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Inertial Oscillations tn an Ekman Layer 

Containing a Horizontal 

Discontinuity Surface 1 

Joseph P. Pandolfo and Philip S. Brown, Jr. 
The Travelers Research Center, Inc. 
Hartford, Connecticut 

ABSTRACT 

Solutions are obtained for systems of equations that determine the development of ve-
locity profil es in an infi nitely deep fluid system subjected to Corioli s accelerations and com-
posed of two layers of viscous fluid differing in density, viscosity, and geostrophic velocity. 
The density, viscosity, and horizontal pressure gradient are assumed to remain constant in 
space and time within each layer and to differ discontinuously at the horizontal interface 
between the layers. In one case considered, the init ial state is one of geostrophic imbalance 
in one of the layers. In another case, the initi al state is one of geostrophic balance in both 
layers, but the geostrophic velocities are allowed to vary peri odicall y in time in either or 
both layers. 

The boundary conditions imposed are that the velociti es remain bounded at large (verti-
cal) distance fr om the interface. The interface conditions imposed are that the shearing 
stress and velocity be continuous at the interface for all time. 

The soluti ons contain height-dependent transient terms that approach the two-layer 
steady-state solutions g iven by Bjerknes et al. (1933) for large time. However, they also 
contain terms representing a permanent inertial oscillati on that has height-constant amplitude 
and phase at all finite values of height (with zero height defined as the interface). 

If the viscosit y of the lower layer is assumed to be infini te and its hori zontal pressure 
gradient is assumed to be zero, the solu tions y ield zero velocit y at the interface, and the terms 
representing the permanent inertial oscillati on disappear at all finite heights. At infinit e 
height, the solutions with both sets of assumptions g ive the "circle of inertia" characteristic 
of a nonviscous atmosphere. 

If typical atmosphere-ocean values of density, eddy vi scosity, and velocity are taken in 
the fir st case, the amplitude of the permanent oscillation is of the order of 1 o/0 of the geo-
strophic wind but is comparable in magnitude to the interface current speed . 

It should be noted that these relatively large and persistent oscillati ons in the oceanic 
velocities can arise, even in the absence of changes in the oceanic hori zontal pressure gradients. 

Impositi on of a zero-velocity lower boundary condition at finit e depth in the lower layer 
y ields a solu tion that goes to a steady interface current at large time. However, imposition 
of such a condition at depths as great as fiv e times the Ekman "depth of fri cti onal influence," 
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or greater, results in insignificant reduction of the amplitude of the oscillating transient term 
over peri ods long compared with the observed peri od of variation in synoptic-scale atmos-
pheric horizontal pressure gradients. Thus, even in this case, the oscillation in the interface 
velocity may be regarded as quasipermanent. 

These solutions are compared with that obtained by Ekman (1905) for a single (oceanic) 
layer of infinite depth, in which a time-constant wind stress is specified at the upper boundary. 
In Ekman's solution, the amplitude of the oscillating transient term is reduced significantly 
within a period of three pendulum days. 

i. Introduction. Nonlinear models of the atmosphere-ocean planetary 
boundary layer are being developed at The Travelers Research Center, Inc., and 
these models will be numerically integrated on electronic computers. Particu-
lar emphasis is being placed on the vertical eddy-transfer processes in this layer, 
on time scales of the order of one hour, since this is the order of the antici-
pated time step in the numerical integration. An essential component of such 
models is the formulation of air-ocean interface conditions on the momentum, 
according to the time scales considered. 

It was felt that a preliminary study of the behavior of simpler models having 
the same interface conditions would be useful. Comparison of one-layer model 
solutions with two-layer model soluti ons should be of special interest, since the 
subject of the over-all study is to be the interactions of the planetary boundary 
layers of the air and ocean rather than the reaction of either to arbitrarily 
specified momentum characteristics of the other. 

