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On the Roles of Vertical Velocity and Eddy 

Conductivity in Maintaining a Thermocline' 

Roy Overstreet and Maurice Rattray, Jr. 

Department of Oceanography 
University of Washington 
Seattle, Washington 

ABSTRACT 

Steady-state solution~ of the vertical heat-balance equation have been obtained for vari-
ous assumed vertical profiles of the vertical component of velocity and eddy conductivity. 
Relationships have been found for the depth and the thickness of the thermocline in terms 
of parameters that characterize the vertical velocity and eddy conductivity. Two of the 
solutions agree with observations in regions having respectively divergent and convergent 
Ekman mass transport. 

1. Introduction. Existing theoretical models of the therrnocline can be placed 
in two broad classifications, namely, (i) localized studies primarily concerned 
with the processes that generate and maintain the mixed surface layer, and 
(ii) large-scale circulation models in which the temperature and velocity fields 
in the permanent thermocline are nonlinearly coupled. 

The vertical models of Munk and Anderson (1948) and Kraus and Rooth 
( 1961 ), representative of the first category, explain many of the features of 
the mixed layer and shallow (seasonal) thermocline. 

Below the Ekman layer, the thermohaline circulation models of the second 
type become appropriate. Here the heat and momentum equations have been 
attacked mainly through the series of similarity solutions obtained by W dander 
(1959), Robinson and Stommel (1959), Stommel and Webster (1962), Robin-
son and Welander (1963), Blandford (1965), and Needler (1967). Most of 
these studies are consistent with Stommel's (1957) hypothesis on thermohaline 
circulation. According to this hypothesis, there is a slow upwelling of deep 
water over the major portions of the oceans to compensate for localized high-
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latitude sinking, and the permanent thermocline is primarily maintained by 
the upward advection of cold water, which balances the downward conduction 
of heat from surface insolation. 

Questions remain on the relationship of both kinds of models to oceanic 
conditions, and inversely, to what can be determined from observed oceanic 
conditions about the processes necessary for their maintenance. This paper 
considers the simplest possible model that can shed some light on these 
questions. 

From previous studies on the thermohaline circulation, it appears that the 
terms in the heat-balance equation representing the vertical advection and 
conduction of heat are the most important for determining the basic vertical 
temperature structure. Munk (1966) has recently shown that this simple ver-
tical model accounts for the distribution of properties below I ooo m in the 
Pacific Ocean. The basic features of the thermohaline models are retained in 
the present study. That is, an upward flow is assumed at great depth, and a 
vertical velocity at the bottom of the Ekman layer is assumed proportional to 
the curl of the wind stress. 

The effects of wind-induced mixing present in models of the mixed layer 
are introduced into this study by taking the eddy conductivity to be a function 
of depth. It is realized that the eddy conductivity depends on wind, waves, and 
stratification and that this dependence necessarily would be included in 
complete model. The virtue of this simple model is that it avoids the above 
complications and yet shows the essential processes controlling the vertical 
distribution of temperature in certain regions of the ocean. 

2. Formulation of the Prohlem. The steady-state equation expressmg the 
conservation of heat is given by 

where T is the time-mean temperature; x, y are the horizontal coordinates, 
and z is the vertical coordinate measured positively downward; u, v, w are 
the velocity components in the x, y, z directions, respectively; and k is the 
eddy coefficient for the indicated direction. The present model is governed by 
the following approximate equation, which results from the neglect of hori-
zontal transfer processes: 

!!_ (kz dT)-w dT = o. 
dz dz dz 

Although previous studies confirm the validity of (2) in describing the gross 
features of the vertical temperature distribution, it is interesting and enlight-
ening to make order-of-magnitude estimates of the three advection terms in 
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(1). In the subtropical and equatorial North Atlantic, away from meridio~al 
boundaries, characteristic values of the temperature gradients and velocity 
components are: 

oT/dx~ -o.6 X 10-8 °C cm-•, oT/oy~ - 3 X 10-8 0 c cm-•, 

0T/dz.~-4x 10-4 °C cm-•, 

u~-1ocmsec-•, v~1 cm sec-•, 

lwl~s x 10-5 cm sec'. 

