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Current on Edgewaves1 

Lawrence A. Mysak 2 
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ABSTRACT 

The effects of deep-sea density stratification and longshore current on trapped edgewaves 
traveling over a sloping continental shelf that drops off vertically to deep water of constant 
depth are investigated. The stratification is idealized with a two-layer model, and the current 
is assumed to be confined to the deep-sea region and to the upper layer of fluid. It is shown 
that (i) the influence of the current on the wave modes is small, (ii) each eigenwave on the 
shelf is coupled to two waves in the deep-sea region, one of which travels parallel to the coast 
(a barotropic wave), the other toward the coast (a baroclinic wave), and (i ii ) the waves in 
each region are damped, the e-folding time being much greater than the wave period. 

1 . Introduction. The purpose of this paper is to report an investigation of 
the effects of two oceanic phenomena on trapped edgewaves (M unk et al. 
1956) that propagate over a gently sloping continental shelf of finite width. 
The phenomena considered are deep-sea density stratification and a deep-sea 
current that Bows alongside the shelf. This work has been motivated by an 
earli er study (Mysak 1967 ), which showed that both of these phenomena 
significantly affect the phase velocities of continental shelf waves (Robinson 
1964). 

As in Mysak ( 1967 ), a two-layer model for the stratification is considered 
here, and it is assumed that the deep-sea current is confined to the upper 
layer of fluid (Fig. 1). For geophysically realistic values of the quantities 
involved, it is shown in § 3 that the influence of the current on the wave 
modes is small. In § 4 it is shown that, while density stratification does not 
significantly affect the phase velocities of the waves, its presence does imply 
that the waves decay slowly with time. In § 4 it is also shown that each eigen-
wave on the shelf is weakly coupled to two waves in the deep-sea region, one 
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Figure I. Cross-section diagram of the model used in the present theory. The longshore coordinate, 

y , increases into the paper, and the basic state uniform flow, V, is in the positive y direction 
and is confined to the deep-sea region and to the upper layer. Geophysically realistic values 
of the quantities shown are V = 200 cm/sec, I= 10 7 cm, d = 2 x 104 cm, D = 3 x 104cm, 
Do = 4.7 x 10 5 cm, and (120-12)/120 = 2.5 x 10-3. 

of which propagates parallel to the coast (a barotropic wave), the other toward 
the coast (a baroclinic wave). 

2. Equations of Model. Consider a semi-infinite ocean basin that is bounded 
on one side by a straight coastline and has a bottom topography consisting of 
a linearly sloping shelf that drops off vertically to deep water of constant 
depth (Fig. I). For the basic state of motion of the fluid in the basin, it is 
supposed that there exists a uniform flow that is confined to the deep-sea 
region and to an upper layer of fluid of constant density; below this upper 
layer lies a motionless layer of fluid of slightly greater density. Upon this 
basic state is imposed a small-amplitude surface edgewave motion that in turn 
induces an internal wave motion. 

Assume that there exists a hydrostatic balance of forces in the vertical 
direction and that all the unknown quantities are independent of depth. Then, 
in terms of the notation shown in Fig. 1, the unforced linearized nondissi-
pative equations for the sea level and interfacial distortions, ij and ij 0 , and 
the horizontal velocity components of the upper and lower layers, (ii, v) and 
(ii 0 , i\), are given by: 

Shelf Region: Ut+gijx=O, 
Vt+gijy = o, } 
[(dx/l)ii]x + (dx/l)vy + iit = 0; 

(2. I) 

(2.2) 
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Deep-sea Region : 

Upper layer itt + f7uy + giJx = o , 

'lit + f7vy+ giJy = o, } 

L ower layer itot + go 'Y/ox + (e/eo)giJx = o, 
Vot +g/YJoy+ (e/eo)gijy = o, 

Do(uox+voy) +iio t = o. 

} 

[26,1 

(2.3) 

(2.5) 

(2.6) 

In eq. (2.5), the symbol g
0 

denoting the reduced gravity 1s related to the 
acceleration of gravity, g, by the equation: 

For mathematical convenience it has been assumed that the mean depths, 
D and D

0
, are constants. An interesting but more difficult problem, which 

is not discussed here, arises if the mean interface slopes downward in the sea-
ward direction, corresponding to a current that is baroclinic and geostrophic 
in character. A lso, note that the Coriolis force ( effect of rotation) has been 
neglected. For the class of waves and geometry under consideration, the 
rotational effects are very small. In essence, rotation gives rise to a small 
splitting of the frequencies of the edgewave modes (Mysak 1968). That is 
to say, without rotation the dispersion relationship is of the form w oc ± k1l2 

whereas with uniform rotation wrx - k1l 2 
- f3fFr(k) and w oc k1 l 2 

- /3fF2(k); 
here w is the wave frequency, k is the longshore wave number,f is the Coriolis 
parameter, f3 is a small positive dimensionless parameter much less that unity, 
and k- 1l 2 fFt(k) = 0(1) (i = 1,2). 