The simplest relevant linear models that include the physical processes of 
interest-the eddy-transfer of momentum in the layers and on the time scales 
considered-appear to be those based on the classical time- and space-constant 
eddy viscosity formulation of Ekman (1905). Ekman obtained solutions for the 
steady-state drift current in a single-layer model in which the upper boundary 
condition required that the eddy stress in the ocean layer be equal to a speci-
fied wind stress at the air-ocean interface. Another solution for a single-layer 
steady-state problem was obtained by Akerblom ( see, e.g., Berry et al. 194 5 ), 
but his solution was for a model having a lower boundary condition appropriate 
for viscous flow over a rigid lower boundary. Steady-state solutions for a two-
layer system with conditions imposing continuity of the eddy stress and mean 
velocity at the interface have been demonstrated by Bjerknes et al. (1933). 
These conditions appear to be appropriate for our studies and are the first 
that will be investigated. A solution to a corresponding time-dependent prob-
lem, i.e., the development of the drift current from a specified initial state, 
was also given by Ekman (1905). Similarly, the development from specified 
initial conditions of Akerblom's atmospheric wind spiral has been considered-
as a special case in a much broader study-by Ooyama in Blackadar et al. 

( 1957). 
Their one-layer time-dependent solutions approached those of the corre-

sponding steady-state problems at large times; i.e., oscillations with the inertial 
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peri od, arising from the rotati on of the coordinate system, were damped, albeit 
slowly. N o previously reported soluti on for the time-dependent problem corre-
sponding to the steady-state problem considered by Bj erknes et al. has been 
found. Y et it is the case that is of interest to us. In our preliminary study we 
have obtained such solutions, which are presented and discussed below. 

ii a. Equations f or Constant Geostrophic f/elocities. We wish to find the 
soluti on u1(z,t), v1(z,t),j = 1, 2 to the foll owing problem: 

e1 o u; f e1 02 u; fe1 
- - - - Vj - -- = - - V gj , 
K1 ot K1 oz2 K1 

(1 a) 

where the subscript r refers to the upper layer, and the subscript 2 refers to the 
lower layer. The time- and space-constant parameters are : e = density, 
K = (dynamic) eddy viscosity, f = Corioli s parameter, and u g and Vg , the 
components of the geostrophic velocities Vg, are step functions in z and t ; 

z = o is the value of the height coordinate at the interface between the layers. 
The physical idealizations used in obtaining equations ( 1) from the equations 
of motion for a fluid in a rotating coordinate system are listed by many authors 
(e.g., see Defant 1961). 

Associated with equations ( 1) are the initi al conditions 

u,(z,o) = v, (z , o) = o , u2(z , o) = v2(z ,o) = o, (2) 

the interface conditions, 

u,(o,t) = u2(0 ,t), v,(o,t) = v2(0, t), (3) 

K, au,I = K 20U2 1 
OZ z=o OZ z=o' 

KI o v , I = x 2 o v 2 I 
OZ z=o OZ z= o' 

(4) 

and the requirements that u, , V r be bounded as z -+ + OJ and that u2 , v
2 

be 
bounded as z -+ - OJ . Detail s of the solution procedure are given in Appendix 
A . The solutions obtained are 
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e-(i + i)z((2i// 2 K,)'"erfc[: z(er/Krt)'l2 - (1 + i)(ft / 2)1l2
]-

2e-ift erfc [: Z (er / Krt)' l2
]} + ii y, ( I - e-lft) ) 

13 

(s a) 

(5 b) 

where the complementary error function is defined as the complex line integral 

erfc C = 2(n)- ,1, re-~• d~, (6) 
C 

with the path of integration subject to the restriction that arg µ with 
/µ / < n/4 as oo along the path; µ = n/4 is allowed if Re(~2

) is bounded 
to the left. 

ii b. Solutions for Time-dependent Geostrophic Pelocities. The procedure de-
scribed in Appendix A may be used to solve the problem described by equations 
(I) through (4) for the case in which geostrophic velocity, t u, is permitted 
to vary with time; in particular, we now let 

-t + ( V gr = V gr I - cos wt), 

+ 
(7) 

v g2 = o. 
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In this case, t , has the form 

erfc [-.:. z (er I K, t)' '2 ] + I e-iwt (e- (1 + i) z [!?, (/ -W) /2K,J'" 
2 2(w - /) 