The three advection terms are then: 

u(oT/dx)~6 X 10-8 °C sec', 

v(oT/oy)~ - 3 X 10-8 °C sec', lw(oT/dz.) 1~2 X 10-8 °C sec-•. 

Although these figures are crude, it is apparent that, individually, neither 
u(oT/ox) nor v(oT/oy) is negligible compared with w(oT/oz.). Thus the 
condition for neglecting the horizontal terms is that they approximately cancel 
each other. Since these terms have been shown to be of the same order of 
magnitude and of opposite signs, this condition is possible. Ichiye (1958) has 
shown that, with baroclinic geostrophic Row, these terms exactly cancel when 
the density distribution is expressible in the form 

where 
e = F(x,y)eo(z.)+e,(z.)+e.(x,y), 

(oF/ox) (oe2/oy) - (oF/oy) (oe2/dx) = o. 

Classically, this statement is embodied in the "law of parallel fields" (Defant 
1961: 477). 

In the equation of continuity, 

OU av ow 
-+-+ - =O 
ax a1 az. ' (3) 

however, the corresponding horizontal terms do not cancel. It is essential in 
thermocline models that ow/oz. * o. 

The horizontal diffusion is neglected here, as in most studies, purely on the 
grounds of the resulting simplicity. Our poor knowledge of the magnitude of 
the horizontal eddy coefficient and of the difficulty of computing curvatures 
in the horizontal temperature field make it difficult even to estimate the order 
of magnitude of these terms. The results of previous studies suggest, however, 
that the vertical term dominates the diffusion process. Note that, since the 
horizontal diffusion terms are not coupled with the mean velocity field, as are 
the advection terms, it is immaterial whether the former are neglected on the 
basis of being individually small or of canceling each other. 
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There is an alternate approach for obtaining a vertical heat equation having 
a different form from (2). Although not used in this paper, this alternate 
formulation merits some comment. If (3) is substituted into ( 1) and the resulting 
equation is averaged over a sufficiently large horizontal domain L 2, then, to 
order 1/ L, 

d (-dT) d -
dz. k dz. - dz. (wT) = o, (4) 

where k = kz -[w'T'/(dT/dz.)]; the overbar denotes the spatial average, and 
the prime denotes the deviation from this average. Since the vertical velocity 
is included in the differentiation, (4) can be integrated once to give 

-dT -
- k dz. + wT = constant. 

Here the horizontal terms have been removed, without assumptions, through 
a proper averaging process. The result, however, is a nondivergent mean 
vertical heat Hux. If the usual conditions are imposed-that the vertical 
velocity is zero at the surface and that the bottom is level and nonconducting-
then the horizontal averaging area must be sufficiently large (oceanic dimen-
sions) so that the mean heat Hux at the surface is zero. This result, although 
physically correct, does not allow a description of local thermoclines. Hence 
the formulation given by (2), where the local heat Hux is horiwntally divergent, 
is used in place of (4).2 

The boundary conditions to be satisfied by (2) are: 

T(o) = Ts, T(H) = TB, (5) 

where Ts and TB are, respectively, the temperatures at the upper (z. = o) 
and lower (z. = H) boundaries of the region of interest. 

It is convenient to express (2) and (5) in the normalized dimensionless form 

where 

!!_ (k d0)- wHd0 = o 
d'YJ d'YJ d'YJ ' 

0(0)=1, 0(1)=0, 

z. 
'YJ= H' k = kz. 