T o uniquely determine the quasisteady trapped-edgewave solution for the 
system ( 2. r) - ( 2.6 ), the following boundary and continuity conditions are 
adopted. At the coast ij must be well behaved; far from the coast ij and i'j0 

must tend to zero. At the edge of the shelf, ij and the normal transport com-
ponent must be continuous in the upper layer and the normal velocity com-
ponent must vanish in the lower layer. 

3. Derivation of Dispersion Relationship. In accordance with the discussion 
in § 2, we look for solutions of the form 

where k is assumed to be real and positive and ri , u, .. . are all functions of x 
alone. In this secti on an implicit functional relationship between w and k for 
the problem posed in §2 is determined. Eqs. (3.1) and (2.1) -(2.6) imply 
that 'Y/ and 'Y/o sati sfy 
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x rj" + r/ + (w2l/gd-xk2)'Y/ = o, o < x < I, 

'Y/11 -k2 'Yj + (w 2/gD)('Y} -'Y}o) = o, X > I, 

where w = w + k/7, and 
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(3.2) 

(3.3) 

In terms of 'Y} and 'Y}o, the boundary and continuity conditions take the form 

l'YJ<(o)J < M (a constant), 

'YJdl) = 'YJ>(I), (d/w)'YJ<'(I) = (D/w)'YJ>'(I), 

'YJ> as x 

as 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

In (3.5) - (3.8), the subscript symbols < and > denote the solutions in the 
regions o < x < I and x > I, respectively. 

Before the solution to (3.2) - (3.9) is determined, the relative importance 
of the terms arising from the deep-sea current must be examined. For 
w = 0(10- 3 sec'), k = 0(10-7 cm- •) [typical orders of magnitude of the 
frequency and wave number associated with trapped edgewaves (Mysak 
1968 )] and for // = 2 x 102 cm sec' ( a realistic upper bound for the surface 
velocity of the most intense deep-sea boundary currents), note that w = w 
to within o ( 10-2 ) . That is to say, the influence of the deep-sea current is, 
for all practical purposes, negligible. Henceforth, win eqs. (3 .3) and (3.6) will 
be approximated by w. 

The solution to (3.2) and (3 .5) is given by 

'Y/ = A 8 exp ( - kx) Lv ( 2 kx), o < x < I, (3.10) 

where A 8 is a constant, Lv is the Laguerre function (Pinney 1946 ), and 
2v+ 1 = w2 l/gd. In (3.3) (with w replaced by w) and (3.4), let X = kx; 
then, after some rearrangement, these become 

d2 'YJ/dx2 + (02 - 1)17 - 02 'YJ0 = o, X > kl, 
(1 - 8 2)(d2 'YJ/dx2 - 'Y/) + e2 d2 170/dx2 + (020- e2 )'Y/o = o, X > kl, 

(3.II) 

where 02 = w2/k2gD, o = D /D 0 , and e2 = 1 -e/e0 • The solutions to (3.11), 
(3.7), and (3.9) can be written in the form 

(3.12) 
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where Re(r1) > o and A1, A01 are constants. From (3.11) and (3.12) it 
follows that nontrivial solutions exist provided 

Henceforth, the notation r~ = r: and r: = r:. is adopted. Thus, the solutions 
for 17 and 17

0 
take the form 

17 = { 
As exp (- kx) Lv(2kx), o < x < I, 
A, exp [ -r,k(x-1)] +A 2 exp [ - r2k(x-l)], 

17
0 

= [(r ; + 02
- 1)/02].A, exp [ -r,k(x-1)] 

+ [(r : + 02- I )/02] A2 exp [ - r2 k(x - 1)], X > I, 
(3. I 5) 

where the first equati on in (3. I I) has been used to determine the relationship 
between A1 and A

0
1. Upon applying the conditions (3.6) and (3.8) to (3.14) 

and (3. I 5), three homogeneous equations for A s, A,, and A2 are obtained. If 
the determinant of coefficients is set equal to zero, the (implicit) dispersion 
relationship for the problem is obtained: 

(s2/02) (r: - r;)r,r2 Lv(2 A) + L'.l [2 L;(2).) - Lv(2A)] 
{r2 [ I + c2 (r: - I )/02] - r, [ I + s2 (r: - I )/02

]} = o, 

where }, = kl and L'.l = d/D. 