(e-<1 + i )z(Qdf+w)/ 2 K,J"' erfc [: z(e, /K,t)' l2 -(1 + i)[(f +w)t / 2]' '2] + 

e <1 + i)z re, <t+ w) /e I(,J' '' erfc [: z (e, / K, t)* + ( 1 + i)[ (f + w) t / 2 J1i2
] ) } + 

t;0 , { ( 1 - [w 2 /w2 - J2)] e-ift] + [f 2 / (w2
- /

2
)] cos wt- i[fw / (w2 - J2)] sin wt}· 

In the corresponding expression for ii2 (z, t), the last terms, which depend 
only on time, do not appear because of the assumption that ii02 = o. 

iii a. The Case ii0, Constant, t 0, = o. It is of particular interest to examine 
the behavior of the solutions given in equations (5) as time becomes large 
and to see whether a limi t exists as t co . For this purpose, we use the fact 
that 

l im errc[..::.± C(n/2)''2 (1+ i)] = {
0

, 
C 2 

(9) 

according to whether the sign is plus or minus, where a is a real constant and 
C a real variable. Then 
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Jim t ,(z,t) =tu,{ l - [r + (e,K,/e2K2)* J-•e-<• +i)Z((!, / /2 K1)
1
'' } 

(r o) 

+ t:~ "to,e-m{ [r + (e,K,/e2K,)* J-• erfc [: z(e,/K,t)' l2] - r}; 

this expression is made up of a term representing a permanent inertial oscilla-
tion (for which no limit exists) superimposed upon a term corresponding to the 
two-layer steady-state solution of Bjerknes et al. ( r 933). A result similar to 
equation (ro) is obtainable for the lower layer. 

The behavior of the solutions at the outer boundaries is demonstrated by 
the limits 

lim t ,(z,t) =ii 0, (r - e- lft), 

lim ii2 (z, t) = o, 

which can be found by using the fact that 

Jim erfc C = o , 

(II a) 

(II b) 

( I 2) 

provided the path of integration is taken so that I arg Cl < n/ 4 as C oo. The 
solutions (r r) correspond to those obtained for a frictionless fluid. 

From the identity 
erfc (C) + erfc ( - C) = 2 , 

it is seen from equation (5 a) that, at the common surface of the layers, 

t,(o, t) =tg,(r -e-ift) { I -[r + (e,K,/e2K2)*r
1

}, (14) 

and since 

[r + (e2K2/e,K,)'12r· = l - [1 + (e,K,/e2K2)' 12r·) 
the corresponding expression for ii2 ( o, t) reduces to the form ( r 4) as required 
by the interface condition. 

iii b. One-layer Model (K2 Infinite, °t02 = o). The solution for the one-
layer problem with t,(o, t) = t,(z, o) = o and ii, bounded as x oo is 
obtainable from the more general soluti on (5 a) by requiring the geostrophic 
velocity in the lower layer to vanish and by taking the viscosity Ki to be 
infinitely large. The resulting form is 
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(1 +i )(ft / 2)1l2
] +e<1 +i)Z(Q,f/ 2 K,)' "erfc[: z(e,/Krt) + (15) 

( I+ i) (ft / 2)112
] - 2e-ift erfc [: z (e,/ Krt)' 12] } + t u, ( 1 - e-i!t). 

Note that 
lim erfc ($) = 1. 

Thus, the terms containing the factor e-ift go to zero in the limit as t approaches 
infinity, for all finit e z. 

Therefore, no permanent oscillation exists and the solution approaches the 
steady-state solution; i.e., 

lim iir (z, t) = iigr [ I - e- (r + i) z ((2,f I 2 K,)' ''J . 
co 

At infinite height, the solution ( 15) approaches the limit given m ( 11 a). 

