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On the Wave-induced Difference 

in M ean Sea Level Between the Two Sides 

of a Submerged Breakwater' 

M . S. L onguet-Higgins 
National Institute of Oceanography, England 
and 
Scripps Institution of Oceanography, L a :Jolla, California 

ABSTRACT 

Very simple formulae are deri ved for the di fference in mean l evel between the two sides 
of a submerged breakwater when waves are incident on it at an arbitrary angle. T he formulae 
apply also to waves undergoing refr acti on d ue to changes in depth and to waves in open 
channel transiti ons. 

When sea waves approach a submerged breakwater or an offshore sand bar, 
the mean level of the water on the far side of the bar or breakwater is com-
monly observed to be higher than on the side from which the waves are in-
cident. The purpose of this note is to show that the difference in mean water 
level can be calculated very simply in certain circumstances, once the height 
of the incident waves and the coeffi cient of refl ecti on are both known. 

The situati on is as shown in F ig. I. A submerged " breakwater" separates 
two unifo rm regions in which the undisturbed depths are h, and h2 , say. 
W aves of amplitude a, are propagated from the left and are incident (not 
necessaril y normall y) on the " breakwater. " There is a transmitted wave of 
amplitude az and a refl ected wave of amplitude a:. 

If the steepness of the waves is suffic iently small everywhere, then the 
coeffic ients of transmission and refl ecti on, namely 

T = a2/a, and R = a{/a, , 

are nearly independent of a, . The coeffi cients R and T may be determined by 
experiment or, in some ideal cases, by the linear theory of water waves. (For 
some examples, see the REFERENCES.) In the neighborhood of the breakwater 

t. Accepted fo r publication and submitted to press 17 February 1967. 
Contri bution from the Scri pps I nstitu tion of Oceanography. 

148 



Longuet-Higgins: Difference in M ean Sea Level 149 

Figure 1, 

itself the waves are not generally sinusoidal; nevertheless, the motion every-
where flu ctuates harmonically with time, say with period 2n/a . The wave-
length, 2n /k1, of the waves on the near side of the breakwater is related to the 
frequency a and to the local depth by the usual relationship 

a2 = gk, tanh k, h1, 

and similarly for the waves on the far side. 
These results can be deri ved from the well-known small-amplitude theory 

of water waves. However, on the two sides of the barrier there will be a differ-
ence, LI ( , in mean surface level that is of second order in the wave amplitude. 
W e shall see that LI C, though of second order, can be determined directly from 
the fir st approximation in the foll owing way. 

L et x and y be horizontal coordinates and z be measured vertically upward 
from the still-water level. L et u , v , and w denote the corresponding compo-
nents of velocity and p the pressure. L et (! and g denote the density and the 
acceleration of gravity, both assumed constant. The free surface is denoted 
by z = l;(x , y , t) . N eglecting viscous forces, we then have two simple rela-
ti onships (cf L onguet-Hi ggins and Stewart 1964). 

First, consider the flu x of verti cal momentum into a vertical column of 
water of unit cross section contained between z = o and z = l; . The flu x 
upward through the base of the column equals (p + ew' ) evaluated at z = o . 
The flux through the upper surface of the column is zero. The flux of vertical 
momentum through the sides of the column, which is euw per unit area, is of 
third order when integrated over the height l; of the column. Hence this can 
be neglected. The total flu x of vertical momentum into the column is therefore 

(p + ew' )z=o . 

This is opposed by gravity, which produces a downward force, egl;. But 
since the moti on is peri odic, the vertical momentum within the column re-
mains, on average, unchanged. Thus, on taking mean values we have 

(A) 
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where a bar denotes the average with respect to time. This is our fir st 
equation. 

Second, if the motion everywhere is assumed irr otational (which excludes 
wave breaking, for example), then we have the Bernoulli integral 

I a~ 
p+ - e(u2+v2+w2)+ (!gZ+(! - = O. 

