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ABSTRACT 
The vorticity equations for the vertically integrated momentum are derived for both 

the ocean and atmosphere, subject to the hydrostatic approximation, with the ocean's surface 
treated as a material interface. The familiar wind-stress curl is the dominant momentum 
exchange mechanism for large- and synoptic-scale circulations, with the air-pressure torque 
on the sea surface becoming of comparable importance for motion scales of the order of 102 km. 
The effect of the divergence of the integrated mass flu x is among the larger terms of the 
vorticity equation for all scales of transient motion considered. 

1. Introduction. In most studies on the dynamics of oceanic and atmospheric 
currents, a number of assumptions are made about the vertical density dis-
tribution, the bottom configuration, and the behavior of the free surface, in 
addition to more specific modeling approximations. Due to the relative scarcity 
of adequate observations on oceanic flow in depth, the technique of vertical 
integration is usually employed to render the problem two-dimensional and 
is often accompanied by the assumptions of homogeneity and incompressibility. 
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The corresponding atmospheric analysis is represented by the familiar baro-
tropic models designed for large-scale dynamical prediction. This technique is 
particularly useful for the present purpose of examining the large-scale circula-
tion-producing momentum exchanges across the ocean-atmosphere inter-
face, subject to the hydrostatic approximation. In particular, the analysis will 
be independent of thermodynamic processes in either the ocean or atmosphere, 
and independent of the equations of state. On the other hand, the analysis 
does not consider the heat exchange at the ocean's surface which may have 
an important indirect effect on the interface momentum flux. A complete 
theory of ocean-atmosphere interaction must ultimately consider both the heat 
and momentum exchanges. 

2. Vertically Integrated Dynamic Equations for the Ocean. The equations of 
large-scale oceanic motion may be written 

Of2U a ap a-c 
- = -v·(euv)-- (euw)+fQv--+.Av2 u+ - x, (1) 
at oz ax oz 

aev a ap , a-r 
-= - v·(evv)-- (evw)-feu-- +.Av-v+_Jf__, (2) 
at az ay az 

ap 
az= - eg, (3) 

0(2 O(]W 
at= -v ·ev - ------;;:;-, (4) 

where u, v, and ware the speeds along the eastward-, northward-, and upward-
directed axes x, y, and z, respectively; (} is the density, p the pressure, f the 
Coriolis parameter, g gravity, .A a horizontal eddy-diffusion coefficient, and 
-rx, iy the components of the stress T = irx + j-cy, with i and j unit vectors 
along X and y. Here also V = i(a/ax) + j(a/ay) and V = i u + j v . We shall 
not consider here the oceanic equation of state or the thermodynamic energy 
equation, and we shall also not consider the astronomical tidal forces. The 
boundary conditions accompanying (I)-( 4) are 

aC Wr = Vr·vC+ -at ' 

a(-h) 
w_h=V_h·v(- h) + --, 

at 

(5) 

(6) 

representing the conti-nuity of surface-water particles and the bottom kinematic 
boundary condition. Here C is the sea-surface elevation (relative to an un-
disturbed reference level z = o), and-his the ocean's depth (relative to z = o). 
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Denoting integration over the total depth of the ocean by the operator < ) , 
defined as 

(7) 

and with use of the conditions (5) and (6), we find from (1)-(4) the integrated 
forms 

a<e.!!1 = -v. <euv) + f <ev) - a<p> + Pa fJC -
at ax ax 

-p/(a-xh) +<.Avzu) +1:~-1:~, (8) 

a<ev) = -v·<evv) -f<eu) -a<p> +Paac -
at ay ay 

a ( - h) 2 w b -pb- - +<.AV v ) +•y -1:y, (9) 
ay 

a<e>=-v·<ev) . (11) 
at 

Here we have written Pa = P( for the atmospheric pressure at the ocean's 
surface, Pb= P-h for the bottom pressure, and -,;wand -,;b for the surface (wind) 
and bottom stress components, respectively. The system (8)- ( 11) is a general 
form of the vertically integrated equations that is well suited to the present 
analysis. Their form is similar to that given by Fofonoff (1962) for the steady 
state with the neglect of variations in the sea-surface height, C. 

If we were considering surges or wind-driven tides, the above equations 
would probably be the most convenient formulation and would facilitate the 
introduction of further approximations (Hansen 1956, Fischer 1959, Groen 
and Groves 1962). The wind-driven currents on an oceanic scale, on the 
other hand, are characterized by approximate geostrophic equilibrium. In such 
a case it is convenient to consider the vorticity equation, as has been widely 
done in the modeling of the large-scale atmospheric motions. Taking the curl 
of (8) and (9), we thus find 

a 
- curl <ev) = -f1<ev) + curlTw + curl < .A72 v'> + at , 

+ curl N + fa<e> + J(Pa,C> + J (Pb,h) - curl Tb' 
at 

(12) 
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where curl () = k · 'v x (), {3 = a f /8 y, Tw (b) = i-r': (b) + ir1:J (b), and 
N = i<;J • ( euv) +j<;J · (evv) . 

