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ABSTRACT 

This paper considers the response of the sea surface to a low-frequency long-wavelength 
plane-wave pressure distribution that progresses eastward across a large circular continent 
having a narrow sloping shelf that drops off vertically to a flat ocean basin . Using the lin-
earized inviscid shallow-water equations for a homogeneous uniformly rotating fluid, it is 
shown that the sea level on the shelf and in the deep-sea regions generall y responds as an 
inverse barometer. However, for certain small fr equency bands, the response on the shelf 
is not inverse barometri c. In this case the forcing fr equency excites an eigenfrequency of 
the system, and the shelf sea level consists of the superposition of two waves: (i) an eastward-
moving plane wave and (ii) a nondispersive circularly traveling wave (continental shelf 
wave) that moves counterclockwise in the southern hemisphere and clockwise in the northern 
hemisphere. Also determined are the changes in the shelf-wave phase velocity due to a 
continental slope region and deep-sea stratifi cation and current that fl ows alongside the shelf . 

1. Introduction. When a static normal-stress distribution acts upon the sea 
surface, the sea level reacts as an inverse barometer, or "barometrically". 2 

In the past this has also been assumed to be the case when the distribution is 
time-dependent, as in ordinary moving weather systems, provided the fluctu-
ations are of sufficiently low frequency ( considerably less than the Coriolis 

1. Accepted for publication and submitted to press 8 April 1967. 
2. In the lit erature, such a response is often called " isostatic" (for example, see H amon 1966); 

however, in thi s paper th e term "ba rom etric" is used. 
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parameter). Recently, however, Hamon (1962, 1966) and Hamon and Hannan 
(1963) have observed that the daily mean sea-level fluctuations on the Aus-
tralian coast are not barometric: at four stations on the eastern coast the 
behavior was appreciably less than barometric. (That is, the magnitude of the 
"barometric factor," or ratio of daily mean sea level changes to atmospheric 
pressure changes, is appreciably less than the expected value of I .o cm/mb.) 
However, at two stations on the western coast the behavior was appreciably 
greater than barometric. On the other hand, an analysis of a simultaneous rec-
ord of the daily mean sea-level flu ctuations at Lord Howe Island has indi-
cated a barometric behavior. 

Another unexpected phenomenon observed by Hamon (1962, 1963, 1966) 
is the existence of time lags in the adjusted sea level between neighboring 
coastal stations whose separation is of the order of I oo km. (The adjusted 
sea level is defin ed as the observed sea level with the atmospheric pressure 
eliminated according to the hydrostatic relation 1-cm decrease in sea level 
for 1-mb increase in pressure.) More specifically, for a seri es of six east-coast 
stations between Eden (37°S) and Urangan (25°S), the lags between adjacent 
stations are related in a manner that suggests the presence of a northward-
traveling wave having a speed of about 400 cm/sec. On the other hand, the 
lagged correlations between adjusted sea levels at the west coast stations G e-
raldton, Fremantle, and Bunbary suggest the presence of a southward-traveling 
wave. In this case the wave speed has not been determined accurately, but 
it has been estimated to be in the range of 300 to 600 cm/sec. 

Robinson ( I 964) has theoretically established that there are low-frequency 
long-wavelength surface waves that travel parallel to a straight continental 
boundary. For the topography of the sea bottom in the vicinity of the continent, 
he employed a uniformly sloping shelf that drops off vertically to deep water 
of constant depth. He found that these waves, which he termed "continental 
shelf waves," are essentially confined to the shelf and depend very strongly 
on the Coriolis parameter. But, they are not truly Rossby waves, since Robin-
son has treated the Coriolis parameter as a constant; nor are they edgewaves 
(Munk et al. 1956, Greenspan 1956, Reid 1958) for the following reasons: 
(i) the decay of the shelf-wave amplitude occurs in the deep-sea region, (ii) in 
a specified hemisphere, the waves can propagate in only one direction along 
the coast, (iii) the waves are nondispersive, and (iv) the waves have a very 
low frequency (considerably less than the Cori oli s parameter). Furthermore, 
these waves are characterized by a hydrostatic balance in the verti cal direction 
and by a nearly geostrophic balance in the direction normal to the coast; 
however, in the direction along the coast, the geostrophic terms and the local 
acceleration are of the same order of magnitude. Robinson has also shown 
that when shelf waves are excited by a northward-traveling plane-wave pres-
sure distribution, a nonbarometric behavior on the eastern Australian coast 
occurs, provided the forcing frequency lies within a small neighborhood of 
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an eigenfrequency. Finally, he showed that, on the eastern Australian shelf, 
the waves travel northward, and the lowest-mode wave moves with a speed 
of 250 cm/sec, which is of the order of the observed wave speed in this region. 
However, because Robinson has dealt with a straight infinit e coastline, his 
forced solution does not yield any information about the variation in sea-level 
behavior with latitude. Second, his solution does not indicate whether shelf 
waves are also excited by the generally eastward-moving weather systems that 
progress across Australia. 

To obtain for the Australian continent a more realistic geometry that will 
yield the latitudinal dependence of the sea-level behavior, and in order to 
answer the question raised at the end of the above paragraph, fir st consideration 
in this paper is given to the following problem: the response of the sea surface 
to a plane-wave pressure distribution that progresses eastward across a circular 
continent having a uniformly sloping shelf that drops off vertically to water 
of constant depth. For this model, it is shown in § 2 that the sea level over the 
shelf and in deep-sea regions generally responds barometrically. However, fo r 
certain small frequency bands, the response on the shelf is not barometric. 
In that case the shelf sea level consists of the superposition of two waves: 
(i) an eastward-traveling plane wave and (ii) a nondispersive circularly traveling 
shelf wave that moves counterclockwise in the southern hemisphere and clock-
wise in the northern hemisphere. The above theory, when applied to the 
A ustralian stations, where an anomalous sea-level behavior has been observed 
(§ 3), does in general predict the observed behavior, provided the forcing 
frequency lies in a small neighborhood of an eigenfrequency. However, the 
theoretical lowest-mode wave speeds for the eastern and western coasts of 
Australia are somewhat less than the observed. In § 4 it is shown that, if the 
geometry of the model considered in § 2 is modified so as to include a finit e-
slope continental slope region, the wave speeds are significantly increased. 
For the eastern and western coasts of Australia, the increase in the lowest-
mode wave speeds is about 30°/o. While there is now good agreement between 
the theoretical and observed wave speeds for the west coast, there is still a 
significant discrepancy for the east coast. In view of the fact that the theory 
does not take into account the intense current and associated stratification 
that is present off the eastern Australian coast (Hamon 1965, CSIRO Australia 
I 963), this discrepancy is perhaps not too surprising. In § 5 the change in 
wave speeds due to deep-sea stratification (idealized by a two-layer model) 
and a uniform upper-layer deep-sea current that flows alongside the shelf is 
determined. 

