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ABSTRACT 

T he proper ties of fr ee unattenuated long waves of small ampli tude that travel parallel to 
the coast over a bottom topography consisting of a gentl y sloping shelf of finit e width that 
drops off verti cally to deep water of constant depth are investi gated . For a homogeneous 
unifo rmly rotating fluid , it is shown that two classes of waves exist: relati vely high-frequency 
waves with periods of about two hours or less (class I waves) and very low-frequency waves 
with periods of about one day or more (class II waves). W hile class I waves can travel in both 
directi ons along the coast, class I waves, for a specifi ed hemisphere, can travel in only one 
directi on . For wavelengths less than or equal to the shelf width, the wave modes are inde-
pendent of the shelf width. In this case the modes of the class I and class II waves correspond, 
respecti vely, to those of edgewaves and quasigeostrophic waves that travel along a shelf of 
semi-i nfi nite width (Reid 1958). For wavelengths considerably greater than the shelf width, 
however , the wave modes depend very strongly on the shelf width . In particular, for the 
class I waves (and for this class only), there is a long wavelength cutoff for trapped modes. 
A lso, in the long wavelength limit the class II waves correspond to continental shelf waves 
(Robinson 1964). 

1 . Introduction. In previ ous theoretical studies of long unattenuated surface 
waves of small amplitude that travel parallel to the coast over a gently sloping 
continental shelf,3 most authors (Munk et al. 1956, Greenspan 1956, Reid 
1958) have considered the shelf to be of semi-infinit e width. Robinson (1964), 
however, has developed a theory of long unattenuated waves of small ampli-
tude that travel parallel to the coast over a bottom topography consisting of 
a gently sloping shelf of finit e width that drops off verticall y to deep water of 
constant depth. These waves, which Robinson has termed continental shelf 

r. Accepted fo r publi cation and submitted to press 7 September 1967. 
2. Present address: Department of M athemati cs, University of Bri ti sh Columbia, V ancouver 8, 

Canada. 
3. For the case of a small shelf slope, the hydrostatic pressure approximati on is applicable, thereby 

greatly simplifying the mathematical analysis. The theory of edgewaves traveling over a shelf of arbi trary 
slope and of semi- in fini te width has also been developed (Stokes 184 6, U rsell 1952, Johns 1965) but 
will not be discussed here. 
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waves, are quite distinct from the familiar edgewaves discussed by Munk et al. 
and by Greenspan or from edgewaves as modified by the Coriolis force 
(Reid 1958), for the following reasons: (i) Shelf waves have a very low fre-
quency (considerably less than the Coriolis parameter, which is assumed to 
be constant in the theory) and a very long wavelength (considerably greater 
than the shelf width), (ii) they are nondispersive, (iii) in a specified hemisphere 
they can travel in only one direction along the shelf (for example, southward 
off the eastern coast of the United States), (iv) they decay in the deep-sea 
region, and (v) they are characterized by a nearly geostrophic balance of 
forces in the direction normal to the coast.4 

Reid ( I 958) has also established that a low-frequency class of unattenuated 
waves (quasigeostrophic waves) can travel parallel to the coast over a gently 
sloping shelf of semi-infinite width. These waves are similar to continental 
shelf waves in that, for a specified hemisphere, they too can travel in only 
one direction along the shelf (the same direction as that of the shelf waves). 
While quasigeostrophic waves are generally dispersive, in the long wavelength 
limit they are also nondispersive, with wave velocity gs/f; here s is the shelf 
slope, f the Coriolis parameter (assumed constant), and g the acceleration of 
gravity. However, because of the different geometries used by Robinson and 
by Reid, this wave velocity differs markedly from the shelf-wave velocity, 
which is simply proportional to fl, where I is the shelf width. 

To determine the effect of a cutoff in shelf width on the modes of the high-
frequency edgewaves (class I waves) and to gain a deeper understanding of 
the differences between the low-frequency quasigeostrophic and continental 
shelf waves (class II waves), this paper reports an investigation of the prop-
erties of all free long waves that travel parallel to the coast over the bottom 
topography considered by Robinson. Numerical computations reveal that, 
for both the class I and class II waves, the shelf width plays an increasingly 
important role in the determination of the wave modes as the longshore wave-
length increases beyond the shelf width. 