(3. I 7) 

4. Discussion of Solution. In order to exhibit the details of the formal solu-
tion derived in§ 3, we now exploit the fact that 02 = 0(1), L'.l = 0(1), o < o 
« 1, o < s « 1, and o/s = 0(1) for w = 0(10-3 sec'), k = 0(10-1 cm-1

), 

d = 2 x 104 cm, D = 3 x 104 cm, D
0 

= 4.7 x 105 cm,g = 9.8 x 102 cm sec-•, 
and (eo- e)leo = 2.5 X 10-3. Under these conditions, (3.13) implies that 

r: = I - 020 + 0(02
), 

r: = - (02/s2) [1 + o + o(s2
)]. 

Application of the condition Re(r1) > o to (4.1) yields 

r, = I - 02 0/2 + 0(02
), 

r2 = -(i0/s) [1 + o/2 +o(s2
)], 

} 

(4.2) 

(4.3) 

where, in the parameter 0, the frequency has the form w = w, + iw2 , with 
W2 > o so that the waves decay with increasing time. If it is assumed a priori 
that w is real and the Sommerfeld radition condition is subsequently applied 
as the boundary condition far from the coast, a complex dispersion relation-
ship is obtained. Hence, for the frequency and wave-number domain under 
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consideration, damping (or attenuation) must occur. Since diffusive processes 
have not been included in the model, this result is surprising; an explanation 
of where the energy of the waves goes is presented in the next paragraph. 

Note that the root (4.2) corresponds to a barotropic gravity wave that 
travels parallel to the coast and has an e-folding distance (in the direction 
normal to the coast) of o(k- 1 cm). The root (4.3), on the other hand, cor-
responds to a baroclinic gravity wave. This wave has an e-folding distance of 
o [(gD) 1l2 s/wz], an interfacial amplitude of o ( 1 / c:2) of that of the barotropic 
wave, and it travels toward the coast with its crests really parallel to the coast 
[since k (( Im (krz)]. This latter result implies that the following transfers of 
energy occur: (i) from the upper layer of fluid in the deep-sea region to the 
fluid in the shelf region, and (ii) from the lower layer of fluid in the deep-sea 
region to the vertical boundary of the deep-sea region. The second implica-
tion, (ii), is particularly important in that it appears to explain where the 
energy of the waves goes. 

To determine (i) the strength of the coupling between the waves on the 
shelf and in the deep-sea region, (ii) the relative change in the phase velocities 
of the waves, and (iii) the relative magnitude of the e-folding time (decay-
time constant), attention is now focused on the dispersion relationship (3. I 7 ). 
By substituting (4.2) and (4.3) into (3.17), utilizing the identity 02 = 

(2v + 1)iJ /)., and setting c: = o::o, where o:: is a positive constant of order 
unity, the following relationship is obtained: 

Lv( 2 ).){ I + c5 [3/2 - iJ( I + ( 2 )I+ I )/2). + i o::(AjiJ ( 2 )I+ I )) 1l2)] + 
+ o(c52)} + 02iJ L~(2J.){1 + io::[J./iJ (2v + 1)]''2 + o(o)} = o. 

(4.4) 

Note that, for fixed values of the parameters o::, iJ, and o, (4.4) can be regarded 
as a functional relationship between an independent variable, )., and a depend-
ent variable, v. Hence, a solution of the form v = v(J.; o::,iJ ,o) can be obtained 
from (4.4). By combining this with the relationship 

w2 = (2v + 1)gdJ.fl2, (4.5) 

a dispersion relationship of the form w = w (k) can readily be determined. 
Before this procedure is carried out, it is noted that, to first order in small 
quantities, (4.4) reduces to the (implicit) dispersion relationship for edgewaves 
in a homogeneous ocean in the limit o:: o ( corresponding to (! 0 - (! o), 
D o, and D 0 DT (the mean deep-sea total depth), viz., 

Lv(2kl)[1 - OT(I + w2 /2k2gd) + o(o})] 
+ 20TL~(2kl) = o, 

(4.6) 

where OT= d/DT(( 1 and k, v, and w are all real [Mysak 1968: eq. (6) 

with f = o]. 
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The presence of the small parameter b in (4.4) suggets that v = v(.?.) be 
determined by means of an ordinary perturbation expansion. Hence, we let 

V = v0 + () V' + ... , 

Lv = Lvo + ()V1 [8 Lv/ov Jv=vo + . .. , } (4.7) 

with a similar representation for L~. Since (4.4) is a complex function, it is 
assumed that vi (j = o, l, 2, ... ) is of the form 

(4.8) 

where v~ and v; are real. Substitution of(4.7) into (4.4) yields, to lowest order, 