2. Formulation of Problem and its Solution. EQUATION FOR THE ADJUSTED 

SEA LEVEL. Let the center of the continent be the origin of a cylindrical 
polar coordinate system (r, 1P, z), with z measured vertically upward and r, 1P 
measured in the usual manner. Furthermore, let C be the sea-level distortion 
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and 0 the negative of the atmospheric-pressure fluctuations measured in cen-
timeters of water. L et 0 have the form of an eastward-moving plane 
wave,3 viz., 

0 = 0o exp [i(kr cos '!j) -wt)], 

where 0 0 and k are assumed to be constant. In terms of ( and 0 , the adjusted 
sea level, 'Y/, which is a measure of the deviation of the sea-level behavior from 
exact barometric behavior, is given by 'Y) = ( - 0. In terms of the above notation, 
the linearized nondissipative equations of shallow-water theory for a uniformly 
rotating homogeneous fluid imply that 'Y) (r, 1/') sati sfies the equation 

rhV2 17 + h' (rri,r + ijw-'ri ,111) - r(/ 2 -w2)g-'ri = 

= r(/2 - w 2)g-1 0o exp (ikr cos 1/'), 
(2. I) 

where z = - h(r) is the equation of the sea bottom,/ the Coriolis parameter 
(assumed constant), and g the acceleration of gravity (for details, see Mysak 
1966). In the derivation of (2.1) it has been assumed that 'Y/ and ur, u

111 
(the 

horizontal velocity components) have a time dependence of the form exp ( - iwt). 
Finally, in terms of ri(r,1/'), ur(r,1/') and u

111
(r,1/') are given by 

ur (r,1/') = g(iwri,r - Jr-' 17, 111) / ( /
2 -w2

) , (2.2) 

provided w2 ,tc J2. 
u111 (r,1/') = g(frJ,r + iwr- 1 'Y), 111) / (f2 -w2

), (2.3) 

For the circular geometry described in § 1, h (r) takes the form 

{ 
D, r > R + I ( deep-sea region), 

h = d(r-R)/1, R < r < R + l (shelf region), 

where D is the depth in the deep-sea region, d the depth at the edge of the 
shelf, I the shelf width, and R the continental radius. Eq. (2.1) is to be solved 
separately in the deep-sea and shelf regions subject to the boundary conditions 
I 'Y) (R, 1/') I < M (a constant) and 'Y) ( oo, 1/') = o. At the edge of the shelf, 
'Y) and urh (radial transport component) are stipulated to be continuous. 

In (2.1), (2.2), and (2.3), we assume that w 2 <( / 2
• Hence, in the deep-sea 

region, (2. 1) reduces to 

(V 2 
- (P) 'Y/ = (P 0o exp (ikr cos 1/'), r > R + I, 

where (P = / 2/gD. Upon examining the forcing term in (2.4), note that, 
for r~k-1 and fP « k2

, 'Y) = O((P 00/k2
), which impli es that in the deep-sea 

region the amplitude of 'Y) is generally much less than that of 0, which indi-

3. The response of the sea surface to an arbitrary forcing function wi ll be dealt with in a future 
paper. 
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cates a nearly barometric behavior. For s = 1/R « 1 and y = -fl/w R, 
a:= f2 Rl/gd, 8/8~, and 8/8'f/J each of order unity, eq. (2.1) in the shelf region 
reduces to 

~'Y/,,;,; + 'YJ,,;-iy'Y),l/l = ea:00 exp(ikRcos'f/J), O< ~ < I, (2.5) 

where = (r - R)/1. Hence 'Y/ = 0 (sa:0
0
/y), which implies that the shelf sea-

level behavior is also essentially barometric unless resonance occurs. The un-
forced equations obtained from (2.4) and (2.5), together with the above stated 
boundary and continuity conditions, constitute an eigenvalue problem with 
eigenvalue y. Since yoc w-1

, it follows that, when the forcing frequency lies 
within a small neighborhood of an eigenfrequency, 'Y/ on the shelf is amplified, 
thereby leading to a nonbarometric behavior. 

UNFORCED SOLUTION: CONTINENTAL SHELF WAVES. The appropriate 
solutions to (2.4) and (2.5), which are single-valued in 'f/J, are given by 

(2.6) 

where m = o, ± 1, ± 2, . . . , Km is the m th-order modified Bessel function of 
the second kind and J

0 
the zeroth-order Bessel function of the first kind. 

Upon applying the continuity conditions to (2.6), it is found that .A0 = B0 = o 
and the eigenvalue equation is obtained: 

J 0 [2(ym)1l 2
] [1 -LI+ e(1 + s){3RK~/ ymKm] -

-Ll(1 +s)(ymt1l2 JJ2(ym)1l2
] =O (mcfao), 

(2.7) 

where Km and K~ are evaluated at~= 1 and LI = d/D. For {3RK~/Km and 
ym each of order unity, ands« 1 and LI « 1, eq. (2.7) implies that the eigen-
values are essentially given by the zeros of J

0
• Let A.0 i (j = 1, 2, ... ) denote 

the roots of the eq. J
0
(A) = o; then, under the above approximations, the 

eigenfrequencies are given by 

Wj,m = -4.flm/RA.~1 (m cfa o). (2.8) 

Finally, in view of (2.8), the adjusted sea-level eigenfunctions can be written 
in the form 

where Yoi is defined by 2(y0 1m)112 = A.0 1. 