2. Derivation of Dispersion Relationship. A right-hand Cartesian coordinate 
system (x,y,z) is introduced; in this system x,y measures, respectively, the 
distances normal and parallel to a straight infinite coastline orientated in a 
N-S direction, and z measures the distance vertically upward from the 
undistorted sea surface. Let rJ(x,y,t) be the sea-level distortion, and let 
u(x,y,t), v(x,y,t) be the velocity components in the x,y directions, respec-
tively. Since our attention is to be confined to the study of free waves th~t 
move parallel to the coast (that is, "trapped" free waves), rJ,u, and v will 
have a (y,t) dependence on the form exp[i(ky+wt)], in which w is real and 

4. In this study our attention is restricted to theoretical considerations, but it is noted that, while 
edgewaves were first observed some time ago (Munk et al. 1956), shelf waves have been observed only 

recently (Hamon 1966, Mooers and Smith 1968). 
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k > o; also, it is assumed that, in the x direction, the solutions are of a 
decaying character. Then the linearized nondissipative equations of shallow-
water theory for a homogeneous uniformly rotating fluid imply that the wave 
amplitude, 17(x), satisfies the following equation (for a detailed derivation, 
see Reid 1958): 

h17"+ h'17'+ [h'fk/w+(w2 -f1)/g-hk2]17 = o. (1) 

In eq. ( 1 ), z = - h (x) is the equation of the sea bottom, g the acceleration of 
gravity, and f = 2Q sin <p the Coriolis parameter; Q is the earth's angular 
velocity and <p the latitude (assumed constant). In terms of 17(x), the velocity 
amplitudes are given by 

u(x) = ig(w17' + kf17)/(w2
- /

2
), } 

v(x) = -g(f17'+ kw17)/(w2-f2
). 

Following Robinson (1964), h(x) has the form 

h (x) = { D, x > I ( deep-sea region), } 
dx/1, o < x < I (shelf region), 

(3) 

where D is the depth in the deep-sea region, d the depth at the edge of the 
shelf, and / the shelf width.5 Eq. (I) is to be solved separately for the deep-sea 
and shelf regions subject to the boundary conditions 17 (x) o as x oo and 
/ 17(0) / < M(a constant). Then, at x = l,17(x) and h(x)u(x) (normal transport 
component) are to be made continuous. 

For the bottom topography given in (3), eq. (1) together with the above-
stated boundary conditions imply that 

'l'J(x)-{Aexp(-Kx), x > I, } 
B exp ( - kx) Lv ( 2 kx), o < x < I. 

(4) 

Here A,B are constants, K = [k 2 + (J2 -w2)/gDJ1i 2 (assumed to be real and 
positive), v= - 1/2+[f/w+(w 2 -f1)l/gkd]/2, and Lv(z) is the Laguerre 
function, which has the series representation 

Lv(z) = I -vz+(-v),z2/(2!)2+ .. . , (s) 
where ( - v)n= - v(-v+1)(-v+2) ... (-v+n-1), (-v)0 = I. Lv(z) is 
an entire function and satisfies the differential equation 

[zd2/dz2 + (1 -z;)d/dz+ v]Lv(z) = o, 

5. This choice of h(x) is particularly convenient for studying the effects of deep-sea stratification (and 
current) on shelf waves and edgewaves (see Mysak 1967, 1968). A study of long small-amplitude waves 
in a homogeneous uniformly rotating fluid that travel parallel to the coast over a bottom topography 
having a vari able but continuous slope that approaches zero far from the coast, viz., h(x) = 1,0[1 -
exp ( -ax)], has recently been presented by Ball ( 1967). Such a choice for h(x), however, is not convenient 
for a stratified study. 
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which is a special case of the confluent hypergeometric equation. In the 
terminology of generalized hypergeometric functions, Lv(z) = 1F1 (- v; 1 ; z) 
(Erdelyi 1953: 248). An extensive discussion of the properties of the La-
guerre function, which reduces to a Laguerre polynomial of degree n when 
v = n = o, I, 2, ... , has appeared elsewhere (Pinney 1946) and will not be 
given. Upon application of the continuity conditions to (4), the following 
implicit dispersion relationship is obtained: 

L11 (2 .il){[1 + M ( I - a2)/ .il 2J112 - 1 /a -,1 (1 - 1 /a)}+ 2,1 Lv' (2 .il) = o, (6) 

where a= w/f, il = kl, c5 = f212/gd, and ,1 = d/D; the quantity vis related 
to a, il, and c5 by 

(7) 

Eq. (7) is a cubic in a; in § 3 it is seen that two of the roots correspond to 
the modes of class I (high-frequency) waves, and the third root, to the modes 
of class II (low-frequency) waves. 

