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The Ekman Vertical Velocity tn an Enclosed 

{3-Plane Ocean' 

W . Lawrence Gates 

TJ,e Rand Corporation 
Santa Monica, California 

ABSTRACT 

The vertical flux beneath the surface boundary layer is determined by balancing the 
divergence induced in this layer by the prescribed wind stress and surface temperature with 
the divergence of an assumed geostrophic interior ftow. In this manner the equilibrium 
surface height over an enclosed basin is formulated as a boundary-value problem, the solu-
tion of which leads directly to the Ekman vertical velocity. The corresponding vertical 
velocity at the top of the boundary layer over a level bottom is also determined. Under 
idealized conditions, the solutions for Ekman vertical velocity (dependent upon wind stress 
and vertical eddy viscosity) appear to be reasonable approximations to oceanic upwelling, 
particularly when the surface thermal forcing is considered; but solutions for more realistic 
conditions are needed to confirm this. For a specified zonal surface stress and temperature, 
intense vertical velocity (with a magnitude of the order of ,o-3cm sec-•) is confined to 
within about roo km of the western shore of the basin. In further studies of the circulation 
in the ocean's interior, the formulation may be of use in the prescription of boundary values 
on the vertical velocity. 

1. Introduction. The action of surface wind stress on an underlying ocean 
has been extensively studied since the pioneering investigation by Ekman 
(1905). The characteristic depth of penetration by wind-induced motion 
(Ekman depth) depends upon both the vertical eddy diffusion and the Coriolis 
parameter; the net transport in deep water is normal to the imposed surface 
stress, with the horizontal velocity displaying the well-known spiral structure. 
The modification of these features in shallow water and near coastlines were 
also explored by Ekman, who introduced a bottom boundary layer whose 
transport complements that of the surface layer. In addition to describing the 
horizontal transport in terms of the wind stress, the Ekman theory provides 
an estimate of the· net vertical fl.ux required beneath the surface boundary 
layer by mass continuity. This is the so-called Ekman vertical velocity, 
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I 
wE = - fcurlznw, 

f!o 
(1) 

where f!o is the (uniform) density, f is the (constant) Coriolis parameter, and 
curlz :n;w is the local vertical (z) component of the curl of the wind-stress vector, 
:n;w. Downward motion is thus associated with convergence in the surface layer. 

The application of the Ekman theory on an oceanic scale, however, has 
been restricted by neglect of the latitudinal variation in the Coriolis parameter 
or f3 effect as well as by its formulation as a local problem rather than a boundary-
value problem. The importance of the f3 effect was first pointed out by Sver-
drup (1947), when he noted that the divergence of the interior Row is capable 
of compensating that of the wind-induced motions in the surface layer. (A 
bottom boundary layer therefore need not be introduced for this purpose.) 
This led to the familiar "wind-stress curl" relationship, 

8'1jJ I 
13

8
- = - curlznw, 

X f!o 
(2) 

where a"P/ax is the eastward derivative of the (geostrophic) streamfunction, 
1P (for the vertically integrated transport), and where f3 = 8f/8y is the north-
ward derivative off This relationship gives a good approximation to the average 
large-scale meridional currents in the open ocean, but it was not until this 
relationship was reformulated as a boundary-value problem, with the addition 
of frictional effects, that a satisfactory representation of the complete circulation 
in a basin was obtained, including the characteristic westward intensification 
(Stommel 1948). A relationship essentially equivalent to ( 1) and ( 2) has been 
applied by Yoshida and Mao (1957) to large-scale upwelling, but the important 
effects of coastal boundaries were not considered. 

The first purpose of this paper is to extend the relationship (I) to include 
the f3 effect in a formulation applicable to an enclosed ocean. The second 
purpose is to examine the modifications of this Ekman vertical velocity in-
troduced by a prescribed temperature field (thermal forcing) at the surface. 
Both of these effects have recently been touched upon by Robinson (1965), 
and his approach to the problem will form a convenient framework for the 
analysis. 