111 c. The Case ii g, = ii gr ( 1 - cos wt), Vg2 = o. The solutions in this case 
again contain undamped oscillations since 

ii , (z,t) = ii g, { I - [I + (e, K, I (!2 K2)'/2r\-(r + i)z (e,f/ 2K,)
11

' } + 

L~ Vg, e-ift [w 2(w'- f 2)] { [ 1 + (er K, /(!z K2)'12
]-, 

erfc [: z(e,/K,t)* ] - 1} + t g, [I+ (e, K, /e,K2)' l2r1 

{ 
eiwt ( [ 1 -- e-(r+i)Z[Q,(f+ w) / 2 K,J'''erfc - z(er/Krt)' l2 -
w+f 2 

] ) 

-iwt ( 
(1 + i)[f + w)t/2] 1l2 - ~ - f e-<1 + i)z [(J,(/-w)/2K.J''' 

erfc [: z(Q,/Krt)' 12 - (i+i)[(f - w) t / 2]' !2
])} + /~: ii gr 

( [/
2 

/ (w2 - ;)] cos wt - [if w / (w2
- ;)] sin wt) . 
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Similarl y, the expression for ii, has no limit , since terms involving e- m and 
e ± iwt are again present. 

It may be shown that, as the frequency of the geostrophic velocity oscill a-
tion, w, approaches natural frequency, f, of the system, the soluti on remains 
bounded and resonance does not occur. 

iii d. Model W ith Zero-velocity Lower Boundary Condition at Finite Depth. 
A questi on arises about the effect on the soluti ons of the impositi on of a no-
slip boundary condition at the bottom of the lower sublayer. A soluti on has 
been obtained for the u component of the interface velocity for this case 
(Appendix B). T he resulting form is 

U1 (o,t) = U2 (o, t) = - [I + (e2 K,/ e, K, )'12]-
1

Vg1 sin ft -

[ I+ (e2 K, fe1 K,)'12 r 1 [I + (e, K, / (! 2 K,)'12r 'vg, t. { [I + (e2 K,/ (! , K,)'12r 
[1 + (e,K, /e,K,)' 12r1

} k- r · Im{ 2e- ift erfc [kH(e2/K2t)' 12] - (1 8) 

(e<' + il •k H Ue,J 2 K ,>" ' erfc [kH (e2 /K2t)' l2 + (1 +i ) (ft / 2)''2l + 

e- (1 + i) 2 k H (/(!, l • KJ' I' erfc [ k H (e2/ K, t)*- (I + i )(ft I 2)*])} > 

where H is the depth of the (ri gid) lower boundary. 
It can be shown that the series is uniformly convergent fo r suffi ciently 

large t so that the limit of the soluti on is obtainable by taking the sum of the 
li mits of the individual terms. Thus, 

. Im e- ( 1 + i) 2 k H (fQ,l• K ,>' " . 

As in the one-layer case discussed in iii b, the terms containing the factor 
e-ift go to zero in the limit as t approaches in fi nity. 
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Figure I. T wo-layer model veloci ty components at the height z = :n [z K; / 12.-f]' ' '· 

iv. Typical Solution f7alues. Numeri cal calculations have been performed 
on the IBM 7094 to evaluate the velocity components for the two-layer 
models, using the values of the parameters given below: 

L ayer l: u g, = o , Vgr = 1.5 x 1 0 3 

(!, = 1.1 5 X 1 0 -3 , K, = 4.3 X 1 0 , 

L ayer 2 : Ugz = Vg2 = o 
(!2 = 1.0 , Ki= 4.3 X 1 0 2, 

with f = I o-4; here all quantiti es are given in the appropriate c.g.s. units. 
In Fig. 1 the velociti es for the upper layer are plotted as functi ons of time 

at the level z = ( 2 K, /e ,J)'l2 n. Both u, and v , are seen to damp slowly while 
oscill ating about the values of their corresponding geostrophic velocit ies. The 
u,, v, curves fo r the one-layer model were found to be nearl y the same as those 
in F ig. 1, though damping at a sli ghtly faster rate. 

From ( I 4) it is seen that the velociti es at the interface are simple non-
damping cosine and sine functi ons of period 2n/f. These are shown in Fig. 2 , 

with u oscill ating about zero and v oscill ating about 

{ 1 - [1 + (e, K,f e2K2)I/2J-1 } vg , . 

Fig. 3 illustrates the spirals obtained by plotting those components of the 
soluti ons that do not contain the factor e-ift; these nonoscill ating terms, u1, ii1, 
approach the steady soluti ons rapidly. T he values are shown for t = 1 on// . 