The following properties of the unforced solution should be noted. 
(i) Each eigenfunction, 'Y/i• m, is in the form of a circularly traveling wave 

that is almost entirely confined to the shelf; hence we adopt the term "conti-
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r; 1,8 (U,;,),,a 
(u,) ,,a 

1. Contour lin es of the shelf-wave field, 17,,8, and associated velocity fields ov~r half a wa\·e-
length (o ,; tp ,; n /8) at the instant t = o, corresponding to the case / = JOi cm, R = 

x !OS cm, and f = - 0.73 x 10-4sec.-1• Each field is shown for only half a wavelength, 
since 17 and uip are even and " r is odd in tp. Since f < o in this example, these fi elds propagate 
counterclockwise around the shelf with constant angular velocity, w,, s/8. 

nental shelf waves" for the 171, m's. These waves correspond to Robinson's 
plane-traveling shelf waves. To within O(LI), each wave has an antinode at 
the coast and a node at the edge of the shelf; for j = 2, 3, . . . , the wave also 
has 1, 2, ... node(s) in the range o < < r. The shelf-wave pattern 17,,s 
[obtained by taking the real part of (2.9) with the term O(LI) neglected] and 
associated shelf-current patterns [derived from (2.2) and (2.3)] at the instant 
t = o are shown in Fig. I for the range o < ,p < n/8. Note that Ur is in quadra-
ture with 'Y/ and uip, which are in phase, and that Ur is an order of magnitude 
smaller than utp. In view of the latter result and the fact that w is an order of 
magnitude smaller than f, the radial momentum equation impli es that the 
waves are characterized by a nearly geostrophic balance of forces in the radial 
direction. 

(ii) The eigenfrequencies, w1, ,n, form a doubly discrete set. In the Cartesian 
geometry, the eigenfrequencies are given by w1, k = - 4/lk/J...~1, where k is 
a N-S wave number that li es in the range P/2 « 1 (Robinson 1964). In the 
case of the circular geometry, it is clear that the effect of the periodicity re-
quirement is to quantize the wave number, m. 
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(iii) In both geometries the waves are nondispersive and the phase velocity 
(wave speed) of the jth mode is given by 

(2. 10) 

In ( 2. IO) note that the wave speed is proportional to the shelf width and is 
independent of the depth and acceleration of gravity, which is quite unlike the 
case for gravity waves and edgewaves. Furthermore, in che circular geometry 
observe that the waves travel counterclockwise in the southern hemisphere 
and clockwise in the northern hemisphere. 

Note that continental shelf waves, though similar in form, are quite distinct 
from the well-known edgewaves (Munk et al. 1956, Greenspan 1956, Reid 
1958). Edgewaves are dispersive, of a much higher frequency, are strictl y 
confined to the shelf, and, in a specified hemisphere, can propagate in both 
directi ons along the shelf. 

FORCED SOLUTION. To obtain the forced solution for the shelf, 17 is expanded 
in terms of the eigenfunctions given in (2.9), with W j,m in the exponent re-
placed by w. The coefficients are then obtained from (2.5) upon employing 
the orthogonalit y relations for the eigenfunctions. To within O(LI) it follows 
that the solution takes the form 

where 

Eq. (2.11) explicity shows that, unless the forcing frequency, w, li es within 
a "resonant" neighborhood of w1, m defin ed by 

( 2 . I 2) 

the sea-level behavior on the shelf is nearly barometri c. However, if w li es 
within a resonant neighborhood of WJ,m, then 17 has an amplitude of 0(0), 
the leading contribution being N1,m, the (j,m) th term of (2.11). In such a 
case the theoretical sea-level ampli tude on the shelf is essentiall y given by 
/ 0 + N1, m / . However, since the eigenfrequencies corresponding to j = 2, 3, ... , 
which are considerably less than the Coriolis parameter, have very large values 
of m and since Jm(kR) rapidly decreases with increasing m, the resonant neigh-
borhood ( 2. 1 2) will be largest for the eigenfrequencies corresponding to j = 1. 

Hence, an anomalous sea-level behavior on the shelf is essentially determined 
by / 0 + N,, m /, with w within the resonant neighborhood of w,, m given by 
(2.12), with j = 1. 

3. Application of Theory to Australia. In this section the theory developed 
in § 2 is applied to those regions of Australia where the observations on sea 
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level have been made by Hamon. T o carry out this compari son between theory 
and observati on, the ori gin of the coordinate system used in our model 
is taken to li e at Alice Springs, so that f = - o.59 x 10-4sec1 and R = 
2.0 5 x r 08 cm. Furthermore, d = 2 x 104/ cm and D = 5 x I o5 cm for the 
maximum shelf and average deep-sea depth and I = IE = 5 x I 06 cm and I = lw 

= 7.5 x 106 cm, respectively, for 
30~-----,-;,----- - - ----, the east-coast and west-coast shelf 

N 
..a 
E 

widths. 

20 

10 

Fig. 2 represents the "winter" 
(April to September) power spec-
trum of the daily mean atmos-
pheric pressure flu ctuati ons at 
Sydney. In Fig. 2 the product of 
frequency and spectral energy 
density has been plotted against 
the logarithm of frequency; note 
that there exists a single, albeit 
broad, maximum at a period of 9 
days. The winter spectrums for 
other midlatitude Australian sta-

= <C 

= <C 
::> m= 5 7 9 11 15 

01------'------'------.,-, 
0 .05 0.1 0. 2 0 5 

FREQUENCY (CYCLES/DAY) 

20 10 5 
PERIOD (DAYS) 

2 ti ons computed by Hamon are 
similar to that shown in Fig. I 

and are also peaked at 9 days. 
On the other hand, during "sum-
mer" (October to March) the 
spectrums at the same stations 

Figure 2. Winter spectrum of dail y mean atmospheric 
pressure at Sydney, according to Hamon 
(1 962). The vert ical lin es through the spec-
trum repr esent lowest- mode eigenfr equcncies, 
W 1, m (m = 5,6, ... ,20) for I = IE. 

are all peaked at a period of 5 
days. It is well known that the ordinary weather systems over mid-Australia 
generally progress eastward. Hence the plane-wave driving force, 0, used in 
the above theory is a fairly good approximation for the actual atmospheric 
pressure variations over mid-Australia, assuming that during winter (summer) 
the forcing frequency, w, li es in a small neighborhood of ww = 0.81 x 10-5 

sec-1 (ws = r.45 x 10- 5 sec-'). In the expression for 0 , the wave number k, 
which is a measure of the E-W distance between mid-Australian anticyclonic 
centers, has the value n x 1 o- 8 cm-' (Karelsky, personal communication). 