2 . Basic Equations and Boundary-layer Solutions for a Homogeneous Ocean. 
Assuming steady motion and neglecting both inertial and lateral viscous effects 
in a homogeneous ocean, we write the equations of motion and continuity for 
the boundary layer, 

(3) 
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OU av OW 
-+-+- = O ax ay oz ' 

IOI 

(4) 

(5) 

where p is pressure, u, v, and ware the velocity components along the east-
ward (x), northward (y), and upward (z) axes, respectively, Av is the vertical 
eddy diffusivity (assumed constant), (! 0 is the (uniform) density, and f = / 0 + {Jy 
is the Coriolis parameter on the /J plane, with both / 0 and fJ considered constant. 
If z =oat the (level) bottom of the ocean of depth H, the boundary conditions 
accompanying (3) to (5) are 

U = V = W = 0 at Z = 0, (6) 
and 

(7) 

where r: and•: are the components of the tangenti.al surface stress. In the 
interior, i.e., between the upper and lower boundary layers, the effects of 
vertical diffusion are considered negligible, and (3) and (4) reduce to statements 
of geostrophic flow independent of depth, 

(8) 

(9) 

but the continuity equation (5) implies a linear variation in w over (interior) 
depth 

(1 o) 

where W = W(x,y) is an arbitrary function to be determined. 
The solutions for u and v within the boundary layers are readily obtained 

and, following Robinson (1965), they are written: 

u = e-C (a sin I;+ b cos I;), 

v = e-C (a cos l; -bsin I;), 

(11) 

(12) 

where I; is a nondimensional boundary-layer coordinate defined below. We 
define the characteristic thickness E of an Ekman boundary layer as 
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Z=H ------------ r, = o 
Surface boundary loyer 

Z = H-E ------------ f1= 1 

Interior (geostrophic) 

t 
Z=E ------------f0-1 

Bottom boundary loyer t 
z fo 

Figure 1. Boundary-layer identification and coordinate11. 

E= -- ' (2Av)''2 

f 

which2 decreases with latitude on the fl plane with the assumption of uniform 
Av. In the surface boundary layer, say between z = H - E and z = H, we have 

so that C1 increases from o to I downward through the boundary layer, as 
sketched in Fig. I. In this case the boundary condition (7) for u and v gives 

a= (Efe0t'(r:--r;), 

b = (Efeot'(-r:+-r;). 

In the bottom boundary layer, between z = o and z = E (assuming Av to 
be the same as in the surface layer), we have 

so that C0 increases from o to I upward through the bottom boundary layer. 
Here the boundary condition (6) requires that u(o) = -u1 and v(o) = -v1 , 

g1v10g 

- (f )_J)p 
a - - f!o ox' 

2 . This thidcness is the depth at which the speed is reduced by the factor ,- 1 and is :n - 1 times 
the conventional E.kman depth. 
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b - (f )_JJp 
- eo iJy . 

3. Determination of the //ertical //elocity. Following Robinson (1965), we 
now find the vertical velocity at the edges of the boundary layers by integra-
tion of the continuity equation, using the solutions (11) and (12) for u and v 
and applying the boundary condition w = o from (6) and (7). Hence, we obtain 

(20) 

I (nw) eo curlz 1 
and 

~
8 (ou av) w(C =l)=w = -+- dz 

0 0 0 ax a y 

~ _£ [·,:r _ 1!_ (a p + a p)] 
- 2/ eo p 2/ ax iJy I (21) 

to the accuracy of the approximation that the depth of the boundary 
layers is small compared with the total depth of the ocean. On this same 
assumption we write, from ( 1 o ), 

and 

{JH op 
w1 (z = H - E) w1 (z = H) = + W, 

J eoux 

w1 (z = E) '.:'.,!_ w1 (z = o) = W, 

(22) 

since the interior vertical velocity w1 changes relatively slowly in the vertical. 
We now equate the w1 of (22) and (23) to the w of (20) and (21), i.e., we 
require a matching of the boundary layer and interior solutions. Thus 
we find that 

and 

(25) 

These results are equivalent to those of Robinson (1965). 
Equations (24) and (25) are now regarded as two independent relationships 

for p(x,y) and W(x,y), and they may therefore serve to determine the interior 
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velocity distribution [(8) to (10)) in terms of the surface wind stress. Eliminating 
first W between (24) and (25), we have 

Erl2p+~(2H-~)op _{3Eop = 2eurlznw+ 2{3-r':_ (26) 
/ 2 ax 2/ oy I 

This determines the equilibrium pressure in terms of the wind-stress distribu-
tion and it explicitly displays the {3 effects. The presence of the terms in E 
constitutes a generalization of the Sverdrup relationship (2). Were {3 = o, 
the pressure would be given by the Poisson equation 

2 
'v' p = E curlz nw. (27) 

This relationship, which was found by Ekman (1923) for the case of a deep 
ocean, has been extended by Welander (1957) to the case of shallow water. 
With {3 = o, the vertical velocity at the base of the surface-boundary layer is 
given by 

I 
w, = W = -J. curlznw, 

f!o o 

which is in agreement with (1); the interior vertical velocity (10) is uniform 
over depth, i.e., wI = Wo = w, = W. 