Fig. 4 again presents the u component, u1 ( o , t), of the interface velocity 
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F igure 2 . Solutions at the interface z = o, plotted against time. 

for the infinite-layer case as given in (14) together with the corresponding 
velocity component, up(o, t), for the finite-depth model given by (18) for the 
depth-ratio value 

H' = H(fe2 /2K2)* = 1, 

and for all other parameters listed above. The limiting value, Up, for infinite 
time given by (19) is indicated by the dashed line, about which the function 
up(o,t) oscillates. 
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Figure 3. Nonoscillating terms of the solution for the two-layer model at time t = 10:n/J. The quan-
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H (fe2/2K2)"' = r.o. 

In Fig.4, two major differences between u1 and uF are immediately evident. 
First is the tendency of uF to approach a nonzero limit, UF, at large time. 
Second is a general decrease in apparent amplitude of the oscill ating uF with 
time, although an irregularity in the rate of this decrease may be seen. This 
is more evident in Fig. 5. Investi gation shows that this ir regularity cannot be 
ascribed to approximati ons in the numeri cal evaluati on procedure, as was fir st 
suspected. 

Values of UF = Jim uF(o , t) are listed in Table I fo r several values of the 
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Figure 5. The ratio U' = [uF(o,t)- UF ]/ uJ(o,t) fo r selected values of H' = H (fez/ 2 Kz)' lz. 
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depth ratio in the range I .'.S. H' .'.S. 200. A 
measure of the rate of decrease in time of 
the range of variation is given by the quantity 

U' = uF (o,t)- UF 
UI (o,t) 

for successive maxima and minima in the 
two solutions occurring for Jt / n = j + o. 5, 
j = o, 1, 2, .... In Fig. 5 the successive 
values of U' are shown connected by a 
smooth curve, for selected values of H'. 

T able I. UF = lim up(o,t) as 

a function of the depth 
ratio H' = H(fe2 / 2K2 )'i 2

• 

H(fe2/2K2)1 " = H' lim uF (o,t) 

1 
5 

IO 
50 

100 
200 

-4.27 
7.78 x J0- 4 

-5.93 X 10- S 
0 
0 
0 

In Fig. 5 the previously noted irregularity in the general trend of decreasing 
apparent amplitude with time is readily evident in the shallower depth cases. 
Because of the greater evidence of the property in the shallow depth cases and 
because of the apparent tendency of irregularities to appear later in greater 
depth cases, it is believed that this feature of the solution represents the appear-
ance at the interface of numerically significant disturbances due to bottom effects. 

v. Discussion. One of the interesting aspects of the solutions obtained above 
is the fact that inertial oscillations may arise in either layer because of changes 
in the gradient Row in the other layer. This effect has greater practical signifi-
cance with respect to the oceanic layer because of the large amplitude of 
such an induced oscillati on relative to other components of the Row and 
because of the presumably more rapid and frequent time changes in atmos-
pheric pressure gradients. 

Imposition of the zero-velocity boundary condition at depth greater than 
five times the Ekman depth of frictional resistance does not change an essential 
property of the two-layer model solutions, in that the range of variation in the 
interface velocity remains significantly large (relative to the mean magnitude 
of the interface velocity) over time periods that are long compared with the 
observed periods of variation in atmospheric horizontal pressure gradients. 
For example, it may be seen in Fig. 5 that, for H' = 1 0 , the parameter U' 
has not yet decreased to the value 0.5 at about 25 days after initial time (in 
middle latitudes). Thus, a most interesting property of the solutions is the 
presence of a quasipermanent inertial oscillation in the two-layer models. 