For the case of the inertial oscillation, w = f, the velocity amplitudes in 
( 2) are indeterminate so that (6) does not apply. [In fact, for w = f ( a = 1), 
(6) is identically satisfied.] In this case an analysis of the original conservation 
equations together with the appropriate boundary and continuity equations 
yields the dispersion relationship 

(/2/gk - s/2) + exp (- kl) [s(kl + 1/2) - kD] = o, (8) 

where s = d/1 and k > o. For fix ed sand k, (8) impli es that k = 2/2/gs in 
the limit oo, which is in agreement with Reid (1958). Hence, in this 
limiting case, the wave velocity in the positive y direction, -w/k, is given by 
- gs/2f. This corresponds to a wave moving in the negative (positive) y 
direction if f > o (f < o ). For finite I such that s « 1, f2 I « g, and d « D, 
the only solution to (8) is that for which kl« 1 . With this approximation, 
it follows that the wave velocity in the positive y direction is - (gD) 1f2 or 
(gD) 1f2 according to whether/> o or f < o.6 Thus, for a finite-width shelf, 
the inertial edgewave behaves like a long gravity wave traveling in water of 
depth D. Also, it is analogous to a K elvin boundary wave (Proudman 1952: 
2 5 3-2 5 5) in that, for a specified hemisphere, both can propagate in only 
one direction along the coast (for example, southward off the eastern coast of 
the United States). 

Prior to discussion of the solution of (6) for an explicit relationship, 
a= a(il), the dispersion relationship obtained by Reid (1958) for waves 
traveling along a gently sloping shelf of semi-infinite width is presented. 

6. For the case w = -/, the wave velocities corresponding to infinite and finite / are identical to 
those given above, so that all inertial waves are included in the above discussion. 
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In this case, h = sx, x > o , where s is the shelf slope, so that the equation 
fo r 'Y/ (x) is identical to that fo r the case of a finit e-width shelf, provided d/1 
is replaced in the latter with s. However, in order to ensure that 'Y) o as 
x oo on the shelf, it is required that v be a non-negati ve integer, n , since 
for v not a non-negative integer, 

Lv (z) ~ - ( I /n ) sin (nv) I' ( v + 1) exp (z)/zv+ ', z )) 1 , 

whereas fo r v = n = o, 1, 2, ... , 

Ln(z)~(- 1)nzn/n!, z )) 1 

(Pinney 1946). Hence, for the shelf of semi-infinit e width, the implicit 
dispersion relationship takes the simple form 

w3- [f 2 +( 2n + 1)gks] w + gksf=o, k > o , n = o,1,2, ... . (9) 

Note that (9) is equivalent to (7 ) if, in the fo rmer, n is replaced by v , ands 
by d/1. 

3. Approximate Solution of Dispersion R elationship. For specifi ed values of 
the parameters c5 and LI , the determination from (6) of an expli cit dispersion 
relati onship in the form a = a(A) fo r a large domain of A is a fo rmidable task 
in view of the involved relationship between v , a, and A [see (7)] and the 
lack of detail ed tables of Lv(z ) fo r a wide range of v and z . However, for 
LI (( 1 , a fi rst approximation to a = a(A) can be determined simply from 

L v(2l) = o. (1 o) 

In connecti on with many real ocean-bottom topographies, this approximati on 
introduces an error of only a few percent, since typicall y LI = 4 x I o- 2 

( corresponding to d = 2 00 m and D = 5 000 m). Thus, the soluti on of ( 1 o) 
itself fo r a = a(A) is of considerable interest. Physicall y, the condition LI (( 1 

means that the waves on the shelf are weakl y coupled to those in the deep-sea 
region and that, to within o (LI), the waves on the shelf have a node at the 
edge of the shelf. 