Returning to (24) and (25) and eliminating p, we have 

aw - _!__ [vi - (_!_ + ~)] [ /" curlz (nw)- T': _/2 f!o W] = o 
ox 2/eo / ox oy {3H f 2H {3H ' 

or, expanding and writing the {3 terms explicitly, 

E'v W+ - 2H- - -+-- -- +- W=-'v curlznw+-2 /3( E)aw 7 {3EfJW E/32 E 2 {3E 
f 2 ax 2/ oy F e0f F eo 

This equation serves to determine the function W(x,y) = w0 in terms of the 
wind stress. In the case of {3 = o, all terms except the first ones on the left-
hand and right-hand sides vanish, and we recover (28). 

Note that we cannot solve both (26) and (29) for p and W with independent 
prescriptions oflateral-boundary conditions, since the specification of boundary 
values for, say, p and the resultant pressure solution would presumably deter-
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mine the solution as well as the boundary values for W through either (24) or 
(25). Which equation we solve is thus a matter of convenience, although the 
specification of boundary conditions is easier to justify physically in the case 
of (26). Here the condition p = constant corresponds to zero geostrophic 
flow normal to the lateral boundaries of the interior; this is a convenient 
assumption for the illustrative solutions shown below. Note, however, that 
this is not necessarily the correct boundary condition at the shore, and some 
modification of this constraint is discussed in§ 7. 

4. Solutions for a Simplified Case. The solution of (26) for the pressure 
distribution determines the interior horizontal flow through (8) and (9); and 
through (24) or (25) it permits determination of the vertical velocity Wat 
the top of the bottom boundary layer. The interior vertical velocity is then 
found from ( 1 o ). To illustrate the character of these solutions, consider the 
surface-stress field, 

•: = -Tcos (7) 
•: = o, l 

where L is the width of an assumed square ocean and T is the amplitude of 
the zonal stress. Consistent with the approximation E < < H, we neglect both 
terms in {JE on the left-hand side of ( 26 ), and, in addition, we neglect the term 
in fJ on the right-hand side. The latter approximation is valid where curlz 
nW)) pf-'•:, as is the case over most of the basin, especially in the midlati-
tudinal zone of maximum stress curl; however, this approximation breaks 
down near the northern and southern boundaries in the present example. 
With these simplifications, (26) is written 

where 

and 

2{JH 
y=--

Ef 

P = 2Tn 
EL. 

(32) 

(33) 

The requirement of zero geostrophic flow normal to the lateral boundary 
of the interior leads to the boundary condition p = Po = constant on x = o, 
L and y = o, L. Regarding y and P as constant, the solution of (31) is then 
written as 
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Figure 2.. The distribution of pressure p-Po in mb in a homogeneous ocean for a zonal wind streos 
Ttoz = - T cos (11,y/L), with T = 2. dynes cm-•, L = 4000 km. The maximum p-p0 

is 2.4.9 mb at x/L = 0.0195, y/L = 0.5 . 

where 

and 
a, = 1 - a,, 

y (Y' :ri•)•I• b,, 2 = - 2 ± 4 + Li . 

(34) 

(35) 

(36) 

(37) 

This solution is analogous to that first given by Stommel (1948) for the steady 
wind-driven circulation in a rectangular ocean with bottom friction; (31) is 
structurally similar to the vorticity equation in this case, and the solution (34) 
displays the same pronounced zonal asymmetry that is familiar from Stommel's 
streamfunction solutions. The constant po may be determined from the re-

LL 
quirement of water mass conservation, (ff p-p0] dxdy = o). For T = 2 

00 

dynes cm-2 , L = 4000 km, H = 4 km,/ and /3 at 45°N, and Av = 15ocm2 

sec-1, we find E = 17.0 m, y = 7.40 x 10-1 cm-1, and P = 1.84 x 10-11 dyne 
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Figure 3. The distribution of vertical velocity w 0 = W in 10-4 cm sec-• at· the top of the bottom 

boundary layer in a homogeneous ocean subject to a zonal surface wind stress. The value 
is zero on the lines y/ L = o, y/ L = I , and x/ L = 0.02 I 7; maximum upwelling of 2.07 x 
ro-4cm sec-• occurs at x/L = r,y/L = 0.5. Downward motion is confined to a narrow 
zone along the western wall, details of which are shown in Fig. 4. 

cm-4. The solution (34) under these condition, shown in Fig. 2, displays a 
maximum pressure difference of about 25 mb near the western shore. As noted 
earlier, Fig. 2 serves as a streamline representation of the horizontal geostrophic 
interior motion between the boundary layers. 