For the above values off, I, w, .. . , note that, when resonance does not 
occur, the behavior in the deep-sea and ( eastern and western) shelf regions is 
barometric to within O ( I 0-2). Note also that the approximations made in 
developing the theory ( w2 « J2, I« R, d « D, .. . ) introduce an error of 
only a few percent in so far as the case of Australi a is concerned. 

In considering the theoretical sea-level behavior at the eastern and western 
coasts of Australi a, the following questi on arises. For a specifi ed shelf width 
(IE or lw) and season (summer or winter), which w1,m's are most lik ely to be 
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excited? In Fig. 2 are plotted some of the eigenfrequencies, w,, m, as given 
by (2.8), with I = IE. For this case it is evident that w 1 , 8 and w,,9 are most 
apt to be excited, since only these eigenfrequencies li e at the peak of the spec-
trum. For I = lw, a simil ar analysis reveals that w,, 5 and w,, 6 are most likely 
to be excited. During summer, the eigenfrequencies most lik ely to be excited 
are w,,,4, n>i, rs for I = IE, and w,,9, w,, ,o for I = lw. 

To illustrate the coastal sea-level behavior in the neighborhood of the above 
specifi ed eigenfrequencies, the normalized amplitude is used: 

Sm= 10 +Nr,ml~=o/0o, 

= { 1 + A -:n + 2 .dm cos [m ( VJ + ~n - kR cos VJ]}" \ 
( 2 . l 3) 

where 
Am= t: !7.Jm(kR)/ o.62(my-1.44). 

W hen Sm > 1 or < 1, the sea-level behavior at the coast is respectively greater 
or less than barometric. When A m = 0 ( 1 ), note from ( 2 . 1 3) that the sea-level 
behavior does depend on VJ (as well as on m, w, and I ). Hence, it is not sur-
prising that the observed Australi an sea-level behavior at the eastern coast is 
quite different from that at the western coast. In Figs. 3- 6 the amplitude 
Sm is plotted as a functi on of frequency for those east- and west-coast stations 
where an anomalous sea- level behavior has been observed during winter or 
summer or both. These stati ons are li sted in T able I along with their observed 
behavior ( < and > representing respectively a less or greater than barometri c 
behavior) and posit ion VJ· N ote in T able I that the observed sea-level behavior 
during summer is less than barometri c at each east-coast stati on and greater 
than barometri c at each west-coast stati on; with the exceptions noted m 
T able I, the same statements apply to the winter sea-level behavior. 

In Figs. 3- 6, note the foll owing : 
(i ) For both l = IE and/= lw, the amplitude as or 

w m - . This hypernonbarometri c behavior at resonance ari ses because 

Table I. A ustralian stati ons with observed anomalous sea-level behavior. N o 
winter sea-level behaviors are avail able for N ewcastle, Port K embla, and 
G eraldton; hence, in the winter column these stations are marked with 
dashes. O bserved behavior 

Posit ion 'P W inter Summer 

East Coast Coif's H arbour ... . .. . . .. .. . . .. . . . - 24° < < 
Newcastl e .. ........ . . .. . . . . ... . . . - 33° < 
Sydney .. . ... . .. ....... .... . . . .. . - 37° < < 
Port Kembla ... . . . .. . . . . . .. ... .. . 39° < 

\,Vest coast Fremantle . . . . ... ... ... . . .... . .. . . - 150° > > 
Gerald ton . .. . . .. . . . . . . . ......... . - 161° > 
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PORT KEMBLA 
SYDN EY 

NEWCASTLE 
GOFF'S HARBOUR 

GOFF'S HARBOUR 
SYDNEY 

tj, 
GOFF 'S HARBOUR -24 ° 
NEWCASTLE - 33° 
SYDNEY - 37° 
PORT KEMBLA -39° 

ww = 0 .81 x 10-5 sec- 1 

0 .80 ( 10 5 w,,8 ) 
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SYDN EY -37° 
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0 .8 1 

0.91 

Undamped sea-l evel amplitu de versus frequency in the neighborhood of eigenfrequencies 
w,, 8 (top) and w,, 9 (bottom) fo r shelf width / = le- The amplitudes S9 for Port K embla 
and Newcastle have been omitted, since they are nearl y identical to S9 for Sydney. 

PORT KEMBLA 
SY DNEY 
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Figure 4 . Undamped sea-level amplitude versus fr equency in the neighborhood of ei• enfrequencies 
w,, ,4 (top) and w,, 1 ; (bottom) for shelf wid th/ = /E · b 
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215 
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Figure 5. Undamped sea-level amplitude versus frequency in the neighborhood of eigenfrequencies 
w,, 5 (top) and w,, 6 (bottom) for shelf width / = lw. 
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6. Undamped sea-level amplitude versus fr equency in the neighborhood of eigenfrcquencies 
w,, 9 (top) and w,, 10 (bottom) for shelf wid th l = lw. 
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both diffusive and nonlinear effects have been neglected. To determine the 
amplitude when the forcing frequency is equal to an eigenfrequency (within 
the framework of a quasi-steady model), at least one of these effects must be 
incorporated into the equati ons of moti on. 

(ii) Behavior at the eastern coast (l = IE)- In Fig. 3, observe that the theo-
retical behavior during winter at all stations (in particular, at Coff's Harbour 
and Sydney, where a less than barometric behavior has been observed) is 
distinctly less than barometric when the forcing frequency, w, li es in the 
neighborhoods 5 x 10- 9 ,:S w,, m -w ,:S 2 x 10-8 sec' (m = 8,9). For w in these 
neighborhoods, the amplitudes Sm dip down to the left of w,, m to a value 
well below the barometric value of Sm = I. These neighborhoods correspond 
to very small portions of the atmospheric pressure spectrum (see Figs. 2 and 3). 
On the other hand, the theoretical behavior during summer (see Fig. 4) is 
in agreement with the less-than-barometric-behavior observed at (i) New 
Castle and Coff 's Harbour when 5 x 10-10 .::5 Wr, ,4 - w ,:5 3 x I o-9 sec', 
(ii) Port K embla when 2 x 10-1 0 ;:5_ w - w,, ,4 ;:5 2 x I o-9 seer, and (iii) New-
castle, Sydney, and Port Kembla when 10-1 0 ;:5 w,,,; -w ,:S 10-9 sec'. 
These neighborhoods correspond to even smaller portions of the <I> spectrum. 