(6) 

(7) 

(8) 

2. If the horizontal diffusion terms are neglected in (I), then the vertical heat flux must be hori-
zontally divergent to prevent conduction into the bottom. Hence, (8/8 x) (u T) + (8/8 y (v T) cf= o. 
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The solution of (6) is 

("1 1 (C"'' wH ") , 0 = a J
0
k exp t T drJ dn + b, (9) 

where the constants a and b, determined by (7), are understood to be functions 
of the horizontal position. 

3. The Model. The forms of temperature profiles maintained by vertical 
processes fall into two natural classifications, depending upon whether the 
Ekman transport is (i) divergent or (ii) convergent; i.e., whether the flow 
through the bottom of the Ekman layer is advecting cold water upward or 
warm water downward. 

Studies by Stommel (1956, 1964: 53-58) and others indicate that, in the 
open ocean, below the Ekman layer, the vertical component of velocity is 
generally in the range 10-S-10-4 cm sec'. Wyrtki (1961), using a vertical 
model somewhat more restrictive than the present one, estimated the ratio 
w/k to be of the order 10-4cm-1 within the Ekman layer and 10-Scm-1 in 
the thermocline region below. Using vertical models for both temperature and 
carbon-14, Munk (1966) obtained separate estimates for (constant) values of 
wand k below 1000 min the Pacific. His values (w~io-Scm sec-•, k~I cm1 

sec') are consistent with those of Wyrtki. For our model, magnitudes of w 
and k have been chosen to include the above range. The direction of the vertical 
motion at the bottom of the Ekman layer is determined by the curl of the wind 
stress while that at depth is assumed to be upward. 

(i) THE DIVERGENT EKMAN TRANSPORT. In this case, the vertical motion 
is assumed to be upward throughout the depth range of interest. For sim-
plicity, we assume that w and k are constant with depth. 

w = -Wo = constant, k = ko = constant. (10) 

These quantities may be considered to represent mean values over the water 
column. 

Substitution of (10) into (9) gives 

(II) 

where P = woH/ko is a turbulent Peclet number representing the ratio of 
advective to conductive heat transfer. 

Fig. 1 shows_ the effect of variations of the Peclet number upon the temper-
ature profile given by (II) . The value H = I 500 m is assumed throughout 
the model. The values of P chosen for Fig. 1 then include the range of w/k 
that is likely to occur in the ocean. 
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Figure 1. Form of the vertical profile of temperature for variws values of the Peclet number P. 
Divergent Ekman transport. 

It is convenient to define the thermocline thickness «5 as the depth that 
corresponds to one e-folding of the maximum temperature gradient. From 
(11) it is seen that this thickness corresponds to the length scale k0/w0 • 

As an indication of the conditions under which the mean-velocity approxi-
mation is adequate, comparison is made between the solutions that correspond 
to two dissimilar velocity profiles having the same mean value. For exemplary 
purposes, the following distributions are assumed: 

z 
D 

w1 = - 2 We (-;---)2 , 

- +1 D 

_z 
w11 = - 2lw1 1 H' k = ko = constant, (12) 
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where wI represents the depth-mean value of Wr, and We may be interpreted 
as the magnitude of the velocity at the bottom of the Ekman layer (z = D). 
Profiles of wI and Wn are shown in Fig. 2 for D = loo m and H = 1500 m. 

The solution corresponding to WI is 

where P1 = weD/2ko is the Peclet number for the Ekman layer. 
A limited, but physically realistic, set of values of Pi permits exact integra-

tion of (13). For example, if we take we/ko = 10-4cm-1 and D = 100 m, 
then P1 = 1/2, for which (13) becomes 

The solution obtained from Wn is 

0 = 1 _ erf (VPrJ) 
II erf (VP) ' 

where P = wIH/ko is the Peclet number corresponding to the average velocity 
wI. In the present example, P = 5.42. For an eddy coefficient of unity, it 
follows that wI = 2.4 x 1 o-5 cm sec-1 • 

Fig. 3 shows the vertical temperature profiles given by ( I 4) and ( 15), 
respectively. Also shown is the profile for ( 11 ), where the velocity is assumed 
constant and equal to the mean value, w = wI = wII . The mean-value ap-
proximation correctly represents the form of the temperature profiles for wI 
and wII but does not adequately describe the details of either. Obviously, as 
the scale of the vertical velocity becomes very small, the conductive state is 
approached, and any differences in velocity distribution can produce only 
small effects upon the temperature field. 

