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Internal Wave Propagation Normal to a 

Geostrophic Currenl 

David Healey2 and Paul H. LeBlond 

Institute of Oceanograpny 
University of Britisl, Columbia 

ABSTRACT 

It is shown that (i) internal gravity waves propagating along a horizontal density gradient 
in a uniformly rotating ocean can exist for a range of slightly smaller frequencies than is 
possible in the absence of such a gradient, (ii) such waves exhibit a phase difference from 
top to bottom, and (iii) they exchange energy with the geostrophic current, which balances 
the density-induced pressure gradient. In the ocean, the vertical phase difference is of the 
first order in the slope of the isopycnals, the reduction in the frequency range is of the second 
order, and the energy exchange is of the third order. The interaction between the waves and 
the current is very weak and is negligible in comparison with other known energy-exchange 
mechanisms. 

1 . Introduction. There is a variety of known mechanisms by which internal 
gravity waves may exchange energy with their surroundings or with other 
types of oceanic motions. Some of these mechanisms have been described by 
Phillips (1966) and by Krauss (1965). Of course, it is only when all relevant 
energy-exchange mechanisms are well understood, and especially when their 
relative importances are known, that it will become possible to make reasonable 
estimates of the energy budget of internal waves and of the contribution of 
the mechanisms to the total energy balance in the ocean. In discussing here 
another interaction process, we do not merely add to an already complex picture 
but also determine the relevance of this interaction in the oceanic context. 

Phillips (1966: 178) has described how internal waves lose energy to a 
horizontally uniform flow with a weak vertical shear. The interaction is 
strongest when the wave propagation vector is parallel to the current and 
vanishes when the two are perpendicular. In a rotating medium, however, 
we would expect that the interaction does not vanish at normal incidence. 
The velocity vector of horizontally propagating waves will no longer lie 
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entirely in the vertical plane, as in a nonrotating medium, and, at normal 
incidence, a nonzero component of the Reynolds stress will still be available 
for energy exchange with the mean Row. Moreover, the steady Row will be 
in partial, if not complete, geostrophic equilibrium and will be balanced by 
density-induced pressure gradients. Terms involving density-velocity correla-
tions will, as a consequence, also contribute to the energy transfer. 

We concentrate our attention on that case for which energy exchange 
becomes possible only in the presence of rotation - namely, that of internal 
waves propagating normally to a horizontally uniform geostrophic current. 
It will be shown that, for conditions prevailing in the ocean, this energy-
exchange mechanism is very weak compared with other known forms of 
interaction. 

2. The Mean Flow. We consider a layer of Ruid rotating uniformly with 
angular velocity //2, bounded below by a Rat bottom at z = Hand above by 
a sloping free surface at z = - 'Y/ (x) (Fig. I). The z axis is taken positive down-
ward from a level surface near the free surface. The sloping isopycnals com-
patible with a geostrophic current are described by the weak exponential form 

(1) 

where ea is the mean density, e* a reference density; a and b are small and 
positive. Letting 'Y/o be a scale height for 'Y/ and letting L be a scale length for 
the horizontal variation in 'Y/, we see that four parameters are involved in the 
description of the mean field: aH, b/a (the slope of the isopycnals), 'Y/o/H, 
and Hf L. All of these are assumed to be small and are denoted by 81 , 8 2 , 8,, 
and 8 4, respectively. Across the Gulf Stream, for example, where the free sur-
face and the isopycnals are certainly more tilted than is typical of the ocean as 
a whole, Stammel ( 1965: 21) has estimated a difference in elevation of about 
1 m for the former and of 700 m for the latter. With a density change from 
top to bottom and across the current of the order of 10-3 g cm-3, H = 4 km, 
and L = 200 km, we find 81 = 10-3, 8 2 = 3.5 x 10-3, 8 3 = 10-4, and 8 4 = 
2 x 10-•. 