Before a = a (A) is determined fr om (1 0), mention is made here that, for 
the case of continental shelf waves discussed by Robinson ( 1964), which are 
characteri zed by the conditions A (( 1 and a (( 1 , the dispersion relationship 
a = a(A) is determined from 

again with the condition LI (( 1 . Since v ~ 1 / 2 a fo r A (( I, a (( 1 , and 
o (( I (also one of the conditions assumed in Robinson's theory), and since 

Jim Lµ113(s ) = J0 [2 (µ)J, Re(µ) > o 
e-+O 
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(Pinney 1946 ), (IO) behaves like ( 11) for this low-frequency long-wave-
length limit. 

To my knowledge, the only available tables of the zeros of the Laguerre 
function are of the following form (for example, see Slater 1960: 112): For 
a specified value of v > o, the corresponding positive values of z that satisfy 
the equation Lv(z) = o are listed. (There are no positive zeros for v < o, 
since Lv(z) is a monotonically increasing function of z with Lv(o) = 1). 
However, to determine a first approximation to a = a(..1.), the values of v 
corresponding to a specified value of A > o that satisfy the equation Lv(2..1.) 
= o must first be found. These v's shall be denoted by vn(n = 0,1,2, .. . ). 
Then, for each A > o and corresponding vn, eq. (7) (with a specified) yields 
three real values of a. These dimensionless frequency functions shall be 
denoted by a(j,vn;..1.), where j = 1,2,3 denotes the three different modes 
corresponding to each order vn, Further, for each A > o and order vn, the 
product of the three roots is equal to - ..1./a < o; hence, two of the frequency 
functions are positive and one is negative. a( 1, Vn; ..1.) shall be adopted as the 
negative root, which corresponds to waves moving in the positive (negative) 
y direction according to whether f > o (f < o ). With this notation, the roots 
of (7) can be written in the form 

where 

In the above, the terminology and conventions used by Reid (1958) have 
been essentially adopted in order to facilitate a comparison of the frequency 
functions for each model. For the case of the shelf of semi-infinite width, 
the frequency functions shall be denoted by a(j,n;..1.) (n=o,1,2, .. ; 
j = 1,2,3), with the understanding that the"/" in A is the same as that used 
in the definition of the shelf slope, viz., s = d/1 . For n = o, the three modes 
are given by 

a(1 ,o ;..1.) =-(Aja+ 1/4)112
- 1/2, 

a(2,o;..1.) = (Aja+ 1/4)112
- 1/2, 

a(3,o;..1.) = 1. 

The modes corresponding to j = 1 , 2 are the familar lowest-order edgewave 
modes as modified by the Coriolis parameter; the third mode, the inertial 
oscillation discussed in§ 2, coincides with the special case a(2,0;2a). For 
the higher orders (n::: r ), the modes are given by (12), with Vn replaced by 
n. The modes corresponding to j = I , 2 characterize the higher-order edge-
waves, and the mode corresponding to j = 3 characterizes the higher-order 
quasigeostrophic waves. 
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T able I. The first three zeros, Vo,v,,v2, of the equation Lv(2il) = o as a 

function of il. 
;i Vo v, Vz ;i Vo v, Vi 

0.05 14.155 76.063 186.098 2.25 0.041 1.550 4.033 
0.10 6.655 37.313 92.799 2.50 0.027 1.420 3.658 
0.20 3.155 18.563 46.362 2.75 0.Ql8 1.322 3.361 
0.30 1.967 12.313 30.737 3.00 0.012 1.245 3.118 
0.40 1.342 9.063 22.924 3.25 0.008 1.187 2.922 
0.50 0.992 7.188 18.237 3.50 0.005 1.142 2.760 
0.75 0.542 4.688 12.143 3.75 0.003 1.107 2.626 
1.00 0.330 3.469 9.018 4.00 0.002 1.081 2.515 
1.25 0.211 2.750 7.205 4.25 0.001 1.060 2.422 
1.50 0.137 2.278 5.986 4.50 0.000 1.044 2.344 
1.75 0.092 1.950 5.142 4.75 0.000 1.033 2.280 
2.00 0.061 1.722 4.509 5.00 0.000 1.024 2.226 

In Table I are given the first three orders, vn, as a function of il over the 
range 0.05 .:':. il .:':. 5. In essence, the program used to determine the Vn's 
corresponding to each A involved the following: The Laguerre function was 
evaluated by using the first 25 terms in the series (5) for a sequence of v's 
in the neighborhood of an approximate value of Vn given by A""' :n:2 (n + 3/4)2/ 
(4 + 8vn) (Slater 1960: 107). The sequence of v's were chosen in a manner 
such that the value of Lv converged to zero, with the computation stopping 
at that value of v for which ILvl < 0.001. 