(i ii) Behavior at the western coast (l = lw) . Fig. 5 is essentially a mirror 
image of Fig. 3; in Fig. 5 the amplitude dipping occurs to the right of the 
eigenfrequencies. During winter the theoretical behavior at both stations 
(particularly at Fremantle, where a greater-than-barometric-behavior has 
been observed) is greater than barometric when w li es in the neighborhoods 
2 x 10-8 ;:5 w,,m -w ;:5 10-7 sec' (m = 5,6) and 10-8 ;:5 w-w,,m .::5 2 x 10-8 

sec' (m = 5,6). During summer (see Fig. 6), the theoretical behavior at both 
stations is greater than barometric (as observed) when w li es in the neighbor-
hoods 5 x 10-9 < w,,,o-W < 10-8 sec-1 and 10-9 < w-w,,10 < 2 x 10-9 

sec'. However,for win thtneighborhood of w,,9, 1~ general co~parative 
statement can be made regarding the theoretical and observed anomalous 
behaviors. 

Summarizing, it is possible to say that during winter the theoretical sea-level 
behavior is less than barometric at all east-coast stations and greater than baro-
metric at all west-coast stations when the forcing frequency li es in a neighbor-
hood of Wr,m of the form OW2 < W,,,n-W< Ow,, where ow,/ow2=0(10) 
and OWj > o (i = 1,2). With the exception of a few cases, the same statement 
appli es to the behavior during summer. At the eastern coast (ow) . = 
0( - 8 -1) d (J: ) O( _ _ ' 1 

wmter Io sec an u w, summer = 1 o 9 sec 1 
), whereas at the western coast, 

(ow,)w!nter = 0 (10-7sec') and (ow,)su'?mer = 0(10-8sec1). That is to say, 
for a given season, the anomalous behavior on the eastern coast is more finely 
"turn~d" ~han that on the western c~ast, and for a given coast, the anomalous 
behavior 1s more finely tuned dunng summer than during winter. The 
reasons for these two results are that IE < fw and ww < ws, respecti vely. 

Finally, note that the lowest-mode (j = 1) shelf wave travels counterclock-
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wise with a speed given by Cr = - f If 1.44 [ see ( 2. 1 o )]. Therefore, in the 
neighborhood of the eastern coast (I = IE) this wave travels northward with 
speed Cr = 200 cm/sec, which is about half the observed speed of 400 ± 1 oo 
cm/sec. In the neighborhood of the western coast (/ = lw), this wave travels 
southward with speed Cr = 310 cm/sec, which lies just within the error bounds 
for the observed speed, viz., 300-600 cm/sec. 

4. Influence of Continental Slope. If a finite-slope continental slope region is 
included in the theory of edgewavcs, the wave speed is increased by about 2 ° / 0 

(M unk et al. 1956). Since the wavelengths and periods associated with conti-
nental-shelf waves are much greater, it is quite plausible that a similar geo-
metrical modification in our theory would give rise to an even larger increase 
in the shelf-wave speed. 

For a uniformly sloping continental slope of width /', with depth d at 
r = R + I and depth D at r = R +I+ I', 

h(r) = (D-d)r/l'-(D-d)(R+l)/l'+d. 

Note that, if (D-d)((l', then dh/dr(( 1, which is one of the underlying 
assumptions of shallow-water theory. Henceforth ( D - d) ( ( /' is assumed. 
With the above form for h, it follows that, to within our order of approxim-
ations, the eigenvalues are given by 

2 (ym) 11
• = .1.

0
1 + q1iJ' 1i• (m =fa o; j = 1,2, ... ), (4.1) 

where -q1 is a positive constant of order unity and iJ' = di'/ (D - d)l (for 
details, see Mysak 1966). For/'//= 0(1), eq. (4.1) implies that a finite-slope 
continental-slope region produces a significant increase in the eigenfrequencies. 
For Australia,/~= 7.5 x 10

6 cm and/~= 12.5 x 10
6 cm. For these values of 

/' and the case j = l, the eigenvalue equation yields (qr)E = -0.9 and (q,)w = 
-r.r. From (4.1) the new wave speeds are readily determined; the results 
are given in Table II, along with the theoretical values computed for the 
previous model and the observed values. 

Note in Table I that, 
with a continental slope, 
the wave speed at either 
coast is increased by about 
3o°fo, which, as conjectured 

Table II. Observed and theoretical lowest-
mode wave speeds. 

earlier, is much greater than 
the increase for edgewaves. 
The theoretical wave speed 
for the western coast now East coast .... . 
lies well within the error West coast ... . 

,-Wave speed (cm/sec) 

,-Theoretical~ Observed 
without with 

con tinen ta! 
slope 

200 
310 

continental 
slope 

270 
410 

400 ± 100 
300-600 
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bounds of the observed speed. For the eastern coast, however, the theoretical 
wave speed still lies outside the error bounds of the observed speed. 

5. Effect of Deep-sea Current and Stratification. Two-LAYER MooEL WITH 
CURRENT OF SEMI-INFINITE WIDTH IN UPPER LAYER. In this section the 
effect on the shelf-wave speeds of a very simple deep-sea current and strati-
fication system is determined. Here use is made of the simpler Cartesian geo-
metry employed by Robinson (1964), since a circular continental boundary 
itself does not yield any change in the wave speeds (see § 2). For a basic state 
(see Fig. 7), assume that there exists a uniform flow that moves parallel to the 
shelf but is confined to the deep-sea region and to an upper layer; in the deep-
sea region below this upper layer lies a motionless fluid layer of slightly greater 
density. Upon this basic state is imposed a surface-wave motion parallel to the 
coast; this motion in turn induces a wave motion at the interface. If it is as-
sumed that the basic current is geostrophic and baroclinic, then seaward the 
interface must slope downward. However, in the ensuing equations for the 
wave heights rJ and C', we make the simplifying approximation that the upper-
layer and lower-layer depths are constant. 