With p-p0 now determined, we find from (22) the vertical velocity w, 
at the base of the surface boundary layer, once the distribution of the vertical 
velocity Wat the top of the bottom boundary layer has been obtained. Returning 
to (25), therefore, and making use of (31) with the approximation E«H, 
we have 

1 pH op 
W = -curlznw----, 

!!of eofiox 

which, with the solution (34) and the stress field (30), becomes 

= - - - sin - I - ---- a, , e ' + a2 2 e a • W Tn . (ny) [ 2 {JHL 2 
( h II z h II z)] 

Lfe0 L /Eni (39) 
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.020 .025 
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Figure 4. Detail of the distribution of vertical velocity Win 10-4 cm sec-1 in the region of sinking 
motion near the western boundary of Fig. 3. The maximum downward motion is - 1132 x 
10-4 cm sec-• at x/L = o, y/L = 0.5. Note the distortion of the x/L scale. 

For the same constants used previously, this solution is shown in Figs. 3 and 4. 
The presence of fJ has here produced an intense sinking motion near' the west-
ern boundary (with a maximum value of I I 32 x 10-4 cm sec') while a rel-
atively weak rising motion occurs over most of the basin at this near-bottom 
level. 

From (38) and (22) we find that the vertical velocity at the base of the 
surface boundary layer is simply 

For the stress (30 ), this distribution of W1, shown in Fig. 5, represents only 
the convergence of the surface Ekman transport. In view of (Io), this result 
implies that neglect of the variation of/ in the last term of (24) is consistent 
with the neglect of the last term in the pressure equation (26); this returns 
us to the Ekman relationship (1). To this approximation, therefore, the vertical 
velocity beneath the surface layer is unaffected in the present model by the 
presence of lateral boundaries, on which both horizontal and vertical slip is 
permitted. 
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Figure 5. The distribution of vertical velocity w 1 in rn-4 cm sec-• at the base of the surface boundary 
layer in a homogeneous ocean subject to a zonal wind stress Tw:,; = - T cos (ny/L), with 
T = z dynes cm-2 and L = 4000 km. The vertical motion is given by w 1 = -(Tn/Lf(!o) 
sin (ny/L), with a maximum of - 1.57 x 10-4 cm sec-1 at y/L = 0.5. 

According to ( 1 o ), the interior vertical velocity at intermediate levels 
( E 5e z 5e H - E) is given by a linear interpolation between the data in Figs. 3, 
4, and 5. We may note that both the /J term and the W term in (10) are of 
comparable size over most of the interior, while the /J-induced sinking motion 
near the western shore is dominant immediately below the surface layer. In 
the absence of the {J term (and hence for a nondivergent interior geostrophic 
motion), the vertical velocity would be that given for W1 (Fig. 5) at all levels. 
This modification of the surface wind-induced divergence by the divergence 
of the interior motion is in the manner first suggested by Stommel (1956). 

5. The Case of a Nonhomogeneous Ocean. The preceding analysis may be 
extended to include the effects of a surface temperature distribution on the 
Ekman vertical velocity. The prescribed temperature field is assumed to be 
maintained by surface-heat exchanges and to extend through the depth of the 
ocean in a manner consistent with the large-scale distribution of interior 
velocity. The simplest realistic assumption is that the magnitude of the horizon-
tal temperature gradient decreases linearly with depth, from a maximum at 
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the surface (z = H) to zero at the bottom (z = o), while its direction remains 
the same. Thus, we write 

oT z(oT) 
ox,oy = H ox,oy 0 ' 

where the subscript o denotes the surface value. The average horizontal 
temperature gradient in the oceans shows a more rapid decrease with depth 
near the surface than that given by (41); and it approaches zero by midocean. 
Since our main concern here, however, is the effect of surface thermal forcing 
on the upper Ekman vertical velocity, the specification (41) is probably adequate. 