[24,2 

The first two terms on the right-hand side of ( 1 2) are the f3 and wind-stress 
curl effects first considered by Sverdrup ( 194 7) as an approximation to the 
vorticity balance in the open ocean. The third term represents the effect of 
the lateral-eddy diffusion, and its retention permits a description of the in-
tensified currents characteristic of the western ocean as first shown by Munk 
(1950) for the steady state. The fourth term in (12) represents the nonlinear 
inertial terms in the equation of motion; these terms have been incorporated 
into inertial theories of the western boundary current by Morgan (1956) and 
Charney (1955). The nonlinear terms have generally not been considered in 
the dynamics of the open ocean, although they have been treated by Bryan 
(1963) in a numerical study of nondivergent flow . The termfo(e)/ot in (12) 
represents the effect of net divergence ( of the vertically integrated mass trans-
port) through (11). The term J(Pa,C) is the torque exerted on the ocean's sur-
face by the atmospheric pressure. Similarly, J(pb, h) is a pressure torque exerted 
by the ocean on the ocean's bottom, and together with the last term of (12), it 
represents the local momentum vorticity exchange with the underlying earth. 

If we neglect variations in the atmospheric pressure Pa, and in the ocean's 
surface C, omit the inertial term, and linearize the remaining terms with 
respect to a mass transport stream function and a mean density, we obtain a 
formulation given by Welander (1959). Derivations of the integrated vorticity 
equation in which the variations in depth and density are considered explicitly, 
however, lead to relatively complicated formulations, as emphasized by Fortak 
(1962). Equation (12), on the other hand, is a consise and general statement 
of the oceanic vorticity balance that is suited to the examination of the large-
scale atmosphere-ocean dynamical interaction. 

3. Vertically Integrated Dynamic Equations for the Atmosphere. The system 
(1)-(4) may be applied without formal change to the atmosphere, again with-
out reference to the thermodynamics. In analogy with (7), we may then 
denote vertical integration over the total atmospheric depth by the operator 
(( >) , defined as 

(( () » = \~ () dz . . \ 
If we apply this operator to ( 1 )-(4) with the boundary condition (5) at z = C, 
and apply the conditions T o, ew o, 8 p/8 t o as z co , then we obtain the 
integrated system 

O(( (!U >) = -'y · (( (! U'V >) + f (( (! V »- 8((p >) -
ot ax 

ac " - Pa - + ((A<;J· u »- -r:": , ax . 
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a«ev» = - v ·«evv» -J« eu» -a« p» -
at ay 

ac -Paay +« Av2v)) --crJ, 

Pa= g(< e », 
0<~;» = -v·« ev» . 

Taking now the curl of (14) and (15), we find 

a 
- curl « ev» = -fJ« ev» - curl i-W + curl « Av 2 v )) + at 
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( I 5) 

+ curl M + /
0<~~ » -J(Pa,C), (18) 

where 

in analogy with N in ( 1 2). A similar derivation for a rigid lower boundary, 
without fricti onal or diffusion effects, has been made by Starr and Gates ( 19 54). 

4. The Momentum Exchange Mechanisms. The large-scale momentum ex-
change processes between the ocean and atmosphere may now be identified as 
those terms in both (12) and (18) having opposite signs. We may thus denote 
the interaction terms 

I, = curl Tw , 

12 = J(Pa,C), 

taken to be positive when momentum vorticity is transferred from the atmos-
phere to the ocean. /, represents the frictional stress exerted on the ocean's 
surface by the wind, and is negative (i.e., anticyclonic) over much of the ocean. 
/ 2 represents a local torque exerted by the air on the disturbed oceanic surface, 
analogous to that exerted by the atmosphere on mountains, for example, al-
though in the present case the ocean's surface is free to move. 

In lieu of a scale theory for the complete dynamical equations, we may 
at least make a scale analysis of the oceanic vorticity equation ( 12) in order 
to estimate the relative magnitudes of the interaction effects. We may thus 
introduce: a characteristic speed /7; a characteristic horizontal scale L ( La for 
the atmosphere), a period T = L /c, where c is a characteristic phase speed; a 
density R; and a characteristic depth H. A similar scaling for the oceanic 
equations of motion has been made by Fofonoff (1962). Neglecting the last 
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T able I. Relati ve magnitude of terms in the integrated momentum vorticity 

equati on. 
Relative magni tude* 

Term Dimensionless L arge-scale Synoptic scale Small-scale 

of (12) order (quasi-steady; (transient; (transient; 

L ~ r,) L ~ 0.1 r,) L ~ 0.01 r, ) 