The extension of this property to the more complex numerical models 
envisioned in future boundary-layer studies cannot be rigorously justified. How-
ever, it seems likely that, for example, the use of time-constant upper and 
lower boundary conditions in such models could alter a significant transient 
phenomenon in the model solutions. Since the phenomenon is of an oscillatory 
nature, this alteration may be acceptable or even desirable in some studies. In 
any case, the investigator should be aware of this possibility. 
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The models with either a single layer or two coupled layers that are dis-
cussed here contain an extreme simplification in the requirement for a height-
and time-constant eddy viscosity within each layer. A better simulation of 
the actual atmosphere-ocean boundary layer could be obtained with a three-
layer model having an atmospheric layer, an upper oceanic mixed layer with 
relatively large eddy viscosity, and an underlying deep oceanic layer with 
smaller eddy viscosity. One would expect, however, that this model would 
support more persistent inertial oscillations than those predicted by the rigid-
bottom model described in § iii d. Still, the following discussion of the expected 
properties of observed wind-current profiles in the light of the contrasting single 
layer and two-layer model solutions remains somewhat speculative. 

We may summarize the numerical estimates given in § iv as predicting the 
following gross properties of drift-current boundary-layer wind systems. The 
inertial oscillation in the solution for the planetary boundary layer of the 
atmosphere has relatively small amplitude (about I 

0/o when compared with 
gradient-level wind speeds). If such an oscillation were present in observed 
profiles, it would be extremely difficult to detect, given the present accuracy 
of observation. Furthermore, the solutions for the one-layer and two-layer 
models do not differ greatly in the numerical values of the amplitude of 
the oscillating term over considerable time periods. For example, for the 
parameter values given in § iv, the amplitude of the damped inertial oscil-
lation in the one-layer model has only been reduced to about 7 /8 of the 
value of the permanent oscillation in the two-layer model after more than 
7 5 pendulum days. 

However, the amplitude of the oscillation in the solution for the wind-
drift current layer is of the same magnitude as the surface-current vector 
itself. Pronounced differences between the two-layer solution and Ekman's 
(1905) solution for the time-dependent wind-drift current are evident. There 
is present a large, depth-constant oscillating component in the infinite depth 
two-layer solution, at large time, while the amplitude of the damped inertial 
oscillation in Ekman's solution would be reduced to less than o. 5 of the surface-
current magnitude by the end of the first pendulum day. The contrast between 
the solutions is, of course, due to the difference in the boundary conditions 
imposed at the air-sea interface. Therefore, if the two-layer solutions are at all 
realistic, we would expect that, even over the open oceans in relatively steady 
gradient-wind conditions, the characteristic angle of deflection between the 
wind stress and surface drift predicted by the steady-state theory would appear 
only in the mean, with individual surface-drift directions appearing to range 
from a direction roughly parallel to that of the wind stress (anemometer-level 
wind) to a direction perpendicular (cum sole) to that of the wind stress. 

The characteristic de~rease in the steady-state drift current with depth 
would not be observable m layers of depth-constant eddy viscosity because of 
the depth-constant, relatively large amplitude of the inertial oscillation. 
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These particular deviations from the steady-state theory, if observed, could 
therefore be due to the presence of the inertial oscillations, not to the essential 
unreality of the constant viscosity assumption. It could be predicted that such 
deviations would be frequently observed with both the single-layer and two-
layer theories in regions of frequent change in the geostrophic wind. The 
models would differ in that the two-layer model would predict that the inertial 
oscillation would be more persistent under time-constant geostrophic conditions 
than would be expected from the single-layer model solutions. 

None of these predictions is contradicted by the few observational studies 
summarized, for example, by Defant ( I 961 ), but neither are they fully con-
firmed. 

In some of these observations, e.g., those of Gustafson and K ullenberg, the 
damping rate predicted by one-layer theories is difficult to reconcile with 
observed oscillations of essentially undiminished amplitude over three or four 
pendulum days. Moreover, the fact that the amplitude variations that are ob-
served occur over periods characteristic of synoptic-scale variations in the 
geostrophic winds is not inconsistent with the two-layer theory. 

vi. Acknowledgments. This work was supported by the Sea-Air Interactions 
Laboratory of ESSA (Environmental Sciences Service Administration), under 
Contracts Cwb-11055 and Cwb-11315. Joseph A. Sekorski wrote the com-
puter programs used in this study. 