(4.9) 

where v0 = v~ + iv~. For A > o, eq. (4.9) implies that v~ = o. Note that the 
solution of (4.6) for v = v(A) by means of an ordinary perturbation expansion 
in ()T also yields L11o(2A) = o(v0 real) to lowest order. Hence, for the two 
cases, the dispersion relationships are identical to lowest order in small 
quantities: it is also evident that even with stratification present, each eigen-
wave on the shelf is weakly coupled3 to the waves in the deep-sea region. 
A table of the real zeros, v0 == v~, of eq. (4.9) as a function of A has been given 
elsewhere (Mysak 1968); here, only a brief summary of the properties of the 
zeros is given. For each A > o there exists a sequence of v0 's that are de-
noted by v0 n (n = 0,1,2, ... ), with the property that o < v00 < v01 < .. . . 
Further, for }. 2

)) I (relatively short waves), v0 n ""n, whereas for }. 2 <( 1 
(relatively long waves), v0 n )) 1. [These results can also be readily deduced 
respectively from the asymptotic and series representations of L 11 (see Pinney 
1946).J Hence, we observe that, for each A > o and for a corresponding 
v0 n, (4.5) yields two real zeroth-order values of w, which we denote by ±w0 n. 
According to the terminology used by Mysak (1968), there are two edgewave 
modes corresponding to each order v0 n. For a graphical representation of the 
relationships w0 n = w0 n(}.; v0 n) (n = o, 1,2), see Mysak (1968). 

To the next order, (4.4), (4.7), and (4.8) imply that 

v;n = -Lian, 

v~n = -cxan[ALJ/(2v0 n+ 1)] 1l 2
, 

(4. 10) 

where 

In the homogeneous case, it is readily verified that 

v'n = -an. 

3· This means that, to within order <5 (or <5T in the case of a homogeneous ocean), the edgewaves 
have a node at the edge of the shelf. 



Mysak: Deep-sea Stratification and Current 4r 

From ( 4-5 ), ( 4. r o ), ( 4. r r ), and the series expansions for v, it follows that, 
to first order in small quantities, 

(c:)2 

en 
H 

2 [v 0 n- (d/D 0 )an] + I 
2[v011 -(d/DT)an] +I> 

(4.r2) 

where c: and C1fI are respectively the nth-order phase velocities of the edge-
waves in a stratified and homogeneous ocean. Since v0 n > o and D~ < DT, 
(4. r 2) implies that c: :; C1fI according to whether an ~ o. However, since 
v0nJan = o(r) and since typical values of the ratios d/D0 and d/DT are 
4-~ X ro-• and 4.0 X ro- 3, respectively, the ratio c:;ci is nearly equal to 
unity. Therefore, the latter ratio as a function of A is not computed here. 
For the special cases A.2 « r and A.2 )) r, it is fairly easy to show analytically 
that a0 > o, which implies that stratification produces a small decrease in the 
lowest-order phase velocity. 

Finally, by writing the nth-order complex frequency in the form 

it is readily established that 

Hence, the decay time of the waves is much greater than the wave period. 
For w~ = o(ro-3 sec'), (4.r3) implies that w; = o(ro-5 sec'); hence, the 
e-folding distance of the baroclinic wave in the deep-sea region is of o ( r o7 cm), 
which is the same order as that of the barotropic wave (see 2, § 4). 

5. Concluding Remarks. In the following paragraphs the main results 
obtained in the present paper are compared with those obtained by Mysak 
( r 967) in a study of the effects of deep-sea current and stratification on con-
tinental shelf waves, which are characterized by a frequency of o(ro-5 sec') 
and wave number of 0(3 x ro-8 cm-•). 

Since k I' <(w for edgewaves whereas kl':::, w for shelf waves, only the 
latter waves are significantly affected by an essentially surface deep-sea long-
shore current having a characteristic speed of/'= 200 cm sec'. In particu-
lar, if c0 denotes the lowest-order phase velocity of a shelf wave when deep-sea 
stratification is present, then c0 changes by about 20°/o if a current with speed 
I'= 200 cm sec' is introduced. 

In the stratified theory of edgewaves, each eigenwave on the shelf is 
weakly coupled to a longshore-traveling barotropic wave and an onshore-
traveling baroclinic wave. In the stratified theory of shelf waves, however, 
each eigenwave on the shelf is strongly coupled to a barotropic and a baro-
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clinic wave, both of which travel parallel to the coast.4 Further, in the 
stratifi ed theory of edgewaves, the e-folding distances of the deep-sea waves 
away from the coast are of the same order of magnitude. In the stratifi ed 
theory of shelf waves, on the other hand, the e-fo lding distance of the baro-
clini c wave is much less than that of the barotropic wave. 

Only in the case of shelf waves does stratifi cation produce a significant 
change in the phase velocities. For the lowest-order shelf wave in particular, 
the phase velocity is increased by nearly a factor of two. 

Edgewaves are sli ghtly damped when deep-sea stratifi cation is present. 
When deep-sea stratification is incorporated into the theory of shelf waves, 
the waves still propagate without any energy loss . 
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