The distributional effects of velocity may be discussed on a semiquantitative 
basis by means of a heat-flux ratio R, which represents the ratio of the total 
advective heat transfer above a given depth to the diffusive heat flux at the 
surface. Under steady-state conditions and with the assumption of a constant 
eddy coefficient, the flux ratio is given by 
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Figure 2 . Profiles of vertical velocity, wI and w11, having the same depth-mean value w. Diver-
gent Ekman transport. 

kdT d0 
dz drJ 

R=I-4[T = I-~0 . 
k- -

dz z=o drJ 'i = o 

Fig. 4 shows the vertical distribution of the flux ratio corresponding to each 
of the three temperature profiles in Fig. 3. For discussion purposes, we pro-
pose that the form of R suggests that the water column can be separated into 
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Figure 3. Form of the vertical profile of temperature corresponding to w 1, w 1I' and w, for P = 5.4-z 
and P1 = 0-5- Divergent Ekman transport. 

a conductive regime (R < 1/2) overlying an advective regime (R > 1/2). The 
conductive regime penetrates to correspondingly greater depths as the given 
mearl velocity becomes less heavily weighted near the surface. 

(ii) THE CoNVERGENT EKMAN TRANSPORT. In this case, the following 
distributions of velocity and eddy coefficient are assumed: 

z 

l w, = We D' o:$.z:S.D; 

h-z 
D:$.z:S.h; W2 =Weh-D' 

(17) 
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Figure 4. Form of the heat-flux ratio corresponding to wl' wII' and w, for fi = 5.42 and P1 = 0.5. 
Divergent Ekman transport. 

k = ko = constant; J 

here the numerical subscripts on w refer to the indicated depth ranges. Since 
the velocity changes signs at z = h, it is generally not permissible to use a 
mean velocity for the present model. 

Equations (2) and (17) yield solutions for each of the three layers subject 
to the boundary and matching conditions: 
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T,(o) = Ts; 

T,(D) = T,(D), 

The complete solutions for normalized temperature are 

where 

- _2_ -(P,+P,) (P,)'l2 
c, - (n)•l2 e LI , Ci = I' 

w (P )'12 
c4 = c6 = _e erf (P3)•1• -+-, 

WH LJ 

Dawson's integral, rp(P,•l2 -z/D), is defined by 

( P,)•I• 
C3 = - LI-, 

[27,2 

} (20) 

P1 = weD/2ko, P, = we(h-D)/2ko, P3 = wH(H -h)/2ko are the Peclet 
numbers for the three layers and LI is given by 

For a given total depth and Ekman-layer thickness, the temperature dis-
tribution given by (19) is characterized by the three Peclet numbers P,, P,, 
and P3• An equivalent but more convenient characterization is given by the 
quantities h, (we/ko)-1 , and (wH/ko)-1 ; i.e., the depth at which the vertical 
velocity passes through zero and the relative magnitudes of the length scales 
above and below this depth. 

Fig. 5 shows temperature profiles for h = 800 m and various choices of 
we/ko and wH/ko. The value D = 100 m has been chosen for this and for 
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Figure 5. Form of the vertical profile of temperature for various values of w,/ko and wn/ko. at /, 
800 m. Convergent Ekman transport. 

subsequent plots. The curves have an inflection point (thermocline) that 
coincides with the depth at which the vertical velocity is zero, a result neces-
sitated by (2) and by the assumption of a constant eddy coefficient. For a 
particular we/ko, the portion of the profile below the thermocline exhibits a 
dependence upon wn/ko that is similar to that for a divergent Ekman layer-
stronger upward flow producing a colder bottom layer and thinner thermocline. 
For a given wn/ko, an increasing w6/ko results in a warmer and more uniform 
upper layer and a thinner thermocline. 