APPENDIX A 

Solution of the Equations with Constant Geostrophic f/elocities. Letting L 
represent the Laplace transform operator 

we set 
U1(z,s) = L [u1(z,t)], 

//1(z,s) = L[v1(z,t)], 

and assume that the functions of z and t behave so that limiting operations on 
the variables u1, v1 carry over to their transforms; i. e., so that 

L [lim f(z,t)] = lim F(z,s). 

Application of L to equations ( 1) yields the subsidiary equations 

(2j (2j f (2j ( 02 U ( ) I fet - s U1 ( z, s) - - Uj ( z, o) - K //1 z, s) - ;-z i z, s = - - -K Vgj , 
K1 K1 1 uz s 1 

(20) 
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in the transforms U1, V1, which are functi ons of z and the complex transform 
vari able s; here the initi al values of u1 and v1 that appear all vanish by the 
conditions given in equation (2). 

If the vector [U1, V1] is denoted by W1 , equati ons (20) and (21) can be 
written in matri x form as 

(22) 

where 

and B1 = _! _ _f e1 [ vg1 ] 
s K1 - Ugj 

thus the problem is reduced to solving a second-order ordinary differenti al 
equati on in W1 with coeffici ents independent of z . The general soluti on to 
equati on (22) is 

W ·(z s) = eZ(Aj)' '' rY1(s)] + e-Z(Aj)''' [01(s)]-.A-:' B - (23) 
J ' 2 ( ) ~· ( ) J J ' y1 s u1 s 

where the y 's and o's are functions of the transform variable and are to be 
determined by the conditions imposed at the interface and at ± co. 

Since .A1 is a normal matri x, the spectral theorem may be applied to obtain 
a matri x R1 = (.A1)'' ' ; viz., 

where Er, E, are the projecti on operators in the spectral decompositi on of 
A1 and A1, µ1 are the eigenvalues of A1 . Since }.1 = (e1JK1)(s-if) and µ1 = 
= (e1/ K1) (s + if), it follows that the corresponding eigenvectors are scalar 
multiples of [ 1, i] and [ 1, -i]. The matri x representation for the E's can be 
determined, since the columns of these matri ces are the proj ections of the 
canonical basis vectors [ 1, o J and [ o, 1 J. 

Then, from equati on (24) 

(_A )'/2 = 2_ A1 + µ1 
[ 

( , ) I/2 ( )I /2 

1 2 i [(J.1)* - (µ1)' '' ] 
- i [(},1)''2 - (µ1)*]] 

(J.1)' 12 + (µ1)' 12 • 

H ere (.A1)1/2 is not uniquely determined, since there are two possibl e choices 
for the square root of each of the eigenvalues. 
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The solution given in equation (23) is in terms of e ±z(Aj)''' so that a matrix 
representation must be found for these exponential functions, and it can be 
shown that 

ez (},1> 11
' + ez <µ1>' 1

' 

eZ (A)' I' = r 2 
_ ez (A1) 1I' _ _ ez (µj)' I' 

2t 

Then, since 

A~ I B; = I [ s IJ [ Vgj J 1 
s ( s2 + / 2

) - f s - ug; ' 

the general solution !V; to equation (22) is 

W; (z,s) = r Y1 eZ (Aj)"': eZ (µj)' '' + Y1 eZ (),j)'" ~/z (µj)'"j + 

z(A')' " z (µ ·)' 1' z(k)''' z(µ-)'" ,e 1 -e 1 2 e 1 + e 1 
-~ . +~ -------

2t 2 

/ l s I] [ Vgj ] 
s ( s2 + J) - f s - Ugf • 

We now assume that the square roots of the eigenvalues are chosen so that 
the real parts are positive. Then, so that the solution remains bounded as 
z ± co , it is necessary to take 

y: = y~ = 0' 

and 
o; = o~ = o. 

