively different from that given by the model. Nevertheless, it has 
been observed that Gulf Stream meanders increase in amplitude downstream, 
and the model provides a physical explanation for this increase without con-
sideration of the bathymetry away from the slope. 

Large barotropic meanders similar to those predicted by this model may 
occur in the body of the ocean away from the western boundary region as 
currents encounter the midocean ridges. Such patterns may be an important 
part of the dynamics of such regions; however, at present there are no observa-
tions that can be used to confirm or contradict such a supposition. 

Simple bathymetric features are shown to have complicated effects on uni-
form currents. The standing wave patterns that have been obtained show an 
unexpected resemblance to Bows actually observed-in particular, the phe-
nomenon of meanders of increasing amplitude downstream of a single step. 
This resemblance suggests that further investigations of Bows across simple 
bathymetric features, using more complex models, is desirable. 
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