From Table I it is seen that, as il increases, each order Vn n (the order 
of the waves on a shelf of semi-infinite width), with the convergence being 
more rapid as the order decreases. Physically, this means that, for relatively 
short waves (longshore wavelengths of the order of the shelf width), the 
wave modes corresponding to each order are insensitive to the finit eness of 
the shelf width. As the wavelength increases, however, the shelf width plays 
an increasingly important role in determining the wave modes. In view of 
the exponential factor, exp ( - kx), in the wave amplitude on the shelf [see (4)], 
the above result is not surprising: For relatively large k (short waves), the 
wave amplitude will be essentially zero quite close to the shoreline; for small 
k (long waves), however, the wave amplitude will be finite at the edge of the 
shelf. 

In Fig. 1 are illustrated the frequency functions for the finite-width and 
semi-infinite-width shelf corresponding to the first three orders. In com-
puting these functions, a value of o = 0 .02 7 has been used [1/ 1 = o. 7 3 x 10-4 

sec 1 (rp = ± 30°), I= 1 oo km, and d = 200 m (or s = 2 x 10-3)]. Note in 
Fig. 1 that both continental shelf waves7 and quasigeostrophic waves, though 
nondispersive for w « J and kl« 1, are dispersive when considered over a 
larger frequency and wave-number domain. Second, observe that, for the 

7. H ere, continental shelf waves are regarded as low-frequency waves that t ravel along a sloping shelf 
of finite wid th and that correspond to Robinson's conti nental shelf waves when w « J and kl « 1 • 
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Figure r. P lots of the frequency functions versus wave number for a shelf of finite width (solid lines) 
and semi-infinite width (dashed lines) with c5 = 0.027 [IJI = 0.73 x 10- 4 sec- 1, d =zoom, 
I = roo km (or s = 2 x 10-3)] . The different orders Vn or n are indicated on the curves. 
The modes j = r ,2 correspond to edgewaves and the mode j = 3 corresponds to conti-
nental shelf or quasigeostrophic waves. There is no lowest -order quasigeostrophic frequency 
functi on shown since it coincides with the point a(2,o; zc5). Also, the edgewave frequency 
functions for a shelf of fin ite width have been plotted fo r only those values of kl fo r which 
K > o, the condit ion fo r t rapped waves. 
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edgewave modes (j = I ,2) for a finite-width shelf, there is a long wavelength 
cutoff for trapped waves. For the lowest-, second-, and third-order edgewaves, 
these cutoffs occur at wavelengths corresponding to kl "" 0.2, 0.5, and o. 7 5, 
respectively. For the trapped edgewaves on a shelf of semi-infinite width, 
however, there is no such cutoff. Third, note that, for the trapped edgewaves 
on a shelf of finit e width, the frequencies are always considerably greater than 
the Coriolis parameter. Finally, note the marked asymmetry in the lowest-
order edgewave modes for a shelf of semi-infinit e width when kl « r : 
as o, a(2,o ;.?.) o whereas a(r ,o; .?.) This phenomenon, which 
is due to the Coriolis force and which was first pointed out by Reid (1958), 
is practically absent in the lowest-order edgewave modes for a shelf of finit e 
width. In fact, for the shelf of finite width, the asymmetrizing influence of the 
Coriolis force on the lowest-order edgewave modes is most noticeable for 
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Figure 2. Lowest-order edgewave frequency functi ons for a shelf of width 100 km and maximum 
depth 200 m, depicting the asymmetrizing influence of the Coriolis force. With the 
Cori olis force neglected (dashed lines), the frequency functions are symmetri cal about the 
wave-number ax is. 
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relatively short waves (Fig. 2). For the second-and third-order edgewave 
modes for a shelf of finit e width, the changes in the fr equency functions due 
to the Coriolis force are less than 1 °/ 0 and 0.5°/0 , respectively . 
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