If 'fJ is the elevation of the ocean surface above the undisturbed level z = H, 
the (hydrostatic) pressure at an arbitrary depth is given by 

H+1/ 
p(z) = eog(H + rJ-Z - a. f Tdz), 

z 

where g is gravity and a. is the (constant) coefficient of thermal expansion in 
the equation of state, 

(43) 

with T the temperature (relative to a reference value corresponding to (! = e
0
). 

The interior geostrophic currents are thus 

(44) 

(45) 

where the approximations 'fJ < < H and (! (!0 have been made when 'fJ and 
(! are undifferentiated. The presence of a temperature gradient thus permits 
the reversal of the current with depth. The (interior) shear, 

ou1 = _ a.g (oT) z 
oz JH oy o ' 

ov1 = a.g (oT) z 
oz JH ox O ' 

(47) 

is a maximum near the surface and approaches zero at the bottom, so that 
the current shows relatively little variation with depth in the deeper water; 
this is in agreement with the observed structure of large-scale currents. In the 
absence of a surface temperature gradient, 'fJ becomes synonymous with p, 
and the geostrophic currents extend undiminished through the interior depth 
of the ocean, as in the homogeneous case. 
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Within the boundary-layer approximation we now add the conditions (46) 
and (47) at the surface (z :'.::'. H) to the shear of the boundary-layer currents at 
C1 = o (z = H), and we require the total vertical shear to satisfy the applied 
wind stress. Thus, the surface boundary conditions for the upper boundary-
layer currents u and v become 

at z = H, 

W =O 

replacing (7) for the homogeneous case. The bottom boundary conditions 
remain those of no motion, as in (6). The solutions for the currents within 
the upper boundary layer are obtained, as before, in the form (11) and (12), 
with C = C1 ; but now we obtain 

(49) 

(50) 

At Co = o, the boundary-layer speeds are u(o) = b and v(o) = a; the in-
terior speeds evaluated at z = o are, from (44) and (45), u1(0) = -gJ-1 017/ 
oy +a.gH(2ft' (0T/oy)0 and v1 (o) = gJ-1 017/ox-a.gH(2J)-1 (0T/ox)0 • The 
requirement that the total horizontal velocity be zero at the bottom there-
fore gives 

a= _ ~017 + a.gH(oT), 
tax 2/ ax o 

b =~017 _ a.gH(oT), 
Joy 2/ ay o 

with the solutions (II) and (12) in the lower boundary layer (C = C0 ). 

Applied to the interior flow, the continuity equation (5) gives 

(z (a UJ OV1) W, 
w1(z) = - Jo 8x +ay dz+ , 

(52) 

(53) 

where Wis an arbitrary function to be determined. The use of (44) and (45) 
then gives 
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w1 (z)= - - z--- - Hz-- +W. {Jgor; {Jrxg (aT) ( 2 z 3) 

f2 ox 2f2 H ox o 3 (54) 

The vertical velocity in this case varies as the cube of depth in the interior 
in contrast to the linear variation for the homogeneous case (Io). 

Integrating the continuity equation over the upper boundary layer from 
Cr = o to Cr = I, using (11), (12), (49), and (50), and matching the resulting 
vertical velocity Wr to the interior w1 (evaluated at z = H) from (54), we have 

{JgH or;+ W- {JrxgH2 (aT) - _!_ curlz (nW) + 
/2 ax 3/2 ax o ea I 

+grxP(,~:rTo- ~(aT)) = o. 
2/ J ay o 

} (55) 

This is the appropriate generalization of the homogeneous case (24) when 
op/ox= e0 gor;/ox. Proceeding similarly for the lower boundary layer, we have 

corresponding to (25) in the homogeneous case. Together with (55), this 
constitutes a system for the determination of the surface configuration r; and 
of the (bottom) vertical velocity Wo = W. The equation for r;(x,y) is readily 
found to be 

ErJ2r; + (2H -§_)or; - {JEor; 
f 2 ax 2/ ay 

= _:_ curl z nw + 2
1/J•': + rx E (H - E) 'y2 To geo g f!o 2 

(57) 

+ rx{JH(2H _ E)(oT) + rx{JE(E- H)(aT), 
I 3 4 ax o I 4 oy o 

which is a generalization of the homogeneous case (26). Solution of (57) 
permits the determination of W through either (55) or (56), and thence the 
determination of Wr from (54). In the event that fJ = o, (57) reduces to 

(58) 

in which the effect of a local temperature excess ('v'T0 < o) is seen to be 
analogous to that of the curl of anticyclonic wind stress (curlznw < o). When 
fJ = o, (55) becomes 
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(59) 

which is equivalent to a relationship previously given by Robinson (1965). 
In this case the imposition of a uniform temperature gradient has no effect on 
the surface height or on the vertical velocity distribution. 