The mean current V and pressure p
0 

are given by 

eofV-Pox = o, 

eog-Poz = o, 

(2) 

(3) 

with derivatives indicated by subscripts. Using ( 1 ), p
0 

can be eliminated to yield 

Vz + aV = bglf, (4) 

which we use with profit in the derivation of the internal wave equation. 
Integration of (4) gives, for V, 
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Figure r. Geometry of the problem. The geostrophic current V, in equilibrium with the sloping 
isopycnals (e,, e. - - - ) , flows into the page. 

l7(x,z.) = A(x) e-az + bg/af. (5) 

The function of integration A(x) can be found by using the condition that p0 

is uniform on z. = -17(x). 17(x, z.) becomes 

(6) 

3. The Wave Equation. We now introduce small perturbations u = (u, 
v, w), p, and e upon the steady state, V = (o, 17, o), e0 , p0 , described above. 
These perturbations represent plane waves propagating in the x direction, 
normal to the mean flow; they are assumed to be two-dimensional: 8/8y = o. 
Since the slope of the isopycnals, which is responsible for the geostrophic cur-
rent, is very small, the solution for the perturbations should be only a slight 
modification of the solution for purely horizontal isopycnals. It is not consistent 
then to neglect other small effects: we do not use Boussinesq's approximation 
nor do we forget that the upper surface is free to move. However, only a 
linear analysis is made; the wave amplitude is an independent parameter, which 
we can make as small as we wish. 

For an incompressible nondiffusive liquid, the conservation equations, to 
the first order in the amplitude of the perturbations, for momentum, mass, 
and density are given by 

eo(ue-fv)-fl7e+Px = 0, (7) 

Vt+ Ju+ wl7z + ul7x = o, (8) 

eowt -ge + Pz = o, (9) 

Uz+Wz = o, (10) 

f!t + U f!oz + W f!oz = o. (n) 
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We now introduce for convenience the nondimensional variables 

x' = x/H; z.' = z./H; t' = wt, 

u' = ujw•; v' = [ v/w•; w' = wjw•, 
w 

p' = p/(e0 wHw*); e' = ew/ae0 w•; 1;' = wt;jw•, 

r/ = 'YJ/'Y/0 ; F' = f 17/gbH, 

[27,1 

(12) 

where 1; is the perturbed displacement of the free surface and w• is a vertical-
velocity scale. Defining a nondimensional frequency D by D 2 = w2/ga, (7)-
(11) become in the new variables (from which we immediately drop the primes) 

= o, 
Ji 

D2ve + - u + e2wf'z + e2e4f'z = o, 
ga 

D2 (we+Pz)-e = 0 , 

Uz+Wz = o, 

= o. 

( l 3) 

(14) 

( l 5) 

(16) 

(17) 

From (6) and (12), the mean velocity becomes, in nondimensional form, 

(18) 

To the first order in any of the e, this is 

Clearly, to have any appreciable depth dependence in 17, e3e4 must be of the 
same order of magnitude as e1 e2. This is the case for the Gulf Stream, as 
seen above. 

All variables except ware readily eliminated from (13)-(17); using (4) to 
eliminate f'z as well, we find the following wave equation, valid to the second 
order in· any of the e: 

} (20) 
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The terms in 81 are those usually neglected by Boussinesq's approximation; 
those in 82 are due to the slope of the isopycnals; the 8 4 term brings in the 
changes in surface elevation. 

For so-called "simple" waves, of the form w = exp i (kx + mz - t) [ k and m 
being, respectively, the x and z components of a nondimensional wave-number 
vector], eq. ( 20) is spatially hyperbolic for a range of frequencies Q that is 
somewhat narrower than the corresponding range for 8 2 = 8 3 = 84 = o 
(12/ga <D2 < 1). Wave propagation is now possible for D: <D2 <Dt, where, 
to the second order in any of the e, 

} (2<) 

The change in the frequency range is only of the second order and is not very 
significant. More important is the change in the form of the propagation curves. 
These are curves of constant Q in (k, m) space (Eckart 1960: 109). For a 
given Q, the phase velocity is along the vector from the origin to a point on 
the propagation curve and is of a magnitude that is inversely proportional to 
the length of that vector. The group velocity is simply the gradient of Q in 
the ( k, m) plane, is normal to the propagation curves, and is in the direction of 
increasing Q. When the isopycnals are horizontal, these curves are hyperbolae 
that are symmetrical about the z axis (Fig. 2a); the significance of these 
hyperbolae, particularly with respect to the reflection off bounding surfaces, 
has been discussed by Sandstrom ( 1966) ( under Boussinesq 's approximation: 
to oth order in 81). When 82 ct, o, the propagation curves are still hyperbolae 
but are now symmetrical about an axis rotated clockwise from the z axis 
(Fig. 2 b) by an angle (), such that 