The intense current system (Hamon I 965) and associated deep-sea strat-
ification (CSIRO Australia 1963) off the east Australian coast prompts con-
sideration of this model. The main part of this current system, known as the 
East Australian Current (EAC), consists of a strong southerly flow (about 
100-150 km in width) that moves alongside the shelf between 27°S and 37°S 
(that is, approximately between Coff's Harbour and Sydney). At the horizontal 

- f=71+cp ~--+I___,___ 
HELF REGIONJ TUPPER LAYER, p 7-------

½ ( OVo do 

i ~---r-°;~~o~EA-
LOWER LAYER, p' Do 

OL. -----7~~ 
/ 

Figure 7. Cross-secti~nal diag~am of t\~o-layer model employed in the present analysis. The long-
sho~e c~ordmate_,y, mcreases mto the paper. The uniform basic flow, Vo, is in the negative 
y dtrect'.on and 1s con~ned to the upper layer and to the deep-sea region. For the eastern 
Australian coast, typical values of Vo, d0 , ••• are V 0 = 100 cm/sec, do= 2 •5 x io4cm, 
Do= sx 105cm, / = sx 106cm, d= 2 X 104cm, e = 1.025 gmcm-3, and e'- = 2. X 
,o-3 gm cm-3. (! 5 
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center of this current, the surface velocity reaches a maximum of about 100-
1 50 cm/sec; the current velocity decreases progressively with depth so that 
at about 250 m the speed is about half of the surface velocity; below 250 m 
the velocity decreases more slowly with depth. From recent O't measurements 
(CSIRO Australia 1963) it is possible to infer that, in the vicinity of this 
southerly flow, the vertical density profile is well correlated with the depth 
profile of the current velocity. That is to say, the density increases rapidly 
with increasing depth to about 200-300 m and then increases very slowly 
with depth. The density difference between the upper and lower regions is 
approximately 2.5 x 10-3 gm cm-3. 

In terms of the notation shown in Fig. 7, the unforced linearized inviscid 
equations for ('Y/,u,v) and (f ,u',v') are given by 

Shelf: 

where 

Deep-sea: 

upper layer: 

lower layer: 

Ut-Jv +gnx = o, 
Vt + Ju + g'Yjy = 0, 

(hu)x+ hvy+ 'Yjt = o, 

h = dx/1. 

} 

Ut -Jv - V0 ux + g17x = o, 
Vt+Ju-Vovy+ g'Yjy = o, } 
do(ux+vy)-V0 ('Yj-g')y + ('Yj-f)t = o, 

u;,-Jv'+g'~~+(e/e')g'Yjx = o, } 
v; +Ju'+ g' ~~ + (el e')g'Yfy = 0 , 

Do(u~+v~)+~; = 0. 

(5. I) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

In (5.5), the symbol g' denotes the reduced gravity and is related tog by the 
equation g' = g(1 -eh/). 

Note that, in the limit g'-+o(e' - e-+o), Vo-+O, Do-+O, and do-+D, the 
deep-sea equations (5.3)-(5.6) reduce to those used by Robinson (1964) for 
a homogeneous ocean of depth D without deep-sea current. However, with 
deep-sea stratification and current, the motion of 'Y/ is coupled to that of f 
[see (5.4) and (5.5)], so that new modes of oscillation for the system are ex-
pected. 

To determine the eigenmodes for the system (5.1)-(5.6) together with 
appropriate boundary and continuity conditions, we first make the trans-
formation ('Y/,u,v,t,u',v') =(N,X,Y,Z',X',Y') exp [i(ky-wt)], where 
N, X, ... are all functions of x alone. Then from (5.1)-(5.6) we obtain the 
following equations for the wave amplitudes N and Z': 
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Upper layer: 

h(D1
- k2)N + (Dh) (D - f k/ w)N-[(f2 -w2)/g] N = o, o < x < I, (5.7) 

d0 (D 2 - k2)N - [(f 2 - Wo
2)/g] (N-Z') = o, X > I, (5.8) 

Lower layer: 

D 0 [g'(D 2 - k2)Z'+g(e/e')(D2 -k2)N] - (f2 -w2)Z' = o, x > I. (5.9) 

Here wo = w + kl'o and D = d/dx. The boundary and continuity equati ons for 
the above system are as follows: for the upper layer, I N(o) I< M (a constant), 
N (co) = o, and the N and x-component of the transport are to be made con-
tinous at x = I; for the lower layer, X ' (I) = o and I Z' ( co) I < M (a constant). 

Assume that w2 ((j2 and wo2 (( f2; hence, in (5.7)-(5.9) and in the ex-
pressions for X, r, X', and r, W 2 and Wo

2 are neglected. In (5.7), let X = It; 
then, for k2 12 

( ( r and f212 ( ( gd, this equation reduces to 

where % = - f kl/w, which is the eigenvalue for the system; the above equation 
is identical to that derived by Robinson for the shelf-wave amplitude. The 
solution to the above equation that satisfi es the condition at the coast is given 
by A 8 '] 0 [2 (xt) 112

]. In (5.8) and (5.9), let X = kx; then, after some rearrange-
ment, these equations become 

r:;2 -(r + ex2)] N + ex2 Z' = o, o < X < kl, 

(!!_ - r) N + µ 2 [!!_ - (r + ex'2)] Z = o X > kl 
_dx2 dx2 ' ' 

(5. I O) 

where ex2 = f2/k2gdo, ex'2 = f2/k2g'Do, µ2 = (e'- e)/ e- The solutions to (5.10), 
which satisfy the conditions at infinity, take the form 

(5. I I) 

Hence, the following characteristic equation for r1 is obtained: 

where 
µ2 rJ- ex2 (r + e1) r1 + ex2 (r + e,) = o, (5. I 2) 

Ct = µ2 ( 2 + ex2 + ex'l) / ex2) 

e, = µ2 
( r + ex2) ( r + ex'2) / ex2. 