In considering the reduction of (57), we neglect, as before, the terms in 
EorJ/'YJX and E8rJ/oy on the left-hand side, and we also neglect the term in 
(8T/8y)o in comparison to that in (8T/8x)o on the right-hand side, upon en-
forcement of the assumption that E < < H. If we further neglect the term in 
-r:, as was done in the corresponding homogeneous case, and if we assume that 
(8T/8x)o = o, we have 

2 2{3Ho'Y/ 2 a.EH 
E"v rJ+--- = -curlznw+--'il2To. 

f ox geo 2 
(60) 

The solution of (60) for the zonal wind stress (30) and for the zonal surface 
temperature distribution 

To(J) = 0o- -y+ - Sill -l:!..0 l:!..0 . (ny) 
L n L 

is given by 

where 

Q = a.Hnl:!..0 
2L2 • 

Here 0o and l:!..0 are constants, and 'Y/o is a constant to insure zero interior 
geostrophic How normal to the boundary; 'YJo is given by 

from the requirement of conservation of total water mass. 
When l:!..0 = 20 deg and a. = 2.5 x 10-4 deg-1 and when the previous 

constants are used, Q = 1.9 x 10-14cm-1 and P/e
0
g = 1.8 x 10-14cm-'. Under 

these conditions, the thermal contribution to the pressure distribution is com-
parable to the wind-induced portion, and the two reinforce each other in the 
present case. The solution (62) for 'Y/, which is, in fact, proportional to the 
solution (34) for the pressure in the homogeneous case, is given in Fig. 2, 

with the isoline conversion I mb pressure = I cm elevation. The Ekman 
vertical velocity w, at the base of the surface boundary layer is likewise pro-
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portional to that of the homogeneous case (40). Fig. 5, therefore, also describes 
w, for the present case when the magnitudes are increased by the factor ( 1 + 
Qe0g/P) = 2.0. 

6. The Estimation of Upwelling. Although it is clear that a wide variety 
of stress and surface-temperature distributions could be considered, the above 
example is sufficient to show that the thermal contribution in the present 
formulation is comparable to that of the surface stress. Moreover, the solutions 
for the Ekman vertical velocity W display a magnitude and coastal confine-
ment similar to that of the average large-scale upwelling in the middle latitudes, 
which is characteristically confined to a few hundred kilometers of shore and 
has a magnitude of about 20 m per month (La Fond 1966). Some of the most 
pronounced upwelling, of course, is found in the eastern portions of the mid-
latitudinal oceans whereas the present theory gives intense vertical motion only 
near the western shore. This eastern upwelling is probably due to the persistent 
northerly winds near the eastern shore, which in turn induce a zonal temper-
ature gradient near the coast; such effects have not been considered in the 
present solutions. 

However, one possible comparison of the present theory is with the numer-
ical solutions obtained by Bryan and Cox (1967) for vertical velocity beneath 
the Ekman depth. For the comparable latitutinal range (20°N to 6o0 N), the 
zonal stress, 

-r:': = -T cos ( 2 ~Y) 

-r:: = o, l (65) 

and the zonal surface temperature (61) are similar to those imposed by these 
authors; the stress (65) is a somewhat better approximation to the average 
conditions over midlatitudinal oceans than is (30). Under these conditions the 
solution of (60) is 

l (66) 

where the boundary height 'YJo is given by 

and where 

(68) 
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Figure 6. The distribution of surface elevation 1/ in centimeters for a zonal wind etrese Tw z = - T 

cos (z ny/L) and zonal temperature T0 (y) = 00 - y(!:.0/L) + (l:.0/n) ein (ny/L), with 
T = z dynee cm-2, L = 4000 km, and 1:.0 = zo deg. The value on all boundaries is 

1Jo = - 9.1 cm. 