(8/&t) curl <e v ) (c/V) (H/L) Ro 6 X 10--II 6 x I0--8 6 x l0-4 

/3 ( ev) (f3 L2 /V) (H/L) Ro 2 X I0--5 2 x l0--5 2 x I0--5 
curl Tw ITWI (IL. RV)--' I0--6 I0--5 J0--5 

curl ( A 'y'2 v ) (H/L) Ro Re-' 6 x l0--' 0 6 x l 0--7 6 x lQ-4 

curl N (H/L) Ro 6 x 10--s 6 x 1Q--6 6 x I0--3 

fa <e )/&t (H/L) (c/V) 6 x l0--7 6 X JQ--5 6 X IQ--3 

J (p., C) 16Pal IL rnfLL. RV)--' 3 x 10--s 3 x l Q--6 3 x 10--5 

• For the values H = 4 km, /3 = I0--' 3 cm--' sec--', f = I0-4 sec--', R = I g cm--3, ITwl = 
I dyne cm--2, 16Pal = 10 mb, and 16 (1 = I m . 

two terms of ( 12), the terms of the integrated momentum vorticity equati on 
(12) assume the relati ve magnitudes shown in T able I. Here R o = f/ (f L) --1 is 
the Rossby number, Re = L f/RA--1 is a Reynolds number associated with the 
lateral-eddy viscosity, LI Pa is a typical variation in the surface pressure Pa on 
the scale La, and LIC is a typical variation in the ocean-surface height on the 
scale L . 

For the large-scale oceanic circulation (i. e., for the nearly steady fl ow on 
an oceanic scale), we may estimate L~re (the earth's radius), L~La, H /L~ 
6 x 10-- 4, //~10 cm sec', c/v ~10--3, R o~i o--4, and Re~102 (with Ae--' = 
6 x 107 cm2 sec' ). The dominant terms in (12) then are fJ (ev) , curl t w, 

and Ja<e)/at, as shown in Table I. The importance of the fJ and stress terms 
for this scale of moti on has been known since the work of Sverdrup (1947). 
The relati ve magnitude of the term Ja<e)/at suggests that di vergence effects 
are important in the transient behavi or of the larger scales of oceanic motion, 
as, for example, in the adjustment process to an imposed wind stress. Provision 
fo r this effect has not generall y been made in oceanic models, although Burger 
( 19 5 8) has shown that the corresponding effect in the atmosphere is important 
for the larger-scale moti ons. The interaction /2 is relati vely unimportant on 
this scale, as are the nonlinear and diffusion terms. 

For synoptic-scale oceanic moti ons, say with L~o.1 re, we may estimate 
c///~10--2, //~10 cm sec--', L~La, H /L~6x 10--3, R o~i o--3, and R e~I O 
(with Ae-' = 6 x I o7 cm2 sec--'); the resulting relati ve magnitudes of the terms 
of (12) are shown in Table I. A gain the dominant terms are the (J , wind-stress 
and divergence effects, but now the nonl inear (inerti al) term curl N and the 
lateral viscous term are of somewhat greater relati ve importance than on the 
larger scale. Bryan ( 1963) has examined the role of these effects for a non-
divergent transient model and found that they exert a cri ti cal influence on the 
formati on and behavior of synoptic-scale current eddies. H owever, the gen-
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erall y neglected interaction term 12 appears to be of relative importance on 
this scale, and may play a role comparable to that of the inerti al and viscous 
effects. 

For even small er-scale moti ons, say L ~ o.o I re, with c/ //~ I 0-1
, // ~ 1 m 

sec-', L~La, H /L~6x 10-z, R o~10-1, and R e~10, the interacti on 12 may 
become comparable to the stress interacti on 1, , and to the /J term; but all of 
these terms are now the smaller ones in the vorticity equation, as indicated in 
T able I. This apparent importance of the air-pressure torque ](Pa, C) on the 
small er-scale motions is consistent with the evidently major role played by 
pressure effects in lake-surge development reported by Platzman (1958); how-
ever, in his case the characteri sti c water depth was about 1 0 - 2 times that of 
the present analysis. \Ve note from Table I, however, that all terms except 1, 
and 12 are proportional to H; hence a reduction of H would increase the im-
portance of 1, and 12 relative to the other terms in the vorti city equation, 
while leaving their size relative to each other unchanged. 

From this analysis we may at least conclude that the famili ar curl of the 
wind stress is the dominant momentum interaction on the large and synoptic 
scales, but it should be supplemented on scales of the order of 102 km by the 
pressure torque on the ocean's surface. Under the conditions assumed, the 
acti on of mean divergence is relatively important on all scales considered. In 
order to treat this effect, as well as to determine 12, considerati on should be 
given to oceanic models with a variable free surface. In comparing the several 
terms of ( 12), it should be recall ed that thermodynamic effects have not been 
considered, a caution that has previously been sounded by W elander (1959). 
The variations in the structure and thickness of the upper warm ocean layer 
effectively reduce the action of surface-height variations on the deeper water, 
for example, and the verti cal integration of the present analysis masks this 
effect. In order to treat this effect, as well as to consider the important ocean-
atmosphere thermal interactions, representation of the vertical structure of the 
ocean would seem to be required . 

.Acknowledgment. I would lik e to thank the reviewers, George W. Platzman 
and Jule G. Charney, for a number of valuable suggesti ons leading to a more 
concise and accurate version of this paper. 
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