For ex = ~(r), ex'= O(~).' and µ2 (~ _r, note that er (( r and s2(( r. To a 
first order 111 small quantities, the pos1t1ve roots of (5.12) are given by (r ,, r

2
) = 
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(rx /µ, 1). Hence, from (5.11) and the fir st equation in (5.10), B, = - (1 /µ2) .A, 
and B2 = A z to a first order in small quantities. Finally, the complete solution 
for N and Z' is given by 

N - {.As Jo [2(x~)1i•J, 0 < x <I, (5.13) 
.A, exp [ - (rx/µ) (x - kl)] + .A2 exp [- (x -kl)], X > l 

Z' = - (1 /µ2).A, exp [ - (rx/µ)(x -kl)] + .A2 exp [-(x - kl)], x > l. (5.14) 

Applying the condition X ' (l) = o to (5.13) and (5.14) yields .A, = o; 
application of the continuity conditions yields the eigenvalue equation 

] 0 [2(x)112J[,B*x(1 -Llo) - (1 + xRo)Llo112J-

-,8* Ll 0 (x) 112 ] 0 [2 (x)112] = o, 
(5. I 5) 

where ,8* = µ (gd)112/ (11/1) = 0 (1 ),Lio = d/do = 0(1 ), and Ro= - Vo/fl = o( I). 
Note that, in the limit ,8*-+ 

o(e' - (!-+O) and R o-+O(Vo-+O), 
eq. (5 . 15) implies that the eigen-
values are given by the zeros of 
] o, in agreement with the un-
stratified case with no basic deep-
sea current. However, with strati-
fication and a deep-sea current, 
(5 . 15) implies that the eigen-
values are quite different, since 

420 

,8*, Lio, and R o are each of order c,(cm/sacl 

unity. As noted, the physical 
reason for this change in the 
eigenvalues is that the motion of 
the surface wave 'Y/ in the deep-
sea region is now coupled to that 
of the interfacial wave f through 
the conservation equations. How-
ever, observe that the waves are 
still nondispersive and progress 
northward at the eastern coast 
of a continent that lies in the 
southern hemisphere. 

In Fig. 8, the lowest-mode 
wave speed, c, [ = - 4 fl / x, , where 
x, is the lowest eigenvalue as 
determined by (5.15)], is plotted 

400 

380 

360 

0 50 100 150 200 
V0 (cm/sec) 

Figure 8. Theoretical shelf-wave speed of lowest 
eigenwave versus deep-sea current speed 
for (!' - (! = 2.5 x 10-3 gm cm-3 and 
various values of L1 0 • 
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as a function of /70 for various values of LI O for the case of the eastern 
Australian coast in the area from Sydney to Coff's Harbour (f = - o. 7 3 x I 0-4 

sec', I = 5 x 106 cm). The higher eigenvalues and corresponding wave speeds 
have not been calculated in detail, since only the lowest-mode eigenwave 
has so far been observed. We only note that, for the special case LI o = I and 
/70 = o, c2 = 70 cm/sec, which is considerably less than c, for these values of 
LI o and /7o ( see Fig. 8 ). 

In Fig. 8, observe that, for /7o in the range 50- 100 cm/sec (typical EAC 
speeds) and for all the values of Lio considered, the theoretical lowest-mode 
wave speed now lies midway between the error bounds of the observed wave 
speed, viz., 400 ± 1 oo cm/sec. Even for /7o = o, note that c1 still lies well 
within the error bounds for the observed speed. That is to say, the main short-
coming of the earlier models was the absence of deep-sea stratification. How-
ever, while the wave speeds are relatively insensitive to changes in the thick-
ness of the upper layer (Fig. 8), they are quite sensitive to changes in the 
density difference between the two layers (Fig. 9). Note that, with stratification, 
the shelf-wave amplitude at the edge of the shelf is quite different from zero; 
now N(o)/N(1) ""0.25, whereas without stratification, N(o)/N(1) ""0.04. In 
the stratified model, the shelf waves are strongly coupled with the deep-sea 
waves. Finally, in Figs. 8 and 9, observe that, for e' - e =fa o, c, decreases 
( essentially linearily) with increasing /7o. This result suggests that, by analyzing 
the sea level at the coast, it is possible to determine theoretically the speed of 
an essentially surface deep-sea current that Rows alongside a continental shelf. 
However, since the wave speed in any small coastal section (distance of the 

.450 

400 

c 1 (cm/sec) 

300 
0 .5 

0.1 

25or-------- --- - ~O~_o,_ ____ __J 

0 50 100 150 200 
V0 (cm / sec) 

Figure 9. Theoretical shelf-wave speed of lowest eigenwave versus deep s t d , ,. . - ea curr en spee 1or LJ O = 1 
and various values of e' - e- In the limit ing case e' = e, the (constant) wave s eed is 
the same as that deduced by Robinson (1964). P 
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order of I oo km) is determined by computing the cross correlation of a few 
months of daily mean sea-level data from two stations bounding this secti on, 
the theory can at most determine average seasonal current speeds in that secti on 
or provide the average seasonal difference in the current speed between two 
widely separated regions (distance separation of the order of 500 km). 

The remarkably close agreement between the observed and lowest-mode 
theoretical wave speeds suggests that the approximations for a nonsloping 
interface and a semi-infinit e width current are reasonable for this theory. 
The reason for this is that the e-folding distance of the wave amplitude of the 
surface and interfacial wave in the deep-sea region is µ /ka = 0 (5 x 106 cm) 
for the case of the eastern coast of Australia. In the next secti on it is shown 
that, for a current of width lo, the above results remain essenti ally unchanged 
unless (2k/µ)lo;:5 I. 

S OLUTION FOR CURRENT OF FINITE WIDTH. Here consideration is given to 
a stratified model identical to that discussed above except that the deep-sea 
current is now assumed to li e in the range I < x < I + lo. In this case the eigen-
value equation takes the form (Mysak 1966) 

1i Bl = 0 
C ' 

(5.16) 

where 

( Jo 
- I - I ) A = L1o[(x)'12?~+ <J0 ] -x+ k/(1 + xRo) - x -k/ (1 + r.,Ro) 

- % R o exp ( - klo) (2 + %R o) exp (klo) 

s-( - I - I 0 0 ) -x+ k/(1 +%R o) -x-k/(1 + %Ro) -I 0 

0 0 0 0 

( , +wff I-w/j 0 0 

) C = -(1 + x R o)exp(-klo) (1+ xR0)exp(klo) a/µ 
exp ( - klo) exp (klo) 0 -I 

0 0 0 

0 = 4 x 3 matri x whose elements are all zero. 

In the above, J
0 

and J~ have the argument 2(x)1i 2 and k = ak/µ. It is 
well known (Hildebrand 196 5: I 3) that, if a square matri x Mis of the form 

or M = (p 0) 
Q R' 

where P and R are square matrices and where 0 is a submatrix (not necessarily 
square) whose elements are all zeros, then 
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/M /= /P / /R /. 