Fig. 6 shows temperature profiles corresponding to given values of We/ko 
and wn/ko (we/ko = wH/ko = 10-4cm- ') for various arbitrary choices of h . 

Defining the thermocline thickness 15 as before, it is apparent in the present 
case that the thickness must be measured in both directions from z = h. It 
follows from (19) that 
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Figure 6. Form of the vertical profile of temperature for various values of h, at we/Ro= w9 /ko = 
10-4 cm-•. Convergent Ekman transport. 

(21) 

From (21), the symmetry of the thermocline about z = h depends upon the 
relative magnitudes of We and w9 • For example, the values we/ko = w9 /ko = 
10-4cm-• and h = 800 m result in a symmetric thermocline whose depth is 
800 m and whose thickness is 7 50 m. 

(iii) THE VARIABLE EDDY COEFFICIENT OF CONDUCTIVITY. In the two 
preceding sections it is seen that, for a constant eddy coefficient, the thermo-
dine occurs wherever the vertical velocity is zero. If the eddy coefficient is 
allowed to be depth dependent, it is apparent from (2) that a more general 
criterion for the thermocline depth d is given by the relationship 
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dk 
dz-w=o at z = d. (22) 

The application of condition (22) is simpler in principle than in practice, since 
the mechanisms contributing to the depth dependence of k are not well known. 
One approach is to allow the eddy coefficient to be a function of the Richardson 
number of the mean flow. Eq. (22) then becomes 

dk dRi 
dRi dz -w = o at z = d, 

where Riis the Richardson number. It then remains to formulate the functional 
dependence k(Ri) (for one such formulation, see Munk and Anderson 1948) 
and to determine dRi/dz. Though initially attractive, thjs approach does not 
appear to be adequate. It is felt that energy sources external to the mean flow, 
such as wind and surface waves and the shears associated with internal waves, 
are sufficiently important in determining the vertical distribution of the eddy 
coefficient so that .the Richardson number of the mean flow might have a 
relatively minor effect. However, the exact mechanisms whereby external 
energy sources contribute to the mixing process, particularly in deep water, 
are speculative (e.g., Munk 1966). Hence a clear-cut method for determining 
the vertical distribution of k is not available. 

Nevertheless, the role of a variable eddy coefficient in generating a thermo-
dine can be illustrated by means of a simple example in which we assume an 
a priori depth dependence for the eddy coefficient. From (22), it is seen that 
a subsurface thermocline can be maintained in a divergent Ekman layer (w < o 
for -all z > o) only if the eddy coefficient decreases with depth within the 
thermocline region. Such a decrease is physically reasonable, since the upper 
part of the region involved is under the direct influence of wind mixing. For 
illustrative purposes, the following distributions are assumed: 

w = -Wo = constant, k = ko+k,e-zls. (23) 

Since only the depth dependence of the eddy coefficient is being considered, 
the vertical velocity may be assumed to be constant without loss of generality. 

Substitution of (23) into (9) and use of the original depth variable give 

Fig. 7 shows temperature profiles corresponding to various values of the 
reciprocal attenuation coefficient s. The values of the remaining parameters 
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Figure 7. Form of the vertical profile of temperature for various values of the attenuation parameter 
s, for characteristic values of eddy conductivity ko = 1 cm• sec-1 and k1 = 100 cm• sec-•, 
and vertical velocity w 0 = 10-4 cm sec-1. Divergent Ekman transport. 

have been arbitrarily chosen to be ko = 1 cm2 sec-•, k1 = 100 cm2 sec-•, and 
Wo = 1 o-4 cm sec-•. The profile corresponding to s = o represents the case 
of a constant eddy coefficient and is similar to those in Fig. I. For s > o, the 
curves are characterized by the presence of a mixed layer that thickens as s is 
increased. The thermocline depth, determined by (22) and (24), is indicated 
on each of the profiles in Fig. 7. 