282 

tan 2() = (i -[2/ga) 

The asymmetry in the propagation curves is of the first order in 82 and should 
be much more significant than the change in the range of hyperbolicity. In 
a wave guide with parallel sides (such as that illustrated in Fig. 1, but with 
'Y/ = o), two simple waves may be superimposed to satisfy inviscid boundary 
conditions at the top and at the bottom. To maintain horizontal coherence, the 
two waves must have identical frequencies and horizontal wave numbers. For 
horizontal isopycnals, because of the symmetry of the propagation curves, the 
vertical wave numbers of the two interfering waves are equal in magnitude 
and of opposite signs. With 8 2 ct, o, the symmetry about the z axis is lost, and 
the two waves have vertical wave numbers of different magnitudes. As a con-
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Figure 2 . Propagation curves for an intermediate frequency: Q is constant on the hyperbolac. 
(a) Horizontal isopycnals: e, = o . (b) Sloping isopycnals: e, # o. 

sequence, the planes of constant phase will not travel horizontally but will 
seem to issue from one boundary and disappear at the other. Another inter-
pretation is that there is a phase difference between the top and the bottom of 
the layer. The solution now to be developed illustrates these properties. 

4. Horizontal propagation. At the bottom of the oceanic wave guide, the 
vertical velocity must vanish: 

w(x, r,t) = o. 

The requirement that the perturbation pressure be uniform at z 
linearized, and evaluated at z = o, gives, to o ( e2), 

To the same order, the kinematic boundary condition is 

(22) 

By combining (23) and (24) and by using (15) and (17) to eliminate z deriva-
tives of p, the top boundary condition becomes, at z = o, 

2 e: w + e,Q p,- 83 ?'}Wz + e3e4U'Yjz + - 'Yj 2 Wzz + 
2 

+e,e3[(r+f2 2)'YJW+'YJQ4wtt] = o. 

From (13), (14), (r6), and (17) we also have, to o(e2), 

} (25) 
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(26) 

Elimination of the pressure between (25) and (26) leaves us with a boundary 
condition in the vertical velocity only: to 0(6i), at z = o, 

We wish to find solutions for (20), thus satisfying the boundary conditions 
(22) and (27), which correspond to waves traveling in the x direction. First, 
note the double role played by the existence of a mean displacement - 63 'r/ (x) 
from the level surface z = o . Terms involving rJ(x) appear to 0(63) in the top 
boundary condition (27). Thus, for the wave equation consisting of normal 
modes propagating in one direction, it is not possible to find a solution that 
will satisfy (27). This is not surprising; our wave guide does not have parallel 
sides. However, this analysis is not oriented toward a study of internal-wave 
propagation in irregular wave guides but rather toward an investigation of the 
importance of the energy exchange between the waves and the mean current. 
As the problem has been linearized in the wave amplitude, no energy can be 
exchanged with the free surface. We therefore concentrate our attention on 
the effects due to the correction terms involving powers of 61 and 6i . To the 
second order in small parameters, an x-dependent coefficient appears in the 
wave equation as well (involving, through 17:e, 'r/zz). This term leads to x 
variations in the horizontal wave number and hence to partial reflection (and 
also to refraction, if our waves were allowed to propagate in they direction as 
well). In order to keep this not-so-direct effect of the surface displacement in 
the simplest manner possible, we write 64 = Y6i, where y = 0(1) (for the 
Gulf Stream data, y 6). 

We thus write was a perturbation expansion of the form 

First consider the case 17:e = constant; the coefficients of (20) are now all 
x independent. We write 

w=qi(z)exp[ -61Z_ i6ikz )et<kz-t), (29) 
2 (ni -.r -y62 rz) 

ga 2 

in which k is a nondimensional horizontal wave-number. Substitution of (29) 
into (20) gives, for q;(z), 
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<pzz + A 2 <p = 0. 