This solution for water elevation is shown in Fig. 6 for the same constants 
used previously. Here the contribution of the surface temperature field (sym-
metric about y/ L = 0.5) increased the magnitude of the elevated water in the 
southern half of the basin and correspondingly reduced the magnitude of the 
lowered water in the northern half; the result is a northward shift of the 
otherwise antisymmetric stress-induced elevation pattern. 

With the solution of the simplified 17-equation (60) known, we now return 
to (56) in order to determine the function W. With the approximation E« H 
together with (60 ), we have 

1 /3gHa17 /Jga.EH(aT) 
W= eolurlz:,r;W-F ax+ SF ay o' 

assuming (aT/ax)o = o as before. This relationship corresponds to (38) in 
the homogeneous case. For the imposed zonal temperature and stress fields 



u6 Journal of Marine Research 

1 .o --==-=-=---- ---- _- _-0-_- _-_-_- _- _- _- _-_-_- _- _- _- _-_-, 

0 .8 

2 

\.---0 
-100 

0,6 3 

t _, 

0 .4 

0.2 

0 L.,L ___ _,__ ____ .__ ___ ....._ ___ __. ____ _. 

0 0.2 0.4 0.6 0 .8 1.0 

x/L-
Figure 7. The distribution of vertical velocity w 0 =Win 10-4 cm sec-• at the top of the bottom 

boundary layer in an ocean subject to the zonal wind stress (65) and zonal temperature 
field (61), with T = 2 dynes cm-2, L = 4000 km, and t:,.(J = 20 deg. Significant sinking 
motion is found only near the western boundary, with a maximum of about 0.2 cm sec-• 
at x/L = o,y/L = 0.31. 

(61) and (65) and from the solution (66), the distribution of W (the vertical 
motion at the top of the bottom boundary layer) is shown in Fig. 7. The 
p-induced westward intensification is again very marked, and the effect of the 
zonal surface temperature field is to produce a northward distortion of the 
pattern that would be expected from the zonal wind stress alone. With W 
and 'f/ now determined, we find from (54) the corresponding vertical motion 
W1 at the base of the surface layer. With (oT/ox)o = 0 and z '.:::' H, this leads to 

This is a purely zonal distribution in the present approximation, with the 
thermal contribution here being about 10°/o of the stress-induced portion. 
The maxima of W1 are - 3.3 x 10-4cm sec-• and 3.0 x 10-4cm sec-', approx-
imately on the lines y/L = 0.31 and 0.81, respectively. 

In order to compare the present results with those of Bryan and Cox (1967), 
we determine the vertical motion at the 200-m depth (the shallowest level for 
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Figure 8. The distribution of vertical velocity in 10-4 cm sec-• at a depth of 200 m, obtained by 

interpolation between the data in Fig. 7 (corresponding to z = o at the top of the bottom 
boundary layer) and those given by (72) (corresponding to "' = H = 4 km at the base of 
the surface boundary layer). The shaded area is that of upward motion; the maximum 
downward motion is I.O X 10-2 cm sec-• at x/L = o,y/L = 0.31 (approximately). 

which a solution is given by these authors). According to (54), with (8T/8x)o 
= o, the interior vertical velocity varies linearly over depth between its dis-
tributions at z = o (w = Wo = W) and z = H (w = w,); with H = 4 km, 
the w distribution at 200 m will therefore be given by 0.95 w, + 0.05 Wo. 

This field is shown in Fig. 8; the near-equilibrium solution for comparable 
wind-forced and thermally forced motions at 200 m found by Bryan and Cox 
(1967) is shown in Fig. 9. 

In the central portions of the basin, the large-scale distribution and magnitude 
of the vertical velocity is similar in both Figs. 8 and 9; the rising motion in the 
northern portion and the sinking motion in the southern portion of the basin 
are, in both solutions, essentially due to the dominance of the zonal wind-
stress curl at this level. In the present linear solution (Fig. 8), the relatively 
narrow zone of intense vertical motion near the western wall is due to the 
westward intensification of the geostrophic fJ effect; the similar zone in Fig. 9 
suggests that this effect is also important in the more complete numerical 
solution. However, note that Fig. 9 shows rising motion or upwelling along 
the entire western boundary, while Fig. 8 shows upwelling only along the 