4. Comparison with Observations. To demonstrate the applicability of the 
model to the real ocean, comparison is made :,yith data given by Austin (1957) 
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Figure 8. Vertical profile of temperature in the equatorial Pacific Ocean (RV HUGH M. SMITH, 
Cruise 35, Station 122). Divergent Ekman transport. 

for the equatorial Pacific Ocean and by Fuglister (1960) for the central 
Sargasso Sea. 

Stommel (1964: 53-58) has confirmed that these two areas have (i) diver-
gent and (ii) convergent Ekman transports, respectively. 

(i) DIVERGENT EKMAN TRANSPORT. Comparison of the general shape of 
Austin's (1957) observed temperature profile with the profiles in Fig. 2 

suggests that the vertical velocity decreases with depth below the Ekman 
layer. In the light of this observation, the velocity profile w1 of ( 12) has been 
chosen for the model. The eddy coefficient is assumed to be constant. For 
we/ko = 1.25 x 10-4 cm-• and D = 40 m, P, = 0.25; the solution given by 
( 1 3) becomes 

(25) 
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Figure 9. Vertical profile of temperature in the Sargasso Sea (RV ATLANTIS, Cruise 299, Station 
5448). Convergent Ekman transport. 

Below the wind-mixed layer, the profile calculated from (25) is in good agree-
ment with the observed data (Fig. 8). 

The small value of D, assumed for the model, and the relatively rapid 
decrease in the vertical velocity below this depth, dictated by the form of w1 

in (12), are consistent with the suggestion of Cromwell (1953, 1958) that the 
upwelling in the equatorial Pacific is a shallow process. 

(ii) CONVERGENT EKMAN TRANSPORT. In Fuglister's (1960) data, the 
position of the inflection point and the slight asymmetry of the thermocline 
thickness about this point suggest that h = 650 m and that (we/ko) > (wn/ko), 
Fig. 9 shows that the profile calculated from (19) for w6/ko = 1.25 x 10- 4cm-•, 
wn/ko = o.8 x 10-4cm- •, and h = 650 m agrees well with the data in the 
range 200-1500 m. 

Although available data indicate a strong convergence of the Ekman trans-
port southward and eastward of the center of the Sargasso Sea, observed tem-
perature distributions show that the thermocline depth decreases while the 
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inflection point becomes less pronounced in these directions. These observa-
tions reflect the well-defined geostrophic currents that occur in these regions 
and are consistent with the previously discussed limitations that horizontal 
advection cannot, in general, be neglected. Hence, a purely vertical model 
for a convergent Ekman layer becomes less applicable away from the centers 
of the subtropical gyres. 

5. Conclusions. A model of the permanent thermocline has been developed 
from a simplified heat-balance equation in which the horizontal advection and 
conduction of heat have been neglected. Steady-state solutions describing the 
general features of the temperature distributions associated with both divergent 
and· convergent Ekman layers have been obtained for various distributions of 
vertical velocity and eddy conductivity. 

Given a constant eddy coefficient, it is concluded that deep thermoclines 
can occur only in regions of Ekman convergence. The thermocline is located 
at the depth where the vertical velocity is zero, and its thickness depends upon 
the relative magnitudes of advective and conductive heat fluxes above and 
below this depth. 

For divergent Ekman transport, a mixed layer can be modeled with an 
eddy coefficient that decreases with depth, in which case the thermocline is 
located at the point where the gradient of the eddy coefficient is equal to the 
vertical velocity. Hence, a variable eddy coefficient has an apparent advec-
tive effect. 

The model for a convergent Ekman layer is applicable only near the centers 
of subtropical gyres. The Ekman transport may still be strongly convergent in 
the peripheral circulation around the gyres, but the assumption of negligible 
horizontal advection appears to be invalid in these regions. 
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