YALE PEABODY MUSEUM

P.O. BOX 208118 | NEW HAVEN CT 06520-8118 USA | PEABODY.YALE. EDU

JOURNAL OF MARINE RESEARCH

The *Journal of Marine Research*, one of the oldest journals in American marine science, published important peer-reviewed original research on a broad array of topics in physical, biological, and chemical oceanography vital to the academic oceanographic community in the long and rich tradition of the Sears Foundation for Marine Research at Yale University.

An archive of all issues from 1937 to 2021 (Volume 1–79) are available through EliScholar, a digital platform for scholarly publishing provided by Yale University Library at https://elischolar.library.yale.edu/.

Requests for permission to clear rights for use of this content should be directed to the authors, their estates, or other representatives. The *Journal of Marine Research* has no contact information beyond the affiliations listed in the published articles. We ask that you provide attribution to the *Journal of Marine Research*.

Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. https://creativecommons.org/licenses/by-nc-sa/4.0/

Comment on the Peripheral Antarctic-water Discharge¹

Arnold L. Gordon

Lamont Geological Observatory of Columbia University, Palisades, N.Y.

No doubt the peripheral discharge around Antarctica tends to establish a westward coastal flow and may slow the Antarctic Circumpolar Current significantly, as suggested by Barcilon (1966, 1967). It should be noted that this effect would have strong seasonal variations. Virtually all of the discharge is accomplished from midsummer to late summer. Therefore, it is expected that the phenomena described by Barcilon would be effective only during the Antarctic summer months. In addition, another seasonal effect exists: the variation in the meridional density structure in the Antarctic surface water due to the alternate formation and melting of the pack-ice cover (melting from October to March, freezing during other months). The yearly fluctuation in the pack ice amounts to approximately 2.3×1019 cm3 (Munk 1966). The associated surface-layer density (σ_t) variations are from a low of 27.0 in summer to 27.4 in winter. In winter the density increases toward the continent, while in summer it decreases. Therefore, a seasonal coastal current should be established, with a westward flow occurring during the summer, that is, in concert with the peripheral discharge influence.

From the above considerations, one would expect that the Antarctic Circumpolar Current possesses a summer minimum in its volume transport. This is not the case. Recent estimates of the volume transport through the Drake Passage (Gordon 1967) indicate that the maximum transport is found during the summer. It is probable that other factors are more significant than either the phenomena discussed by Barcilon or the seasonal fluctuation in the ice cover discussed above.

Acknowledgement: The author's Antarctic research is supported by National Science Foundation grant GA-894.

Lamont Geological Observatory Contribution No. 1127. Accepted for publication and submitted to press 23 August 1967.

REFERENCES

BARCILON, VICTOR

- 1966. On the influence of the peripheral Antarctic water discharge on the dynamics of the Circumpolar Current. J. Mar. Res., 24 (3): 269-275.
- 1967. Further investigation of the influence of the peripheral Antarctic water discharge on the Circumpolar Current. J. Mar. Res., 25 (1): 1-9.

GORDON, ARNOLD

1967. Geostrophic transport through the Drake Passage. Science, 156 (3783): 1732-1734.

MUNK, WALTER

1966. Abyssal recipes. Deep-sea Res., 13: 707-730.