Applying this theorem to (5.16), it foll ows that the eigenvalues are given by 
/.A/= o and /C/ = o. The equati on /C/ = o, which is a spurious root for 
our theory, impli es that 

(I+ w (f) exp (klo) - (1 - w /f) exp (- klo) = 0 . (5. 17) 

For w' <( j> and k2 I~« 1, eq. (5.17) impli es that w/k = - /l o, which, for 
10 = 107 cm (a typical EAC width) and f = - 0.73 x 10- 4 seer, gives a wave 
speed of about twice the observed value. The equation I .A I = o implies that 

J 0 [2(x) 1f2]{(2 + xRo) exp (klo) [x(I -Llo)-kl( I + xRo)] 

- xRoexp(- klo)[x(1 - Ll o) + (1 + xRo)]} (5.18) 

-Llo(x)' '2J~[2(x)1f2 ] [(2 + xRo) exp (klo) + xRo exp (-klo)] = O. 

This eigenvalue equation is the generalization of (5.15); as l o--+ ro, eq. (5.18) 
reduces to (5.15) upon noting that kl = (Ll o)' ' 2 //3*. 

From (5. 18) it is clear that the eigenvalues will differ significantly from 
those obtained in the previous 

440---~------,----.----, model, only if klo';;;, 1, or equiva-
lently, if l o ;S[gdo(e' - e)/e]'12l!f l-
For (e'- e)/e = 2.5 x 10-3, do= 
2 x I o4 cm, and / f I = o. 7 x I o-4 

420 sec', the latter inequality impli es 
that lo ;S3x 106 cm. W e con-

c,(cm/ sec) elude that this more refin ed 
model is required only for a 

400 very narrow current. For the 

380 

300o'.:----::50;:--------,1--:-0-::--0---, 5-'-0--__J209 

V0 (cm/sec ) 

Figure 10 . Theoreti cal shelf- wave speed of lowest 
eigenwave versus deep-sea curr ent speed 
for fin ite and semi-in fin it e wid th cur -
rents. In each case ll o = I and e' - e = 

2.5 x 10-3 gm cm-3. 

EAC, in which 10 107 cm, the 
current model with semi-infinit e 
width is quite adequate (Fig. 1 o ). 

6. Concluding R emarks. A l-
though continental shelf waves 
have so far been observed only 
on the eastern and western coasts 
of A ustralia, it is quite lik ely that 
they also exist on other midlati-
tudinal continental shelves where 
the coastal and bottom topogra-
phy is simil ar to that considered 
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in this theory.4 One such region 
is the eastern United States coas-
tal shelf between Cape Hatteras 
and Cape Lookout to the south. 
The shelf in this region is rela-
tively narrow and of constant 
width; at the edge of the shelf 
there is a sharp drop to relatively 
deep water of constant depth. 
Also, between Cape Hatteras and 
Cape Lookout, the Florida Cur-
rent Rows northward alongside 
the edge of the shelf. Therefore 
it is of considerable interest to 
apply to this region the theory 
outlined in § 5 and to thereby 
calculate the wave speed of the 
lowest-mode shelf wave as a func-
tion of current speed. 

For this region, take / = 7 x 
1 0 6 cm, d = 2 x I o4 cm, f = o. 84 x 
1 o-4 sec-1, and assume that w = 
0 ( 1 o-5 sec-1) and k = 0 ( 2 x 10-s 

cm-1 ). It then foll ows that the 
assumptions w2 (< /2, k2/2 « 1, 

and f2 /Z < < gd also hold for this 

560.-----~---~--~--~ 

520 

480 

c,(cm/sec) 

440 

400 

EAST UNITED STATES 
COAST : CAPE HATTERAS-

CAPE LOOKOUT REGION 

EAST AUSTRALIAN 
COAST: SYDNEY -
GOFF'S HARBOUR REGION 

360o~---5~0---10~0- --15~0--~200 

V0 (cm /sec ) 

Figure I I. Theoreti cal shelf-wave speed of lowest 
eigenwave versus deep-sea current speed 
for the eastern United States and Au-
stralian coasts. In each case Lio = 1/2. 

case, so that the shelf solution derived above is also valid here. Furthermore, 
since the main portion of the Florida Current in the vicinity of Cape Hatteras 
is confined to a relatively thin upper layer and is of O ( I o7 cm) in width, it is 
justifiable to use the two-layer model with a current of semi-infinite width. 
Take e' - e = 2 X 10-3 gm cm-3, do = 4 X 104 cm, and D,o = 4 X 105 cm. (The 
interface depth, do, can be regarded as an average depth for the I o°C isotherm, 
which rises from a depth of 7 x I o4 - 8 x I o4 cm at I o7 cm off the shelf to a 
depth of about 2 x I o4 cm at the shelf.) For these values of do, D o, .. . , observe 
that oi and oi' are each of order unity and that µ2 (< I, so that the deep-sea 
soluti ons derived above are also valid here. Thus it is possible to proceed 
directl y to (5.15) and calculate the lowest eigenvalue as a function of Vo. 
In Fig. 1 I the wave speed of the lowest eigenwave is plotted as a function 
of current speed for this region and, for comparative purposes, for the region 
between Sydney and Coff's Harbour. 

In Fig. 11, observe the following: 

4. And, of course, the region where the waves do exist is lik ely to be a region of nonbaromctric 
behavior. 
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(i) For any particular Po, the wave speed for the eastern_ United Stat:s 
coast is about 20°/0 greater than that for the eastern Australian coast. This 
is due to the wider shelf and larger Coriolis parameter in the United States 
region. 

(ii) The slope of the curve for the eastern United States coast is about half 
that of the curve for the eastern Australian coast. This arises for two reasons: 
(a) for any given Po, the paramater R o is smaller for the eastern United States 
coast, and (b) the density difference between the upper and lower layers is 
sli ght! y less for the eastern United States coast. 

(iii) Since/> o in the northern hemisphere, the shelf waves will progress 
southward fr om Cape Hatteras toward Cape L ookout. For Po = I 50 cm/sec, 
the theory impli es that the sea level at Cape Hatteras will lead that at Cape 
Lookout by 6.8 hrs . 
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