To the second order in e1 and e2, the vertical eigenvalue). is given by 

2 - k2(r -Q2) 

). -( /2 ) Q 2 - - - ye2 f'x ga 2 

e2 e: k2 

- 4
1 

+ ( 2 / 2)2 
Q--

ga 

[27, I 

The boundary conditions on cp, to the second order in e1 and e2 and to the 
oth order in s3 and e4, are 

cp(r) = o, 

( ) e1 (Q2 - fz/ga) ( ) 
<p O = - k2 <pz O • 

To satisfy (32a), (30) must have the solution 

cp(z) = sin [J.(z - 1)]. 

The top boundary condition imposes the dispersion relationship 

tan ). = ). e1 (Q2 - 12) . 
k2 ga 

(32a) 

(32b) 

(33) 

(34) 

We have not explicitly used the expanded form (28) for w since, with constant 
coefficients in ( 20 ), we can solve directly for w to the second order in ex and 
e2. We now expand ). and kin a similar series; for)., 

). =Ao+ e1A1 + e2A2 + e~An + e1e2A12 + e;A22 + ... 

By substituting the expansions for ). and k into (31) and by equating powers of 
e1 and e2, we have: 

).~ = k~ (1 -Qz) (Qz -/2/gat ', 

A,Ao = k,ko(1-Q2)(Q2 -J2/gat', 

AzAo = k2ko( l - Q 2) (Q2 - J2/gat 1, 

2 Ao An = 2kokn(l -Q2) (Q2- / 2/ga)-1 - 1/4, 

2AoA12 = (2k0 k, 2 -ik0)(1-Q2)(Q2 -J2 /gat', 

2AoA22 = [2kok22(1-Q2)+ (~~~;~])] (Q2 -f2/ga). 

Similarly, expansion of (34) yields 

(35) 
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Ao = nn 

Az = o A. 22 = 0 . 

Elimination of A between (35) and (36) gives, for k, 

ko = nn(i - D 2t 1l• (Q2 -f2/ga)•I•, 

I 
k, = nn(1-Q2) 1i•(Q2 - f2/ga)•I•, 

kz = o, 

kn= (QZ-/2/ga)•I• [~- 2(1-Qz)] 
2nn(1-Q2)'/2 4 nznz , 

ku = i/2, 
k22 = -[r/7:r;+n znZ(QZ-/2/ga)(i-QZt'] 

2nn(1 -Q2) 1l•(Q2 -f2/ga)3I• · 

93 

(36) 

(37) 

The vertical eig~nvalue remains purely real and is unaffected by the presence 
of a slope in the isopycnals (Az = Au = Au = o). The wave-number is modi-
fied to the second order and becomes complex. The solution for the vertical 
velocity is then explicitly 

. [,( )] { e,z E1E2X} w = sm 11. z-1 exp - 2 - - 2 - cos [Re(k)x-15z-t], 

with 

(39) 

By expanding (38) in powers of e1 and e2, the expansion terms w1, w 2 etc ... 
in (28) can be found explicitly; there is no need to find those terms, however, 
since (38) gives w in a much more compact form. 

The other variables in the problem, u, v, (!, and p, may be found by sub-
stituting w in the primitive equations ( I 3)-( 17 ). The solution differs from that 
in a purely vertically stratified medium in two points. 

First, there is a phase difference between the top and bottom: in other words, 
the planes of constant phase travel partly upward rather than purely horizon-
tally. This, as we have seen in § 3, is to be expected from the asymmetry of 
the propagation curves relative to the z axis. The vertical velocity may be 
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written as the sum of two plane waves with slowly varying amplitudes and 
different vertical wave numbers: 

w =-;_ exp {- e~z - er:zx}{sin[Re(k)x-(o-nn)z-t-nn]-} (4o) 

- sin [Re (k) x - (o + n n) z - t + n n]} . 