We note that, if the square roots had been chosen to possess negative real 
parts, the other four coeffici ents would have had to be zero instead (i.e., 
y; = y~ = o; = o: = o); due to the symmetry of elements in the fir st two 
terms, the choice is immaterial; if the square roots were taken so that the real 
parts were of opposite sign, all y's and o's would vanish, and the solution would 
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degenerate to A-;' B1 . From equations (28), (29), and (30), it is seen that four 
coeffici ents remain to be determined by the interface conditions given in 
equati ons (3) and (4). The U/s and 17/ s can then be reduced to the following 
forms: 

e 
1 

• + (ug, + i vg,) - (ug2+ i ve2) 
2 - a ·z (s-i f)' I'] [ ] 

s - if 

[
2e-aj z(s+i f)' I' _ 2 e-ajz(s+i f) ' I' ] } - f v g; + J zugJ 

. s s +if s2 +/ 2 s(s2 + f 2
)' 

{ [ ] [

2 -a·z (s-if) ' i' 
P; (z,s) = iC1 (u0, - i v0,) - (uaz - i v02) e 

1 
s 

2 - a ·z(s-if)'" ] [ l 
e /- if - (ug, + i v g,)-(ugz+ ivgz) (32) 

----- - ----- ' gj + gJ 
[
2e-ajz(s+if)' 1

' 2 e-ajz(s+if)' " l} f• v Ju . 

s s + if 's(sz+J •) sz+ J 2 ' 
i =( r,2) 

where 

I [ ] - I c, = -
4 

r + (e, K, /e2K2)' f2 , l [ ]- I C 2 = 4 1 + (e 2K2/e, K, )112 

a, = (e, / K,)'12, a , = - (e 2/ K2)1f2
• 

Application of the inverse transform, 

C + io:> 

L- , = ( -
1 

.) \ e8t [ Jds, 
2nz • 

C > O , 

c- ico 

to the U/s and 17/s in (31) and (32) yi elds the soluti ons u; and v· j 1 , 2 
(see Erdelyi 1954), with the further result that 

1
' 

defines a complex function of the real variables z and t . Letting 

+ . 
Vgj = Ugj + ZVgj , 

we obtain the solutions (5a and (5b) [see § ii a]. 
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APPENDIX B 

The Interface Velocity for a Lower Layer of Finite Depth with Ug1 = ug2 = 

= Vg2 = o. Since we wish to determine the velocity component u; ( o, t) for 
the case in which Ugr = Ug2 = Vg2 = o, it is necessary [see equation (28)] 
to invert the transform 

Ur(o,5) = y: + o: -_l_Vgr, (33) 
52 + fz 

where y; and o: are determined by the boundary conditions 

(i) W, bounded as z--+ oo , 

(ii) W1(0,5) = W 2(0,5), 
(iii) K, oWr(o,s)/oz = K2 0W2(0,5)/oz, and 
(iv) W2(-H,5) = o, 

so that the velocities will vanish at the bottom (z = - H) of the lower layer. 
As before, condition (i) implies that y; = y~ = o; the remaining conditions 
yield six equations in the six unknowns o;, o~, o;, o~, y;, y~. Solution of 
these equations for o: yields the desired transform in terms of infinite series as 

U,(o,s) = _!_ fvg, rl +(e,K,/e2K2)1i2]-'{[1 +(r - /3)e-2 H[((2,/K,)(S+if)J''' . 
2 52 + fz -

. i ( - f3)1 e-2jH[((2, IK,)(s+if)]' ''] + [I+ (r - /3) e-2H[(Q, /K,)(s-if)]'". 

. "-'(-(J) i e-2jH[((2,/K,)(s-if)]' '' - - gr r + (e1K,/e2K2)1f2 
00 

]} i f zv [ ]-, 
25(52+f2) 

(34) 

[I + (e2 K2 /erK,)l f2r
1 
{ 2 e-2H[((2, /K,)(s+if)]' " i (- {3)1 e-•j H[((! ,IK,)(s+if)]' " _ 

2 e-2 H [((!, / K,)(s-i/)J''' ( _ /3)1 e-2jH[((! ,I K, )(s-i/)]'1' } - _j_ Vgr, 
L.- 52 +fz 
f=o 

where 

Since the series is uniformly convergent in s, it can be inverted term by term 
to yield u,(o, t) as given in (r8). From the continuity condition (ii), u,(o, t) 
is equal to u2 (o, t) so that (r8) gives the required velocity at the interface. 
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