118 

t ....,. 
z 
"' " -u 

" -u 
2 
_§ 

Journal of Marine Research [27, I 

longitude (deg) ---

Figure 9. The distribution of near-equilibrium vertical velocity as computed by Bryan and Cox 
(1967), with a zonal wind stress and surface temperature similar to those used in Fig. 8. 
The isolines assume the units of r.3 x 10-4cm sec-1 and apply at approximately 2.00-m 
depth when their results are scaled with a thermocline depth of 400 m and a characteristic 
meridional temperature difference t,,8 = 2.0 deg. The shaded area is that of upward motion. 

northern portion of this boundary. It is believed that this difference is due to 
the inclusion of lateral eddy viscous terms in the solution of Bryan and Cox. 
The principal contribution of these terms would be the creation of a viscous 
boundary layer along the western shore, where the vertical flux compensates 
that in the interior. The westward concentration in Fig. 8 is dependent upon 
the wind' stress and only a vertical or Ekman eddy viscosity. From this point 
of view, the - 10 isoline in Fig. 9 near the southwestern corner may be con-
sidered to correspond to the intense sinking motion in Fig. 8 along the southern 
part of the western wall. 

Another significant comparison between Figs. 8 and 9 may be made along 
the northern portion of the eastern and western walls, and, to a lesser degree, 
along the northern boundary. In view of the argument used above, which 
hypothesizes a compensating flux in a western boundary layer dominated by 
lateral viscous effects, we would expect sinking motion close to the boundary 
on the northern part of the western wall where Fig. 9 shows strong rising 
motion.,.- Therefore, the presence of lateral friction in the solutions of Bryan 
and Cox cannot account for this upwelling, nor can it account for the corre-
spondingly intense downwelling in the northeastern part of the basin. These 
features are attributed by Bryan and Cox to a thermally-forced zonal con-
vective motion in the northern portion of the basin; here the vertical temper-
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ature stratification is nearly neutral, and deep overturning is facilitated. This 
thermal circulation is independent of the wind-induced motions and is not 
portrayed in the present linear theory, even with the addition of the surface 
temperature field. The temperature effect in the present model permits a more 
realistic specification of the surface boundary conditions (through an improved 
description of the velocity shear), but it does not simulate an independent thermal 
circulation in which the effects of vertical diffusion and te°'perature advection 
are evidently dominant (Robinson and Welander 1963, Bryan and Cox 1967). 

7. Cancluding Remarks. Although the present formulation may provide a 
useful estimate of the Ekman vertical velocity in at least middle latitudes, it 
is well to recall that a number of convenient approximations have been made. 
In particular, the fJ terms neglected in the simplification of (26) and (57) 
would introduce new components into the solutions; these would be most 
important near the northern and southern boundaries. Also of possible im-
portance are the effects of a zonal temperature gradient; such effects have been 
neglected here by the arbitrary assumption (8T/8x)o = o. In view of (54), 
this effect may play a particularly important role in the distribution of the 
interior vertical velocity over depth. Thus it would be of interest to obtain 
the vertical velocity from, say, (numerical) solutions of (57) for 'Y/ and thence 
for Wand w, from (56) and (54), with the average wind stress and temperature 
fields imposed at the surface. 

Another feature of the present solutions that warrants note is the presence 
of a net vertical flux over the basin. Except for rather special distributions of 
surface stress and temperature, the area integral of ( 24) or (55) over the basin 
will in general yield f~ f~ W dxdy =fa o. With the lateral boundary condition 
p = p

0
, this same nonzero vertical flux will be present not only at the top of 

the lower Ekman layer but at the base of the surface boundary layer and 
hence at each interior level as well. Therefore, even though we may balance 
the distributions of horizontal (geostrophic) velocity and mass through selec-
tion of the pressure or elevation boundary constant, there is evidently no way 
in which we can balance the vertical velocity flux in the present model. 

Alternatively, if we balance the vertical flux by the arbitrary assignment of 
boundary conditions for Win the solution of, say, (29), then the solution of 
(26) for pressure could not be simultaneously applied and the kinematic bound-
ary condition could not be enforced for the (geostrophic) interior motion. This 
paradox is apparently characteristic of a formulation in which the only dissipa-
tion is the vertical eddy viscosity acting in the surface and bottom boundary 
layers. It is believed that this defect can be removed by the introduction of 
lateral eddy viscosity in a new lateral boundary layer just outside the p = constant 
"wall" of the present formulation. As noted earlier, such a model would permit 
a more realistic comparison with the upwelling computations of Bryan and Cox 
(1967). This extension will be reported in a future paper. 
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