At the upper frequency limit,Q = il+, k tends to infinity and o/k-'>-e2/(1 - / 2/ga): 
phase propagation is almost purely horizontal. At Q = Q_, k-'>- o and o/k-+ 
(1 -f2/ga)/e2: phase propagation becomes almost purely vertical. 

Second, the wave amplitude varies horizontally; this is the effect that is 
most relevant from the point of view of the energetics of the system. 

5. Energy Exchange. Since x does not appear explicitly in the wave equa-
tion and the boundary conditions (at least to the oth order in e3 and e4), the 
wave properties (except for the amplitude) will not vary horizontally. In partic-
ular, the group velocity is not a function of x, and any divergence in the energy 
flux will be entirely associated with the exponential x dependence of the velocity 
and the density. The average local energy density E will vary with x as 

E oc exp ( bH - er e2) x. 

Recalling that bH = ere2, we see that the x dependence vanishes. To the 
second order in er and e2, no energy exchange takes place, and the amplitude 
of the motion varies in just the right way to account for the mean density 
change and to keep the energy density constant. To find any exchange, we 
must go to the third order in er and e2. With a flat upper boundary ('YJx = o), 
we find, for the imaginary part of the wave-number (the calculation is outlined 
in the Appendix), 

Let us define a Q for the system: 

Q= Re(k) 
e~ e2kru · 

The waves gain energy when going down the density gradient (toward negative 
x) and lose energy when going up the gradient. The interaction is strongest 
when Q is smallest, i.e., at the lower frequency limit, Q = Q_, where Q 
vanishes. However, even for a Q no smaller than 1/er, the wave length must 
be about 2 n3 n4/er ez. For the first mode and for the values of er and e2 quoted 
in § 2, this gives a wave length of about 600 km. For waves of such lengths, 
eddy diffusive effects (LeB!ond 1966) give a Q of about 20, which is about 
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50 times smaller. Since most of the low-frequency internal-wave energy in 
the ocean is in internal diurnal and semidiurnal tides, with wave lengths of 
the order of I oo km, losses due to turbulent diffusion will greatly exceed losses 
(or gains) in energy due to interactions with geostrophic currents through the 
mechanism studied here. 

6. Reflection. To the oth order in e3 and e4, the waves are not reflected 
at all. That internal waves can propagate without reflection in spite of the 
horizontal variation in density is due to the particularly simple form chosen for 
l!o. As indicated in § 4, variations in the mean surface elevation can lead to 
reflections in two ways. 

When the eze4//z coefficient of Wzz in (20) is x dependent [through the 
existence of a mean surface curvature 'Y]zz; see (19)], the horizontal wave 
number becomes x dependent. Since the vertical structure of the solution 
(through the parameters A and <5) is independent of eze4f7z, we can use a simple 
WKB approximation to estimate the influence of the variable coefficient on 
the transmitted and the reflected waves. A first approximation [the first term 
in the Bremmer series; see, for example, Bellman (1964)] for the x-dependent 
part of the transmitted wave amplitude gives 

Substituting k from (37), we find, to the second order in e, and ez, 

[ 
ye~[f/z(x)-f/z(o)]] 

w (x) = I+ 4nznz([Jz - pjga? 

exp { i [ ko + e,k, + e~ k11 - n; ( I -fJzt3/2 (Qz - fz/gat•l2 ] x -
ie:y[f/(x)-f/(o)] } 

- 2 nn(i _[Jz)•l2(Qz-fz/ga)3l2 · 

The wave amplitude is modified to order ye~ (i.e. eze4) . The amplitude of 
the reflected wave will then be of the same order of magnitude. When [Jz 
approaches its lower limit [J:_, the wave length becomes comparable to L or 
to 1/b; the variations in the medium are no longer small over a wave len~th, 
and the WKB approximation breaks down. Nevertheless, note that reflect10n 
occurs to a lower order of small 'parameters than does the energy exchange 
with the mean current, and reflection is correspondingly more important. 