2 at 
Here denotes the velocity potential, which includes an arbitrary function of 
the time, t . If we take time-averages in this equation and set z o , we have 

- J ( 2 2 2 ) C Pz=o + - (! U + V + W z=o + = 0 , 
2 

(B) 

C being at most a constant. 
From the two equations (A) and (B) we may eliminate the pressure to 

obtain the basic relationship 

- J ( 2 2 2) C g( = - - e u +v-wz=o+. 
2 

(C) 

From this relationship it is very easy to determine the difference in mean 
surface level, C, at two different points (x,,y,, o) and (x2,J2, o), say. Clearly 
the constant C is immaterial, so we have 

(- - ) I [( 2 2 2) JI (!g C,-(2 = - - e U +v -w Z=O 2. 

2 

Thus, in the present problem, LI C is given by 

- I 
LI C = - [(u2 + v2 - w2)z=o]~ . 

2g 

This is the simple relationship promised earlier. 

(D) 

N ow, in a wave of amplitude a traveling in some direction that makes an 
angle 0 with the x-axis, the components of orbital velocity are given by 

aa cos 0 
u = . coshk(z- h) cos(kx' - at+s) 

smh kh 

aasin 0 
v = . coshk(z-h)cos(kx'-at+s) 

smh kh 

w = . aa sinhk(z- h) sin(kx'-at +s) 
smh kh ' 
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where x 1 = x cos 0 + y sin 0 and c denotes a constant phase. On squaring the 
velocities and taking averages with respect to time, we find 

so 

- I a2 a2 cos2 0 
u2 = - ---- cosh2 k ( z - k) 

2 sinh2 kh 

- I a2a2sin2 0 
v2 = - . cosh 2 k ( z - h) 

2 smh2 kh 

- I a2 a2 

w 2=2 sinh2kh sinh2k (z - h), 

1 a2 a2 

u2 + v2 - w 2 = - ---
2 sinh2 kh . 

Using the relationship that a2 = g k tanh k h locally, we then have 

I ----- a2 k 
- (u2+v2-w2) = ----
2g 2 sinh 2kh 

If two systems of waves are present (as on the seaward side of the breakwater), 
then in place of a2 we shall have ( ai + a?). There will also be a contribution 
from the product terms, proportional to ar a~ . However, on averaging with 
respect to the hori zontal coordinates, x, y , as well as with respect to t, we find 
that these product terms vanish. 

From equati ons (D) and (E I), (E 2) we deduce that in the present situation 

LI - _ a a r + a, a2 l ( 2 12 l ) 

C - 4g sinh2 k,h, - sinh2 k2h2 ' 
or alternati vely, 

A- (ai+a?)k, aik2 
LJ C = ~---- - -----

2 sinh 2 k, h, 2sinh2k2h 
(F2) 

When the depths h, and h2 on the two sides of the breakwater are equal, then 
we have simply 

( 2 12 2) k LI - = a,+ a, - a2 , 
C 2 sinh 2 kh 

(G) 

where k = k, = k2; h = h, = h2. Since a~ .'.'c. ai , the ri ght-hand side is non-
negative, showing that the difference in level is then positive in general. 

The outstanding feature of this result is that in deep water, if both k, h, 
and k2 h2 are large, 

LIC = O. 
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In other words, the difference in level is essentially a finite-depth effect. 
In shallow water, where both k, h, and k, h, are small, equation (F 2) 

becomes 

and, if h, h, h, then 

2 ' 2 Z 
,1 - a, + a, - a, 

LJC=--- . 
4h 

(H) 

(I) 

Of course these results are subject to the usual limitations of the small-
amplitude theory of surface waves, in particular that 

a k (< 1 and a k (< ( k h ) 3 

in each particular region. In addition, the loss of energy by friction or other 
means (such as breaking) must not be so great as to affect the results. 

N evertheless, the formulae are so simple and their application so straight-
forward that it would seem worthwhile to check their range of validity by 
experiments in the laboratory. 
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