As noted earlier, simple normal-mode propagation is inadequate to describe 
the purely geometrical effects of the variation in 'YJ(x). Sandstrom's (19~6) 
theoretical and experimental studies of internal-wave reflection off bounding 
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surfaces, based on the method of characteristics, suggest the following remarks. 
For waves traveling toward the positive x direction, we expect the top surface 
to be perfectly "transmissive" (in Sandstrom's terminology) for 'Y/z > o; waves 
of all frequencies are reflected on the surface and travel on toward x > o. If 
'Y/x < o, the wave guide narrows, and, for waves of frequency that are low enough 
so that the characteristics have a slope smaller than that of the free surface, the 
latter becomes "reflective"; these waves are reflected back toward x < o. Since 
the surface slope is of o(e4), we should in that case expect a narrow band of 
low frequencies, bounded below by Q_ and of width of o(e4), to be reflected 
back by the top surface. Because such reflection does not contribute to the 
energy exchange between the internal waves and the geostrophic current, 
we do not consider it further. 

7. Conclusions. The presence of a slight slope in the isopycnals of a non-
homogeneous rotating fluid leads to interesting dynamical effects. For example, 
a phase lag appears between the top and the bottom of the fluid layer and 
becomes very important near the inertial frequency. The coupling that arises 
between the mean geostrophic current and the internal waves propagating 
normal to it is, however, so weak that it need not be taken into consideration 
in the energy budget of internal waves in the ocean. 

APPENDIX 

To simplify the notation in calculating the third order corrections to ko, 
we write e2 = CIC er, where CIC= 0(1). This is consistent with conditions pre-
vailing in the Gulf Stream. It is then sufficient to expand cp, A, and k in a 
series of powers of er only. We now write 

A; =Ar+ CICA2, 

A:= An+ CICAu + CIC2 A22, 

and so on. Expanding (33), we have 

cpo = sin [Ao(z-1)], 

cp; = (z-l)A; cos [Ao(z-1)], 
A•2 

cp: = (z -I){).! cos [).o(z -1)] - - 1
- sin [Ao(z -1)]}. 
2 

To the third order, (30) becomes (with 'Y/x = o) 

Cf'!zz + A~cp: = - 2AoA;cp!-(A; 2+ AoA!)cp; 

- 2 (Ao A:+ A; A!) cpo; 
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also, to the third order in e, only, (31) becomes 

2 (Ao A! + A; A!)= [2 (kok! + k; k!) -ik; ix] cJ:~fttia) l 
A4 

2 [ 2 k; ko + k~ ( I - .Q2) + k~ (z - 1) ( 1 - !J2)J 
+ix (.Q2_/2/ga)2 , 

or, for brevity, 
2 ( Ao A! + A; A!) = A + B ( z - I ) , 

where A and Bare defined by A4 and A5. 
The solution of the nonhomogeneous part of A 3 is 

'P! =(z~:)sin[Ao(z-1)]{-B+AoA;LAo(z-1)(3AoA;A:+A;3)} 
4 0 

+ (z ~ 2
1) cos [Ao (z - I)]{ 2.A Ao+ (B Ao- A~A; 3)(z - I) -

4 0 

- (3 Ao A; A! + A;3)}. 

A5 

A6 

The top boundary condition, which includes terms that do not appear in 
(32b) (good to second order only), is derived in a straight-forward manner 
from (27) and (29): 

• [2k;k: 2k! ik;ix] • [k; 2 2k! 
1/13 (o) = - <po(o) + ko + ko -<p, (o) k~ + ko + 

(.Qz-/2/ga) iix] *( ) k; • ( ) (.Qz-fz/ga) 
+ k' + k- - 2 <p, o -k + <p, z o k' . 

2 0 0 0 0 

Substituting from A 2 and A 6, 

(A + B) ).;3 (3AoA;A!+A; 3) _ k*,* ,•1k; 2 2k! l - --- - - + ,, - 2 • 11., + /1. • -k, + - k + 
4Ao 4 411.0 _ o o 

(.Q2 -J2/ga) iix] (i• AoA; 2
)' (.Q2 -f2/ga) 

+ k2 + k- + 11., + -- k2 • 
2 0 0 2 0 

A8 

Only the imaginary part of k3 • is of interest. Taking the imaginary part of 
A8, we have 

or, from A4 and (32), 

,. I (k*) ixA; Im(A) = 211.1 m 2 + ko' 

which is the result used in (41). 
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